-
作为对流层臭氧(O3) [1]和二次有机气溶胶(secondary organic aerosol, SOA)生成的重要前体物[2-3], 挥发性有机物(volatile organic compounds, VOCs)对城市O3污染、光化学烟雾及灰霾污染有着重要影响[4-6]. 此外, 部分VOCs具有“三致(致癌、致畸、致突变)”性, 会通过皮肤和呼吸道进入人体, 直接危害人体健康[7-8]. 因此, VOCs治理已经成为许多国家和科学家研究的重点方向之一[9-10]. 研究表明, VOCs成分复杂多变且来源众多, 主要有工业源、燃煤源、机动车源、汽油和溶剂挥发源、植物排放源及生活源等[4, 11-12], 研究难度较大.
随着我国城市化进程的不断发展, 机动车保有量大幅上升, 2021年北京、成都、重庆3个城市的汽车保有量均超过500万辆, 另有17个城市保有量超过300万辆[13]. 研究显示, 机动车尾气已经成为北京[14]、成都[15]、郑州[16]等城市大气VOCs的最大来源, 贡献分别达到35.08%、34.00%、30.50%. 作为机动车大量停放和频繁出入的半封闭场所, 地下停车场内高浓度的VOCs不仅会对人体健康产生危害, 同时也会持续不断向室外传输VOCs, 参与大气光化学反应, 对城市空气质量产生重要影响[17-18]. 目前, 国内外已经针对地下停车场内VOCs展开了相关研究. Castro等[19]对巴西里约热内卢封闭停车场的研究表明, 甲苯是浓度最高的芳香烃化合物; 刘妍等[20]对天津某地下停车场的研究显示, 车辆进出次数和冷启动会显著影响VOCs浓度水平和分类特征; Mariusz等[21]对波兰地下停车场的研究显示, 停车场内空气流通较少会导致有机物浓度较高; Yan等[22]研究了广东地下停车场内VOCs的来源, 结果显示发动机排放和汽油挥发是停车场内芳香烃的主要来源; 张猛[23]对大连市某大型商场地下停车场的研究表明, 苯对停车场内人员构成潜在致癌风险.
总体而言, 目前国内针对地下停车场的调查有限, 基础研究还比较薄弱, 尚未定量解析停车场内VOCs的来源. 因此, 开展地下停车场内VOCs的研究, 定量识别不同排放源对地下停车场VOCs的贡献, 对进一步认识机动车排放对VOCs以及人体健康风险的影响具有重要意义. 本研究选取北京市某一地下停车场作为研究对象, 对停车场内环境空气进行采样, 研究停车场内VOCs浓度及组分特征, 使用正定矩阵因子分析模型(positive matrix factorization, PMF模型)精细化解析VOCs来源, 同时评估不同时段停车场内VOCs对人体健康的影响, 旨在定量解析地下停车场VOCs的来源, 为停车场内人员健康风险的防控提供有效支撑.
地下停车场内挥发性有机物变化特征、来源及人体健康风险评估: 以北京市某一地下停车场为例
Variation, source and health risk assessment of volatile organic compounds in underground park: A case study of an underground park in Beijing
-
摘要: 采集北京市某一地下停车场内环境空气样品,利用气相色谱-质谱/氢火焰离子化检测器(GC-MSD/FID)测定了挥发性有机物(VOCs)的组成,分析其浓度特征、组分特征和影响因素,运用特征物种比值法和正定矩阵因子分析模型(PMF)解析VOCs来源,采用健康风险评估模型定量评估部分VOCs的健康风险. 结果表明,地下停车场内VOCs平均浓度为514.16 μg·m−3,其中烷烃占比最大(43.76%),其次是芳香烃(28.89%)、烯烃(10.97%). 影响停车场内VOCs浓度的主要因素包括机动车运行工况、机动车进出车次及扩散条件. 冷启动工况、较多的出入车次和不利的扩散条件会导致VOCs浓度显著上升. 苯/乙苯和苯/甲基叔丁基醚(MTBE)的均值分别为1.5和0.8,表明机动车尾气和汽油挥发是地下停车场内VOCs的主要来源. PMF解析结果表明地下停车场内VOCs的首要来源为机动车尾气源(44.58%),汽油挥发源和汽车内饰挥发源分别贡献24.56%和9.18%. 其中,汽油挥发源在08:00—10:00时段贡献最大,机动车尾气源在16:00—18:00时段贡献最大. 健康风险评估结果显示,在日常暴露和职业暴露条件下苯、乙苯和MTBE的致癌风险均在16:00—18:00时段达到最大值,而在职业暴露下苯和乙苯的致癌风险均高于安全阈值. 本研究定量解析了地下停车场内VOCs的来源,可为停车场污染评估和人员健康风险的防控提供有效支撑.Abstract: The ambient air samples were collected from an underground park in Beijing and the composition of volatile organic compounds (VOCs) was determined by gas chromatography-mass spectrometry/hydrogen flame ionization detector (GC-MSD/FID). The concentration characteristics, composition characteristics and influencing factors of VOCs were analyzed. The sources of VOCs were identified by diagnostic ratios and positive matrix factorization (PMF). The health risk assessment model was used to quantitatively assess the health risks of some VOCs. The results showed that the average