-
$ {\text{PM}}_{\text{2.5}} $ 是大气污染物的主要成分,对环境质量[1]、气候变化[2]和人体健康[3]起着不可忽视的影响.$ {\text{PM}}_{\text{2.5}} $ 具有吸湿性,吸湿性颗粒物是云凝结核的重要物质[4],影响着地方性大气降水,同时$ {\text{PM}}_{\text{2.5}} $ 中的化学组分可以通过吸收和散射太阳辐射,使地表辐射收支不平衡,进一步影响地方气候[5 − 6]. 大气中的细小颗粒物易附着有害物质,粒径较小的颗粒物(如$ {\text{PM}}_{\text{2.5}} $ )可被人体吸入从而损害人体健康[7].水溶性无机离子是
$ {\text{PM}}_{\text{2.5}} $ 的主要化学组分,占$ {\text{PM}}_{\text{2.5}} $ 质量浓度的60%以上[8 − 9]. 随着城市化进程的推进,化石燃烧消耗量增加,大气污染排放量增多,造成了我国城市地区灰霾天气的发生[10]. 除了污染物的直接排放,大气中的污染气体可通过化学反应生成二次颗粒物,例如$ {\text{NO}}_{\text{2}} $ 转化为硝酸盐[11],且污染气体之间存在相互影响,如在高湿、碱性环境下,$ {\text{NO}}_{\text{2}} $ 可以促进$ {\text{SO}}_{\text{2}} $ 转化为硫酸盐的速率[12],加剧大气污染. 水溶性无机离子以二次离子$ {\text{SO}}_{\text{4}}^{\text{2}-} $ 、$ {\text{NO}}_{\text{3}}^{-} $ 和$ {\text{NH}}_{\text{4}}^{+} $ (sulfate nitrate ammonia,SNA)为主[13 − 14],一般认为SNA的形成包括均相和非均相反应,例如$ {\text{SO}}_{\text{2}} $ 和OH自由基的气相氧化反应生成$ {\text{SO}}_{\text{4}}^{\text{2}-} $ ,这是均相反应;在非均相反应中,SO2可以与大气中的液态环境接触生成液态H2SO4,再与NH3反应形成$ {\text{SO}}_{\text{4}}^{\text{2}-} $ 颗粒. 对于$ {\text{NO}}_{\text{3}}^{-} $ ,白天主要由OH氧化$ {\text{NO}}_{\text{2}} $ 生成,在夜间则主要通过N2O5水解反应产生[15]. SNA的形成不仅受大气中$ {\text{NO}}_{\text{2}} $ 、$ {\text{SO}}_{\text{2}} $ 浓度的影响,还与大气温度、湿度以及传输过程等有关. Wang等[16]发现,北京春季40%的颗粒物来源于跨区域的气团输送,Zhu等[17]观测到,来自缅甸的污染气团通过盛行西风输送到我国西南地区. Deng等[18]发现,东南亚生物质燃烧产生的气溶胶会传输到珠三角地区. 因此,分析$ {\text{PM}}_{\text{2.5}} $ 的化学组成特征及其排放源对改善地方性大气环境具有重要意义,同时可进一步认识区域尺度大气传输过程对大气污染的影响.昆明市地处我国西南地区,城市人口密集,交通发达,对能源的依赖程度高,地势平坦,属低纬度高原季风气候,夏季受西南季风、冬季受西风的控制,日照时间长,气候温和. 目前,国内已经广泛地开展了京津翼、长三角等地区细颗粒物中水溶性无机离子的研究,但对西南地区研究仍然较少. 已有研究表明昆明市春季受境外生物质燃烧的影响较大[19]. 此外,来自青藏高原的沙尘粒子也会对云南地区的空气质量产生影响[20]. 本研究选取昆明市作为研究区域,采集了2019年12月至2020年11月的大气
$ {\text{PM}}_{\text{2.5}} $ 样品,分析其中水溶性无机离子组分浓度,并通过相关性分析、主成分分析(principal component analysis,PCA)及后向轨迹聚类分析,探讨昆明市气溶胶的化学组分特征及来源,并讨论气团输送的影响.
