2019年三亚市PM2.5微量元素的源解析和健康评价

李曾曾, 王平, 丁文慈, 路放, 赵由之, 郭昭伟, 黄鼎. 2019年三亚市PM2.5微量元素的源解析和健康评价[J]. 环境化学, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905
引用本文: 李曾曾, 王平, 丁文慈, 路放, 赵由之, 郭昭伟, 黄鼎. 2019年三亚市PM2.5微量元素的源解析和健康评价[J]. 环境化学, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905
LI Cengceng, WANG Ping, DING Wenci, LU Fang, ZHAO Youzhi, GUO Zhaowei, HUANG Ding. Source analysis and health assessment of PM2.5 trace elements in Sanya City in 2019[J]. Environmental Chemistry, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905
Citation: LI Cengceng, WANG Ping, DING Wenci, LU Fang, ZHAO Youzhi, GUO Zhaowei, HUANG Ding. Source analysis and health assessment of PM2.5 trace elements in Sanya City in 2019[J]. Environmental Chemistry, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905

2019年三亚市PM2.5微量元素的源解析和健康评价

    通讯作者: E-mail:wpalong@hntou.edu.cn ;E-mail:dingwenci@hotmail.com; 
  • 基金项目:
    国家自然科学基金 (41867046,42267015),海南省基础与应用基础研究计划(自然科学领域)高层次人才项目基金(2019RC243,2019RC240),中国科学研究院气溶胶化学与物理重点实验室开放基金(KLACP2001),海南省高等学校教育改革项目(Hnky2019-56)和海南省研究生创新项目(Hys2020-396)资助.

Source analysis and health assessment of PM2.5 trace elements in Sanya City in 2019

    Corresponding authors: WANG Ping, wpalong@hntou.edu.cn ;  DING Wenci, dingwenci@hotmail.com
  • Fund Project: National Natural Science Foundation of China (41867046, 42267015),Hainan Provincial Natural Science Foundation of China(2019RC243,2019RC240),Key Laboratory of Aerosol Chemistry and Physics (KLACP2001), Institute of Earth Environment, CAS,Hainan Province Higher Education Reform Project (Hnky2019-56) and Hainan Graduate Innovation Research Project (Hys2020-396).
  • 摘要: 本研究通过滤膜采样分析得到三亚市PM2.5微量元素数据,结合富集因子,表征化学特征;使用PMF模型进行源解析,定量估算各排放源的贡献比例,并与南海周边城市源解析比较;根据暴露评估模型评估健康效应. 结果表明,三亚市致癌性重金属Cr(7.70×10-3 μg·m−3)已经超过标准限值(2.50×10−5 μg·m−3),S的富集因子高达825.46,表明三亚PM2.5受S元素污染严重;源排放贡献大小比例分别为:海洋源(24.9%)>生物质燃烧源(20.8%)>工业源(20.5%)>土壤源(19%)>交通源(14.8%),源解析结果比较得知,海盐贡献比例与采样点离岸距离有梯度变化特征;滨海城市的主要人为排放源受制于城市经济发展程度;二次无机气溶胶的贡献与工业源的比例呈反比,取决于SAN SNA标识物的配分;重金属污染对三亚不同人群的影响大小顺序为:成年男子>成年女子>儿童;9种重金属元素对 3 类人群经呼吸途径暴露的健康风险均为Cr>As>Ni>Al>Mn>Pb>Cu>Zn>Se.
  • 我国重金属的生产量与消费量与日俱增,这带来了一系列环境污染问题[1-3]. 铬(Cr)具有高毒性、普遍性和持久性,被美国环保署(EPA)列为首要污染物之一[4]. Cr一般以两种形式存在于环境中:Cr(Ⅵ)和Cr(Ⅲ). Cr(Ⅲ)毒性较小且不溶,而Cr(Ⅵ)毒性是Cr(Ⅲ)的100倍,且具有高度的溶解性和流动性[5],对人体有严重危害[6]. 全球大约80%的Cr被开采后用于冶金行业[7],这些Cr废弃物的自然浸出会使得Cr(Ⅵ)在环境中迁移,造成污染[8]. 我国每年产出大量的Cr废弃物[9],土壤中Cr含量平均值已达78.94 mg·kg-1[10],高于规定要求,需要对Cr污染土壤进行有效治理.