concentrations of VOCs in underground park were 514.16 μg·m−3. Alkanes were the main components (43.76%), followed by aromatics (28.89%) and alkenes (10.97%). The main influence factors on VOCs in underground park included the vehicles operation condition, the diffusion conditions and the number of vehicles entering and exiting. The cold start condition of vehicles, frequent vehicles entering and exiting and the unfavorable diffusion conditions can lead to a significant increase in VOCs concentration. The ratios of benzene/ethylbenzene and benzene/methyl tert-butyl ether (MTBE) were 1.5 and 0.8, respectively, which indicated that vehicle emissions and gasoline evaporation were the main sources of VOCs in underground park. The results of PMF showed that the main source of VOCs in underground park was the vehicle emission (44.58%), followed by the gasoline evaporation and the automobile interior evaporation, accounting for 24.56% and 9.18%, respectively. The gasoline evaporation made the largest contribution during 08:00—10:00, and the vehicle emissions made the largest contribution during 16:00—18:00. The results of health risk assessment showed that the carcinogenic risks of benzene, ethylbenzene and MTBE reached the maximum during 16:00—18:00 under the conditions of daily and occupational exposure. The carcinogenic risks of benzene and ethylbenzene were above the safety threshold under the condition of occupational exposure. This study quantitatively analyzed the sources of VOCs in the underground park, which provided the effective support for pollution assessment of the underground park and the control of health risks to people in the underground park.
-
表 1 VOCs物种及分类
Table 1. Species and classification of VOCs
分类
Classification物种
Species烷烃 乙烷、丙烷、异戊烷、正戊烷、正丁烷、异丁烷、正己烷、2-甲基戊烷、3-甲基戊烷、2, 2, 4-三甲基戊烷、甲基环戊烷、异丁基环己烷、正庚烷、3-甲基己烷、2-甲基己烷、2, 3-二甲基己烷、2, 3, 4-三甲基戊烷、甲基环己烷、辛烷、2-甲基庚烷、3-甲基庚烷、2, 3-二甲基戊烷、壬烷、2, 4-二甲基戊烷、2, 2-二甲基丁烷、环戊烷、正癸烷、正十一烷、正十二烷 芳香烃 苯、甲苯、乙苯、间/对二甲苯、邻二甲苯、偏三甲苯、间乙基甲苯、对乙基甲苯、邻乙基甲苯、正丙苯、1, 2, 3-三甲苯、均三甲苯、对二乙苯、异丙基苯、间二乙苯、1, 4-二氯苯、氯苯、1, 2, 4-三氯苯、1, 2-二氯苯、1, 3-二氯苯、苯乙烯、苯甲醛、萘 烯烃 乙烯、丙烯、1-丁烯、反-2-丁烯、反-2-戊烯、顺-2-丁烯、异戊二烯、1-戊烯、1-己烯、顺-2-戊烯 炔烃 乙炔 卤代烃 四氯化碳、三氯甲烷、1, 2-二氯丙烷、1, 2-二氯乙烷、溴二氯甲烷、氯乙烷、溴甲烷、二氯甲烷、氯甲烷、六氯-1, 3-丁二烯、四氯乙烯、顺-1, 3-二氯丙烯、氯乙烯、1, 1-二氯乙烯 含氧/含硫类化合物 甲基叔丁基醚、丙酮、丁烯醛、甲基乙基酮、二硫化碳、甲基异丁基酮、正丁醛、异丙醇、己醛、四氢呋喃、乙酸乙酯、2-己酮 -