昆明市PM2.5中水溶性无机离子的化学特征及来源解析
Chemical characteristics and source analysis of water-soluble inorganic in PM2.5 in Kunming
-
摘要: 为探究昆明市大气中水溶性无机离子的化学组分、季节差异及主要来源,本研究于2019年12月至2020年11月在云南大学进行
$ {\text{PM}}_{\text{2.5}} $ 样品采集,利用离子色谱仪分析样品中水溶性无机离子的质量浓度,并结合离子相关性分析、后向轨迹分析和主成分分析等方法,阐明了昆明市大气中$ {\text{PM}}_{\text{2.5}} $ 及其水溶性无机离子的季节污染特征及来源. 结果表明,采样期间各季节总水溶性无机离子浓度均值排序为春季((5.6$ \pm $ 2.2)μg·m−3)$ \gt $ 冬季((5.5$ \pm $ 2.6)μg·m−3)$ \gt $ 秋季((4.3$ \pm $ 2.8)μg·m−3)$ \gt $ 夏季((3.6$ \pm $ 2.2)μg·m−3),水溶性无机离子年质量浓度的均值从大到小为$ {\text{SO}}_{\text{4}}^{\text{2}-} \gt {\text{Ca}}^{\text{2}\text{+}} \gt {\text{NO}}_{\text{3}}^{-} \gt {\text{NH}}_{\text{4}}^{+} \gt {\text{K}}^{\text{+}} \gt {\text{Cl}}^{-} \gt {\text{Na}}^{+} \gt {\text{Mg}}^{2+} \gt {\text{F}}^{-} $ ,其中$ {\text{SO}}_{\text{4}}^{\text{2}-} $ 、$ {\text{Ca}}^{\text{2}\text{+}} $ 、$ {\text{NO}}_{\text{3}}^{-} $ 和$ {\text{NH}}_{\text{4}}^{+} $ 是主要的水溶性无机离子.$ {\text{Ca}}^{\text{2}\text{+}} $ 主要源于土壤粉尘,其他三者由前体物($ {\text{SO}}_{\text{2}} $ 、NOx和NH3)二次转化生成,主要受化石燃料燃烧排放影响.SOR和NOR全年均值分别为0.20和0.02,表明在相同的环境里,$ {\text{SO}}_{\text{2}} $ 二次转化为$ {\text{SO}}_{\text{4}}^{\text{2}-} $ 的过程更易发生,且在秋季转化速率最大(SOR=0.23).$ {\text{SO}}_{\text{4}}^{\text{2}-} $ 、$ {\text{NO}}_{\text{3}}^{-} $ 和$ {\text{NH}}_{\text{4}}^{+} $ 在秋季主要以NH4NO3和(NH4)2SO4的形式存在,其他三季则以NH4HSO4和NH4NO3的形式存在. 昆明市大气$ {\text{PM}}_{\text{2.5}} $ 中水溶性无机离子在冬、秋和春季一致,主要来自二次源和生物质燃烧源,其次是工业源和土壤尘,而夏季则主要来自机动车尾气、生物质燃烧源和土壤尘. 除本地排放的影响外,冬季和夏季受到来自缅甸、老挝和贵州污染气团的影响,春季污染气团来自缅甸、云南本地和贵州,而秋季则受到云南东部和南部地区的气团输送影响.-
关键词:
- 水溶性无机离子 /
- $ {\text{PM}}_{\text{2.5}} $ /
- 来源解析 /
- 昆明 /
- 后向轨迹分析.
Abstract: In this study,$ {\text{PM}}_{\text{2.5}} $ samples were collected at Yunnan University, Kunming from December 2019 to November 2020 to explore the chemical composition, seasonal variation, and sources of water-soluble inorganic ions in Kunming. The analyzed mass concentration of water-soluble inorganic ions (WSIIs) were combined with correlation, backward trajectory, and principal component analysis to clarify the seasonal characteristics and potential sources of$ {\text{PM}}_{\text{2.5}} $ and WSIIs in Kunming. The results indicated that the mean concentrations of WSIIs peaked in spring ((5.6$ \pm $ 2.2)μg·m−3), followed by winter ((5.5$ \pm $ 2.6)μg·m−3), autumn ((4.3$ \pm $ 2.8)μg·m−3), and summer ((3.6$ \pm $ 2.2)μg·m−3). The average annual mass concentration of WSIIs was$ {\text{SO}}_{\text{4}}^{\text{2}-} \gt {\text{Ca}}^{\text{2}\text{+}} \gt {\text{NO}}_{\text{3}}^{-} \gt {\text{NH}}_{\text{4}}^{+} \gt $ $ {\text{K}}^{\text{+}} \gt {\text{Cl}}^{-} \gt {\text{Na}}^{+} \gt {\text{Mg}}^{2+} \gt {\text{F}}^{-} $ , among which$ {\text{SO}}_{\text{4}}^{\text{2}-} $ ,$ {\text{Ca}}^{\text{2}\text{+}} $ ,$ {\text{NO}}_{\text{3}}^{-} $ , and$ {\text{NH}}_{\text{4}}^{+} $ dominant the fractions in WSIIs.$ {\text{Ca}}^{\text{2}\text{+}} $ mainly came from soil dust, while the other three were generated by the secondary formation of its precursors (i.e., SO2, NOx, and NH3), which are mainly emitted by anthropogenic emissions (i.e., fossil fuel combustion). Here, the annual average values of SOR and NOR are 0.20 and 0.02, respectively, indicating that the secondary conversion from SO2 to$ {\text{SO}}_{\text{4}}^{\text{2}-} $ is more likely to occur with the same weather conditions. The conversion rate was highest in autumn (SOR=0.23).$ {\text{SO}}_{\text{4}}^{\text{2}-} $ ,$ {\text{NO}}_{\text{3}}^{-} $ , and$ {\text{NH}}_{\text{4}}^{+} $ mainly exist in the form of NH4NO3 and (NH4)2SO4 in autumn, and the other seasons exist in the form of NH4HSO4 and NH4NO3. The WSIIs and$ {\text{PM}}_{\text{2.5}} $ in Kunming showed the similar sources, which were mainly from the secondary reaction and biomass combustion sources, followed by industrial and soil dust sources, in winter, autumn, and spring. In contrast, WSIIs and$ {\text{PM}}_{\text{2.5}} $ were mainly from motor vehicle exhaust, biomass burning sources, and soil dust in summer. Apart from the local emissions, the polluted air masses showed a seasonal variation: Myanmar, Laos, and Guizhou in winter and summer; Myanmar, Yunnan, and Guizhou in spring; eastern and southern parts of Yunnan in autumn. -
表 1