[1] MOZAFFAR A, ZHANG Y L, FAN M Y, et al. Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China [J]. Atmospheric Research, 2020, 240: 104923. doi: 10.1016/j.atmosres.2020.104923 [2] SHENG J J, ZHAO D L, DING D P, et al. Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China [J]. Atmospheric Research, 2018, 212: 54-63. doi: 10.1016/j.atmosres.2018.05.005 [3] HE Z R, WANG X M, LING Z H, et al. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications [J]. Atmospheric Chemistry and Physics, 2019, 19(13): 8801-8816. doi: 10.5194/acp-19-8801-2019 [4] 李如梅, 武媛媛, 彭林, 等. 朔州市夏季环境空气中VOCs的污染特征及来源解析 [J]. 环境化学, 2017, 36(5): 984-993. LI R M, WU Y Y, PENG L, et al. Characteristics and sources apportionment of ambient volatile organic compounds (VOCs) in summer in Shuozhou [J]. Environmental Chemistry, 2017, 36(5): 984-993(in Chinese).
[5] WANG Y M, WANG Y H, TANG G Q, et al. High gaseous carbonyl concentrations in the upper boundary layer in Shijiazhuang, China [J]. Science of the Total Environment, 2021, 799: 149438. doi: 10.1016/j.scitotenv.2021.149438 [6] DONG Y M, LI J, GUO J P, et al. The impact of synoptic patterns on summertime ozone pollution in the North China Plain [J]. Science of the Total Environment, 2020, 735: 139559. doi: 10.1016/j.scitotenv.2020.139559 [7] 曹娟, 毋振海, 鲍捷萌, 等. 美国人为源VOCs管控经验及其对我国的启示 [J]. 环境科学研究, 2022, 35(3): 633-649. doi: 10.13198/j.issn.1001-6929.2022.01.04 CAO J, WU Z H, BAO J M, et al. Processes and experience of anthropogenic VOCs management and control in USA and enlightenment to China [J]. Research of Environmental Sciences, 2022, 35(3): 633-649(in Chinese). doi: 10.13198/j.issn.1001-6929.2022.01.04
[8] 杨燕萍, 陈强, 孟宪红, 等. 兰州市夏季挥发性有机物污染特征及来源解析 [J]. 环境科学, 2022, 43(12): 5442-5452. doi: 10.13227/j.hjkx.202201281 YANG Y P, CHEN Q, MENG X H, et al. Summer pollution characteristics and sources of volatile organic compounds in Lanzhou [J]. Environmental Science, 2022, 43(12): 5442-5452(in Chinese). doi: 10.13227/j.hjkx.202201281
[9] ATKINSON R. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000, 34(12/13/14): 2063-2101. [10] GARG A, GUPTA N C. A comprehensive study on spatio-temporal distribution, health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi, India [J]. Science of the Total Environment, 2019, 659: 1090-1099. doi: 10.1016/j.scitotenv.2018.12.426 [11] 邵华, 张俊平. 中国VOCs治理现状综述 [J]. 中国氯碱, 2018(11): 29-32. doi: 10.3969/j.issn.1009-1785.2018.11.012 SHAO H, ZHANG J P. Overview of VOCs governance in China [J]. China Chlor-Alkali, 2018(11): 29-32(in Chinese). doi: 10.3969/j.issn.1009-1785.2018.11.012
[12] 牛月圆, 刘倬诚, 李如梅, 等. 阳泉市区夏季挥发性有机物污染特征、来源解析及其环境影响 [J]. 环境科学, 2020, 41(7): 3066-3075. NIU Y Y, LIU Z C, LI R M, et al. Characteristics, source apportionment, and environmental impact of volatile organic compounds in summer in Yangquan [J]. Environmental Science, 2020, 41(7): 3066-3075(in Chinese).