中水溶性无机离子及气态污染物浓度季节分布$ {\text{PM}}_{\text{2.5}} $ Table 1. Seasonal distribution of water-soluble inorganic ions and gaseous pollutant concentration in
$ {\text{PM}}_{\text{2.5}} $ 项目
Project季节
Season冬
Winter春
Spring夏
Summer秋
Autumn$ {\text{F}}^{-} $ 0.04 0.02$ \pm $ 0.04 0.02$ \pm $ 0.02 0.02$ \pm $ 0.03 0.04$ \pm $ $ {\text{Cl}}^{-} $ 0.15 0.12$ \pm $ 0.05 0.02$ \pm $ 0.06 0.09$ \pm $ 0.07 0.09$ \pm $ $ {\text{NO}}_{\text{3}}^{-} $ 1.10 0.88$ \pm $ 0.67 0.56$ \pm $ 0.27 0.29$ \pm $ 0.71 0.67$ \pm $ $ {\text{SO}}_{\text{4}}^{\text{2}-} $ 1.84 1.04$ \pm $ 2.37 1.05$ \pm $ 1.44 0.93$ \pm $ 1.83 1.30$ \pm $ $ {\text{Na}}^{+} $ 0.06 0.03$ \pm $ 0.07 0.03$ \pm $ 0.08 0.11$ \pm $ 0.07 0.10$ \pm $ $ {\text{NH}}_{\text{4}}^{+} $ 0.68 0.41$ \pm $ 0.76 0.28$ \pm $ 0.31 0.20$ \pm $ 0.73 0.57$ \pm $ $ {\text{K}}^{\text{+}} $ 0.16 0.07$ \pm $ 0.16 0.06$ \pm $ 0.05 0.05$ \pm $ 0.08 0.07$ \pm $ $ {\text{Mg}}^{2+} $ 0.07 0.01$ \pm $ 0.08 0.03$ \pm $ 0.06 0.03$ \pm $ 0.03 0.02$ \pm $ $ {\text{Ca}}^{\text{2}\text{+}} $ 1.37 0.45$ \pm $ 1.40 0.50$ \pm $ 1.30 0.89$ \pm $ 0.74 0.51$ \pm $ TWSIIs 5.47 2.63$ \pm $ 5.57 2.24$ \pm $ 3.59 2.23$ \pm $ 4.30 2.78$ \pm $ $ {\text{PM}}_{\text{2.5}} $ 40.13 13.41$ \pm $ 24.13 8.47$ \pm $ 12.99 6.09$ \pm $ 27.77 14.88$ \pm $ SNA 3.62 2.23$ \pm $ 3.75 1.76$ \pm $ 2.02 1.32$ \pm $ 3.27 2.43$ \pm $ $ {\text{SO}}_{\text{2}} $ 9.27 1.20$ \pm $ 9.48 0.99$ \pm $ 6.07 1.86$ \pm $ 5.78 1.39$ \pm $ $ {\text{NO}}_{\text{2}} $ 38.05 7.60$ \pm $ 28.40 10.82$ \pm $ 22.80 7.83$ \pm $ 34.39 12.68$ \pm $ /$ {\text{NO}}_{\text{3}}^{-} $ $ {\text{SO}}_{\text{4}}^{\text{2}-} $ 0.55 0.26 0.16 0.38 注:表中数值为平均值 标准偏差. Note: The values in the table are the mean value$ \pm $ standard error.$ \pm $ 表 2 昆明市
中水溶性无机离子之间的相关系数$ {\text{PM}}_{\text{2.5}} $ Table 2. Correlation coefficients among water-soluble inorganic ions in
in Kunming$ {\text{PM}}_{\text{2.5}} $ 成分
Component$ {\text{F}}^{-} $ $ {\text{Cl}}^{-} $ $ {\text{NO}}_{\text{3}}^{-} $ $ {\text{SO}}_{\text{4}}^{\text{2}-} $ $ {\text{Na}}^{+} $ $ {\text{NH}}_{\text{4}}^{+} $ $ {\text{K}}^{+} $ $ {\text{Mg}}^{2+} $ $ {\text{Ca}}^{\text{2}\text{+}} $ $ {\text{F}}^{-} $ 1.00 $ {\text{Cl}}^{-} $ 0.06 1.00 $ {\text{NO}}_{\text{3}}^{-} $ 0.40** 0.58** 1.00 $ {\text{SO}}_{\text{4}}^{\text{2}-} $ 0.16 0.39** 0.70** 1.00 $ {\text{Na}}^{+} $ 0.05 0.72** 0.25** 0.33** 1.00 $ {\text{NH}}_{\text{4}}^{+} $ 0.23* 0.29** 0.77** 0.85** 0.12 1.00 $ {\text{K}}^{\text{+}} $ 0.40** 0.58** 0.66** 0.64** 0.44** 0.53** 1.00 $ {\text{Mg}}^{2+} $ 0.36** 0.26** 0.23* 0.37** 0.34** 0.06 0.62** 1.00 $ {\text{Ca}}^{\text{2}\text{+}} $ 0.45** 0.18 0.39** 0.44** 0.17 0.14 0.44** 0.68** 1.00 注:**表示变量在双尾T检验中P<0.01,*表示变量在双尾T检验中P<0.05.
Note: ** indicates the variable P<0.01 in bilateral T-test, * indicates the variable P<0.05 in bilateral T-test.表 3 主成分旋转因子载荷矩阵
Table 3. Rotated component matrix of major components
项目
Project冬季Winter 春季Spring 夏季Summer 秋季Autumn 因子1
Factor 1因子2
Factor 2因子1
Factor 1因子2
Factor 2因子1
Factor 1因子2
Factor 2因子1
Factor 1因子2
Factor 2$ {\text{K}}^{\text{+}} $ 0.81 −0.02 0.88 −0.02 0.90 −0.41 0.95 −0.04 $ {\text{Na}}^{+} $ 0.52 0.39 0.74 0.39 0.74 −0.65 0.64 −0.43 $ {\text{Ca}}^{\text{2}\text{+}} $ 0.55 0.42 0.84 0.18 0.74 0.42 0.57 0.75 $ {\text{Mg}}^{2+} $ −0.40 0.88 −0.38 0.88 0.91 −0.12 0.55 0.62 $ {\text{NH}}_{\text{4}}^{+} $ 0.87 −0.24 0.90 −0.22 0.46 0.72 0.72 −0.32 $ {\text{F}}^{-} $ −0.38 0.89 −0.38 0.89 0.58 0.45 0.52 0.70 $ {\text{Cl}}^{-} $ 0.80 0.38 0.33 0.82 0.66 −0.73 0.64 −0.5 $ {\text{NO}}_{\text{3}}^{-} $ 0.94 −0.10 0.85 0.10 0.93 0.22 0.90 0.01 $ {\text{SO}}_{\text{4}}^{\text{2}-} $ 0.88 0.28 0.86 0.08 0.82 0.40 0.80 −0.34 方差贡献率/% 51.82 24.42 52.72 27.62 58.03 24.94 50.90 23.24 累计贡献率/% 51.82 76.24 52.72 80.34 58.03 82.97 50.90 74.15 可能来源 二次源和生
物质燃烧源工业源和
土壤尘二次源和
生物质燃烧源工业源和
土壤尘机动车尾气、生物
质燃烧源和土壤尘农业源 二次转化和生
物质燃烧源土壤尘和
工业源注:黑体字为该因子中载荷较大的组分载荷量. Note: The boldface is the load of the component with larger load in this factor. -
[1] SUN Y L, WANG Z F, DU W, et al. Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis[J]. Atmospheric Chemistry and Physics, 2015, 15(17): 10149-10165. doi: 10.5194/acp-15-10149-2015 [2] TIAN S L, PAN Y P, WANG Y S. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 1-19. doi: 10.5194/acp-16-1-2016 [3] TIAN M, WANG H B, CHEN Y, et al. Characteristics of aerosol pollution during heavy haze events in Suzhou, China[J]. Atmospheric Chemistry and Physics, 2016, 16(11): 7357-7371. doi: 10.5194/acp-16-7357-2016 [4] 徐沛华, 杨艳蓉, 刘梦迪, 等. 生物质燃烧排放颗粒物中水溶性有机物的光学特性[J]. 环境化学, 2022, 41(6): 2133-2142. doi: 10.7524/j.issn.0254-6108.2021022202 XU P H, YANG Y R, LIU M D, et al. Optical properties of water-soluble organic matters in particulate matter from biomass burning[J]. Environmental Chemistry, 2022, 41(6): 2133-2142 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022202
[5] YU X N, MA J, AN J L, et al. Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China[J]. Journal of Cleaner Production, 2016, 131: 112-120. doi: 10.1016/j.jclepro.2016.05.067 [6] CHEN P F, KANG S C, GUL C, et al. Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan[J]. Journal of Environmental Sciences, 2020, 90: 286-296. doi: 10.1016/j.jes.2019.12.006 [7] 黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征[J]. 环境科学, 2020, 41(6): 2528-2535. HUANG H H, WANG Y Q, LI S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi’an[J]. Environmental Science, 2020, 41(6): 2528-2535 (in Chinese).