[13] 中国政府网. 2021年全国机动车保有量达3.95亿新能源汽车同比增59.25%[EB/OL]. [2022-01-12]. http://www.gov.cn/xinwen/2022-01/12/content_5667715.htm [14] 李斌, 张鑫, 李娜, 等. 北京市春夏挥发性有机物的污染特征及源解析 [J]. 环境化学, 2018, 37(11): 2410-2418. doi: 10.7524/j.issn.0254-6108.2018011706 LI B, ZHANG X, LI N, et al. Pollution characteristics and source analysis of volatile organic compounds in spring and summer in Beijing [J]. Environmental chemistry, 2018, 37(11): 2410-2418(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011706
[15] 徐晨曦, 陈军辉, 姜涛, 等. 成都市区夏季大气挥发性有机物污染特征及来源解析 [J]. 环境科学, 2020, 41(12): 5316-5324. XU C X, CHEN J H, JIANG T, et al. Characteristics and sources of atmospheric volatile organic compounds pollution in summer in Chengdu [J]. Environmental Science, 2020, 41(12): 5316-5324(in Chinese).
[16] 张翼翔, 尹沙沙, 袁明浩, 等. 郑州市春季大气挥发性有机物污染特征及源解析 [J]. 环境科学, 2019, 40(10): 4372-4381. ZHANG Y X, YIN S S, YUAN M H, et al. Characteristics and source apportionment of ambient VOCs in spring in Zhengzhou [J]. Environmental Science, 2019, 40(10): 4372-4381(in Chinese).
[17] 温肖宇, 赵文婷, 罗淑贞, 等. 运城市区夏季大气挥发性有机物污染特征及来源解析 [J]. 环境科学, 2022, 43(6): 2979-2986. WEN X Y, ZHAO W T, LUO S Z, et al. Pollution characteristics and source apportionment of atmospheric volatile organic compounds in summer in Yuncheng city [J]. Environmental Science, 2022, 43(6): 2979-2986(in Chinese).
[18] 库盈盈, 任万辉, 苏枞枞, 等. 沈阳市不同功能区挥发性有机物分布特征及臭氧生成潜势 [J]. 环境科学, 2021, 42(11): 5201-5209. KU Y Y, REN W H, SU C C, et al. Pollution characteristics and ozone formation potential of ambient VOCs in different functional zones of Shenyang, China [J]. Environmental Science, 2021, 42(11): 5201-5209(in Chinese).
[19] de CASTRO B P, de SOUZA MACHADO G, BAUERFELDT G F, et al. Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil [J]. Atmospheric Environment, 2015, 104: 22-26. doi: 10.1016/j.atmosenv.2015.01.013 [20] 刘妍, 杨宁, 孙露娜, 等. 地下停车场VOCs污染特征与健康风险评价 [J]. 环境科学, 2022, 43(12): 5453-5463. doi: 10.13227/j.hjkx.202202066 LIU Y, YANG N, SUN L N, et al. Characteristics and health risk assessment of VOCs in an underground parking garage [J]. Environmental Science, 2022, 43(12): 5453-5463(in Chinese). doi: 10.13227/j.hjkx.202202066
[21] MARĆ M, ŚMIEŁOWSKA M, ZABIEGAŁA B. Concentrations of monoaromatic hydrocarbons in the air of the underground car park and individual garages attached to residential buildings [J]. Science of the Total Environment, 2016, 573: 767-777. doi: 10.1016/j.scitotenv.2016.08.173 [22] YAN Y L, HE Q, SONG Q, et al. Exposure to hazardous air pollutants in underground car parks in Guangzhou, China [J]. Air Quality, Atmosphere & Health, 2017, 10(5): 555-563. [23] 张猛. 停车场中VOCs组分特征研究[D]. 大连: 大连海事大学, 2016. ZHANG M. The research of VOCs components characteristic in a parking area[D]. Dalian: Dalian Maritime University, 2016(in Chinese).
[24] 张翔宇. 长治市环境空气中挥发性有机物来源解析及环境影响研究[D]. 北京: 华北电力大学(北京), 2022. ZHANG X Y. Source analysis and environmental impact study of volatile organic compounds in Changzhi[D]. Beijing: North China Electric Power University (Beijing), 2022(in Chinese).