[8] WANG H L, ZHU B, SHEN L J, et al. Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources[J]. Atmospheric Environment, 2015, 123: 370-379. doi: 10.1016/j.atmosenv.2015.05.070 [9] 尹璐, 董敏丽, 任芮芮, 等. 舟山市环境空气PM2.5及水溶性离子污染特征分析[J]. 环境化学, 2019, 38(3): 556-564. doi: 10.7524/j.issn.0254-6108.2018050904 YIN L, DONG M L, REN R R, et al. Characteristics of PM2.5 and water-soluble ions in ambient air in Zhoushan[J]. Environmental Chemistry, 2019, 38(3): 556-564 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018050904
[10] JACOBSON M C, HANSSON H C, NOONE K J, et al. Organic atmospheric aerosols: Review and state of the science[J]. Reviews of Geophysics, 2000, 38(2): 267-294. doi: 10.1029/1998RG000045 [11] 徐昶. 中国特大城市气溶胶的理化特性、来源及其形成机制[D]. 上海: 复旦大学, 2010: 53-63. XU C. Characteristics, source and the formation mechanism of aerosol in mega-city, China[D]. Shanghai: Fudan University, 2010: 53-63 (in Chinese).
[12] WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13630-13635. [13] 黄炯丽, 陈志明, 莫招育, 等. 基于高分辨率MARGA分析桂林市PM2.5水溶性离子特征[J]. 中国环境科学, 2019, 39(4): 1390-1404. HUANG J L, CHEN Z M, MO Z Y, et al. Analysis of characteristics of water-soluble ions in PM2.5 in Guilin based on the MARGA[J]. China Environmental Science, 2019, 39(4): 1390-1404 (in Chinese).
[14] 刘安康, 王红磊, 陈魁, 等. 南京市一次霾污染过程中水溶性离子分布特征[J]. 中国环境科学, 2019, 39(5): 1793-1803. LIU A K, WANG H L, CHEN K, et al. Distribution characteristics of water-soluble ions during a haze pollution process in Nanjing[J]. China Environmental Science, 2019, 39(5): 1793-1803 (in Chinese).
[15] ALEXANDER B, SHERWEN T, HOLMES C D, et al. Global inorganic nitrate production mechanisms: Comparison of a global model with nitrate isotope observations[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3859-3877. doi: 10.5194/acp-20-3859-2020 [16] WANG L T, HAO J M, HE K B, et al. A modeling study of coarse particulate matter pollution in Beijing: Regional source contributions and control implications for the 2008 summer olympics[J]. Journal of the Air & Waste Management Association, 2008, 58(8): 1057-1069. [17] ZHU J, XIA X, CHE H, et al. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma[J]. Atmospheric Research, 2016, 169: 237-247. doi: 10.1016/j.atmosres.2015.10.012 [18] DENG X J, TIE X X, ZHOU X J, et al. Effects of Southeast Asia biomass burning on aerosols and ozone concentrations over the Pearl River Delta (PRD) region[J]. Atmospheric Environment, 2008, 42(36): 8493-8501. doi: 10.1016/j.atmosenv.2008.08.013 [19] 潘春梅. 中南半岛春季生物质燃烧对云南省空气质量影响研究[D]. 昆明: 云南师范大学, 2021: 32-51. PAN C M. Study on the impact of biomass burning on air quality in Yunnan Province in spring over indo-China peninsula[D]. Kunming: Yunnan Normal University, 2021: 32-51 (in Chinese).
[20] 周哆多. 云南地区上空UTLS区沙尘气溶胶传输过程及来源的数值模拟研究[D]. 昆明: 云南大学, 2019: 15-48. ZHOU D D. A simulation study on the source and transmission of the dust aerosol to the UTLS over the Yunnan Province[D]. Kunming: Yunnan University, 2019: 15-48 (in Chinese).
[21] 郭晓. 昆明市呈贡区及主城区干季大气PM2.5的化学特征和来源对比[D]. 昆明: 云南师范大学, 2020: 17-29. GUO X. Comparison of chemical characteristics and sources of atmospheric PM2.5 in Chenggong district and main urban district of Kunming in dry season[D]. Kunming: Yunnan Normal University, 2020: 17-29 (in Chinese).
[22] ZHU Y H, HUANG L, LI J Y, et al. Sources of particulate matter in China: Insights from source apportionment studies published in 1987-2017[J]. Environment International, 2018, 115: 343-357. doi: 10.1016/j.envint.2018.03.037 [23] 古金霞, 吴丽萍, 霍光耀, 等. 天津市PM2.5中水溶性无机离子污染特征及来源分析[J]. 中国环境监测, 2013, 29(3): 30-34. GU J X, WU L P, HUO G Y, et al. Pollution character and source of water-soluble inorganic ions in PM2.5 over Tianjin[J]. Environmental Monitoring in China, 2013, 29(3): 30-34 (in Chinese).
[24] 贺瑶, 韩秀秀, 黄晓虎, 等. 南京市不同功能区冬季大气PM2.5分布特征及其来源解析[J]. 环境科学学报, 2021, 41(3): 830-841. HE Y, HAN X X, HUANG X H, et al. Distribution characteristics and source apportionment of atmospheric PM2.5 in winter season from different functional areas of Nanjing[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 830-841 (in Chinese).
[25] 肖浩. 贵阳市PM2.5水溶性无机离子组成特征及氮源解析[D]. 贵阳: 贵州大学, 2019: 23-51. XIAO H. Composition characteristics of water-soluble inorganic ions and nitrogen source analysis in PM2.5 in Guiyang city[D]. Guiyang: Guizhou University, 2019: 23-51 (in Chinese).
[26] 高晓梅. 我国典型地区大气PM2.5水溶性离子的理化特征及来源解析[D]. 济南: 山东大学, 2012: 48-97. GAO X M. Characterization and sources of PM2.5 water-soluble ions in typical areas in China[D]. Jinan: Shandong University, 2012: 48-97 (in Chinese).
[27] 杨慧慧. 兰州市PM2.5中水溶性离子的污染特征及来源解析[D]. 抚州: 东华理工大学, 2019: 15-41. YANG H H. Pollution characteristics and source analysis of water-soluble ions in PM2.5 in Lanzhou city[D]. Fuzhou: East China Institute of Technology, 2019: 15-41 (in Chinese).
[28] 刘凡, 谭钦文, 江霞, 等. 成都市冬季相对湿度对颗粒物浓度和大气能见度的影响[J]. 环境科学, 2018, 39(4): 1466-1472. LIU F, TAN Q W, JIANG X, et al. Effect of relative humidity on particulate matter concentration and visibility during winter in Chengdu[J]. Environmental Science, 2018, 39(4): 1466-1472 (in Chinese).
[29] ARIMOTO R, DUCE R A, SAVOIE D L, et al. Relationships among aerosol constituents from Asia and the north Pacific during PEM-west A[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D1): 2011-2023. doi: 10.1029/95JD01071 [30] WANG Y, ZHUANG G S, TANG A H, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Environment, 2005, 39(21): 3771-3784. doi: 10.1016/j.atmosenv.2005.03.013 [31] 吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献[J]. 环境科学, 2017, 38(7): 2656-2666. WU D, LIN S L, YANG H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou[J]. Environmental Science, 2017, 38(7): 2656-2666 (in Chinese).