[25] NORRIS G, DUVALL R, BROWN S, et al. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide[C]. 2014. [26] HUI L, LIU X, TAN Q, et al. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China [J]. Science of The Total Environment, 2019, 650: 2624-2639. doi: 10.1016/j.scitotenv.2018.10.029 [27] US EPA O O S W. Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim[C]. 2009. [28] 南淑清, 张霖琳, 张丹, 等. 郑州市环境空气中VOCs的污染特征及健康风险评价 [J]. 生态环境学报, 2014, 23(9): 1438-1444. doi: 10.3969/j.issn.1674-5906.2014.09.005 NAN S Q, ZHANG L L, ZHANG D, et al. Pollution condition and health risk assessment of VOCs in ambient air in Zhengzhou [J]. Ecology and Environmental Sciences, 2014, 23(9): 1438-1444(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.09.005
[29] LIU Y, KONG L, LIU X, et al. Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China [J]. Atmospheric Pollution Research, 2021, 12(3): 33-46. doi: 10.1016/j.apr.2021.01.013 [30] 张利慧, 毋振海, 李斌, 等. 北京市城区春季大气挥发性有机物污染特征 [J]. 环境科学研究, 2020, 33(3): 526-535. ZHANG L H, WU Z H, LI B, et al. Pollution characterizations of atmospheric volatile organic compounds in spring of Beijing urban area [J]. Research of Environmental Sciences, 2020, 33(3): 526-535(in Chinese).
[31] TSAI W Y, CHAN L Y, BLAKE D R, et al. Vehicular fuel composition and atmospheric emissions in South China: Hong Kong, Macau, Guangzhou, and Zhuhai [J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3281-3288. doi: 10.5194/acp-6-3281-2006 [32] SONG Y, SHAO M, LIU Y, et al. Source apportionment of ambient volatile organic compounds in Beijing [J]. Environmental Science & Technology, 2007, 41(12): 4348-4353. [33] WANG H L, WANG Q, CHEN J M, et al. Do vehicular emissions dominate the source of C6–C8 aromatics in the megacity Shanghai of Eastern China? [J]. Journal of Environmental Sciences, 2015, 27: 290-297. doi: 10.1016/j.jes.2014.05.033 [34] 陈穗玲, 李锦文, 陈南, 等. 地下车库空气中苯系物浓度的时间分布特征与污染评价 [J]. 中国环境监测, 2013, 29(5): 32-37. CHEN S L, LI J W, CHEN N, et al. Underground garage of benzene homologues in air concentration distribution characteristics and pollution evaluation [J]. Environmental Monitoring in China, 2013, 29(5): 32-37(in Chinese).
[35] 张凯. 西安市机动车尾气污染控制研究[D]. 西安: 长安大学, 2014. ZHANG K. Study on vehicle pollution and control strategies in xi’an[D]. Xi'an: Changan University, 2014(in Chinese).
[36] 袁守利, 颜伏伍, 杜传进, 等. 降低汽油机冷起动过程HC排放的分级催化转化技术研究 [J]. 小型内燃机与摩托车, 2005, 34(4): 26-28. YUAN S L, YAN F W, DU C J, et al. Research on technology of classific catalysis for reducing HC emissions from gasoline engines in cold start [J]. Small Internal Combustion Engine, 2005, 34(4): 26-28(in Chinese).
[37] 黄洪涛, 高运川, 裘季冰, 等. 室内空气环境VOCs浓度场的CFD仿真分析 [J]. 上海师范大学学报(自然科学版), 2008, 37(3): 313-320. HUANG H T, GAO Y C, QIU J B, et al. CFD simulation and analysis for VOCs concentration field in indoor environment [J]. Journal of Shanghai Normal University (Natural Sciences), 2008, 37(3): 313-320(in Chinese).
[38] WANG X M, SHENG G Y, FU J M, et al. Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People’s Republic of China [J]. Atmospheric Environment, 2002, 36(33): 5141-5148. doi: 10.1016/S1352-2310(02)00640-4 [39] ZHAO L R, WANG X M, HE Q S, et al. Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China [J]. Atmospheric Environment, 2004, 38(36): 6177-6184. doi: 10.1016/j.atmosenv.2004.07.025 [40] 齐一谨, 王玲玲, 倪经纬, 等. 郑州市夏季大气VOCs污染特征及来源解析 [J]. 环境科学, 2022, 43(12): 5429-5441. QI Y J, WANG L L, NI J W, et al. Characteristics and source apportionment of ambient summer volatile organic compounds in Zhengzhou, China [J]. Environmental Science, 2022, 43(12): 5429-5441(in Chinese).