[32] QIU X H, DUAN L, GAO J, et al. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China[J]. Journal of Environmental Sciences, 2016, 40: 75-83. doi: 10.1016/j.jes.2015.10.021 [33] SAFAI P D, BUDHAVANT K B, RAO P S P, et al. Source characterization for aerosol constituents and changing roles of calcium and ammonium aerosols in the neutralization of aerosol acidity at a semi-urban site in SW India[J]. Atmospheric Research, 2010, 98(1): 78-88. doi: 10.1016/j.atmosres.2010.05.011 [34] XU L L, DUAN F K, HE K B, et al. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing[J]. Environmental Pollution, 2017, 227: 296-305. doi: 10.1016/j.envpol.2017.04.076 [35] 张玉洽, 杨迎春, 李杰, 等. 东南亚生物质燃烧对我国春季PM2.5质量浓度影响的数值模拟[J]. 环境科学研究, 2016, 29(7): 952-962. ZHANG Y Q, YANG Y C, LI J, et al. Modeling the impacts of biomass burning in Southeast Asia on PM2.5 over China in spring[J]. Research of Environmental Sciences, 2016, 29(7): 952-962 (in Chinese).
[36] CHEN C R, ZHANG H X, LI H Y, et al. Chemical characteristics and source apportionment of ambient PM1.0 and PM2.5 in a polluted city in North China plain[J]. Atmospheric Environment, 2020, 242: 117867. doi: 10.1016/j.atmosenv.2020.117867 [37] 黄敏. 上海浦东新区城区大气PM2.5中水溶性离子污染特征研究[J]. 环境监控与预警, 2022, 14(2): 70-77. HUANG M. Study on pollution characteristics of water-soluble ions in PM2.5 in Pudong new district[J]. Environmental Monitoring and Forewarning, 2022, 14(2): 70-77 (in Chinese).
[38] DICKERSON R. Atmospheric chemistry and physics: From air pollution to climate change (second edition)[J]. Bulletin of the American Meteorological Society, 2009, 90(6): 868-870. [39] 段卿. 南京北郊大气气溶胶化学组分特征分析[D]. 南京: 南京信息工程大学, 2015: 28-37. DUAN Q. The analysis of aerosol chemical composition characteristics in Nanjing northern suburb[D]. Nanjing: Nanjing University of Information Science & Technology, 2015: 28-37 (in Chinese).
[40] DENG X L, SHI C E, WU B W, et al. Characteristics of the water-soluble components of aerosol particles in Hefei, China[J]. Journal of Environmental Sciences, 2016, 42: 32-40. doi: 10.1016/j.jes.2015.07.010 [41] LI X R, WANG L L, JI D S, et al. Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources[J]. Atmospheric Environment, 2013, 77: 250-259. doi: 10.1016/j.atmosenv.2013.03.042 [42] ZHAO J P, ZHANG F W, XU Y, et al. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen[J]. Atmospheric Research, 2011, 99(3/4): 546-562. [43] XIE Z S, FAN C L, LU R, et al. Characteristics of ambient bioaerosols during haze episodes in China: A review[J]. Environmental Pollution, 2018, 243: 1930-1942. doi: 10.1016/j.envpol.2018.09.051 [44] WANG J, ZHANG J S, LIU Z J, et al. Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China[J]. Atmospheric Research, 2017, 187: 138-146. doi: 10.1016/j.atmosres.2016.12.004 [45] PERNIGOTTI D, BELIS C A, SPANÒ L. SPECIEUROPE: The European data base for PM source profiles[J]. Atmospheric Pollution Research, 2016, 7(2): 307-314. doi: 10.1016/j.apr.2015.10.007 [46] 昆明市统计局. 2021年昆明市国民经济和社会发展统计公报[EB/OL].