[41] ZHENG H, KONG S F, XING X L, et al. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year [J]. Atmospheric Chemistry and Physics, 2018, 18(7): 4567-4595. doi: 10.5194/acp-18-4567-2018 [42] ZHU H, WANG H, JING S, et al. Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China [J]. Atmospheric Environment, 2018, 190: 232-240. doi: 10.1016/j.atmosenv.2018.07.026 [43] WONG Y C, SIN D W M, YEUNG L L. Assessment of the air quality in indoor car parks [J]. Indoor and Built Environment, 2002, 11(3): 134-145. doi: 10.1177/1420326X0201100303 [44] 刘芮伶, 翟崇治, 李礼, 等. 重庆主城区夏秋季挥发性有机物(VOCs)浓度特征及来源研究 [J]. 环境科学学报, 2017, 37(4): 1260-1267. LIU R L, ZHAI C Z, LI L, et al. Concentration characteristics and source analysis of ambient VOCs in summer and autumn in the urban area of Chongqing [J]. Acta Scientiae Circumstantiae, 2017, 37(4): 1260-1267(in Chinese).
[45] MO Z W, SHAO M, LU S H. Compilation of a source profile database for hydrocarbon and OVOC emissions in China [J]. Atmospheric Environment, 2016, 143: 209-217. doi: 10.1016/j.atmosenv.2016.08.025 [46] 杨帆, 闫雨龙, 戈云飞, 等. 晋城市冬季环境空气中挥发性有机物的污染特征及来源解析 [J]. 环境科学, 2018, 39(9): 4042-4050. YANG F, YAN Y L, GE Y F, et al. Characteristics and source apportionment of ambient volatile organic compounds in winter in Jincheng [J]. Environmental Science, 2018, 39(9): 4042-4050(in Chinese).
[47] CAI C J, GENG F H, TIE X X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China [J]. Atmospheric Environment, 2010, 44(38): 5005-5014. doi: 10.1016/j.atmosenv.2010.07.059 [48] POULOPOULOS S, PHILIPPOPOULOS C. Influence of MTBE addition into gasoline on automotive exhaust emissions [J]. Atmospheric Environment, 2000, 34(28): 4781-4786. doi: 10.1016/S1352-2310(00)00257-0 [49] WU R R, XIE S D. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds. Environmental Science & Technology. 2017, 51(5): 2574-2583. [50] 王瑞锋, 李芳萍, 李伟伟. 控制汽车车内挥发性有机物的关键点与措施 [J]. 质量与认证, 2018(5): 60-62. doi: 10.16691/j.cnki.10-1214/t.2018.05.003 WANG R F, LI F P, LI W W. The key points and measures to contronl vehicle interior volatile organic compounds [J]. China Quality Certification, 2018(5): 60-62(in Chinese). doi: 10.16691/j.cnki.10-1214/t.2018.05.003
[51] 郑勇. 浅析车内挥发性有机物的来源及检测 [J]. 纺织科技进展, 2017(2): 35-39. ZHENG Y. Analysis of the sources and related test of volatile organic compounds in automobiles [J]. Progress in Textile Science & Technology, 2017(2): 35-39(in Chinese).
[52] 夏庆云. 汽车车内有机挥发物(VOC)的检测 [J]. 环境技术, 2010, 29(4): 40-43,46. XIA Q Y. Introduction of determination of automotive interior volatile organic compounds(VOC) [J]. Environmental Technology, 2010, 29(4): 40-43,46(in Chinese).
[53] 李亚伟, 安德英, 孙涛, 等. 汽车整车内部VOC检测研究 [J]. 时代汽车, 2020(3): 28-29. LI Y W, AN D Y, SUN T, et al. Study on VOC detection in automobile [J]. Auto Time, 2020(3): 28-29(in Chinese).