    零价铁(ZVI)具有比表面积大、反应活性高、还原能力强等优点,被广泛应用于Cr(Ⅵ)污染土壤的修复[11-12]. 黄铁矿(FeS2)常被用于吸附有机污染物和重金属,其成分为Fe2+和S22−还原基团,可以有效地促进Cr(Ⅵ)的还原与固定[13]. 但ZVI容易表面聚集,会降低其还原能力,且在施用过程中存在过度释放Fe的问题[14],导致土壤孔隙度降低并引起骨料胶结,影响土壤结构[15];天然黄铁矿表面钝化严重[16],导致其与Cr(Ⅵ)反应较慢,这些问题限制了二者的应用. 生物炭(Biochar)是由富含碳的生物质在缺氧条件下热解产生的[17],其原料来源广且价格低[18],是一种环境友好型材料[19]. 生物炭表面官能团丰富,其中羟基、氧羧基和酚类官能团可与土壤中的污染物结合[20],羧酸(COOH)、C=O等可与重金属结合[21]. 生物炭的多孔结构和大比表面积为重金属提供了可观的吸附位点[22],可降低其在土壤中的迁移性[23],已被广泛应用于土壤修复方面[24-25]. 此外,生物炭可作为ZVI等金属材料的载体[26],起到分散作用,减缓钝化现象,有利于重金属污染的治理. 水热炭(Hydrochar)是指一定湿度的生物质在较低温度和一定压力下进行炭化得到的生物炭[27]. 相比热解炭,水热炭无需预处理,耗能低,产率高,孔隙结构发达,有机质含量更高[28-29],对污染土壤具有良好的修复潜力. Teng等[30]利用Fe改性水热炭降低了土壤中Pb和Sb的生物有效性. Xia等[31]制备氨基改性水热炭,施用后土壤中Cu、Pb和Cd的生物有效性、淋溶毒性及在水稻中的富集量均不同程度下降. 然而相比于热解生物炭的广泛应用,水热炭针对特定土壤环境的改性应用研究较少,需要进一步进行实验探究.

    机械球磨法[32]可将材料尺寸粉碎至纳米级,并使元素分布均匀,经济高效且操作简单. 本实验采用机械球磨法将ZVI、黄铁矿分别负载在玉米秸秆水热炭上,制备成两种铁改性水热炭,主要目的如下:(1)通过土壤提取实验,研究ZVI、黄铁矿、水热炭及改性炭对土壤中Cr的固定作用,并测定土壤中有效铁的含量,验证两种改性水热炭是否有助于解决过度释放Fe的问题;(2)通过土柱淋溶实验进一步探索改性水热炭对土壤中Cr的固化效能,分析土壤中Cr的纵向迁移规律,同时对实验材料进行表征分析,初步探究水热炭对Cr污染土壤的机制,得出最佳改性水热炭.

    Cr污染土壤取自山东省某化工厂,土壤风干后,去除石子等杂质,研磨后过40目筛备用,同时取普通未污染土壤进行相同处理. 对两种土壤基本理化性质进行测定,结果见表1. 主要实验仪器见表2,实验所用零价铁(ZVI)平均粒径为48 μm;黄铁矿(FeS2)平均粒径为45 μm.

    表 1  土壤理化性质
    Table 1.  Soil physicochemical properties
    土壤SoilpH有机质/(g·kg−1)Organic matter阳离子交换容量/(cmol·kg−1)Cation exchange capacity总铬/(mg·kg−1)Total chromiumCr(Ⅵ)/(mg·kg−1有效铁/(mg·kg−1)Available iron
    污染土壤8.49 ± 0.0540.64 ± 0.0521.84 ± 1.059540.51 ± 7.51059.51 ± 527.86 ± 2.51
    未污染土壤7.64 ± 0.0520.51 ± 1.0412.44 ± 0.75NDND4.86 ± 1.05
      注:ND未检出. ND, no detected.
     | Show Table
    DownLoad: CSV
    表 2  主要实验仪器
    Table 2.  Main experimental instruments
    名称Instrument name型号Product model厂家Manufacturer
    火焰原子吸收分光光度计ICE 3500赛默飞世尔科技公司
    行星式球磨仪QXQM-80长沙天创粉末技术有限公司
    马弗炉SX2-8-10Z上海博迅实业有限公司医疗设备厂
    反应釜SLM100北京世纪森朗实验仪器有限公司
    恒温振荡摇床SHA-CA常州恒睿仪器设备制造有限公司
    扫描电子显微镜FEI Quanta 400 FEG美国FEI公司
    傅里叶变换红外光谱仪TENSOR Ⅱ德国布鲁克光谱仪器公司
    X射线光电子能谱仪K-Alpha赛默飞世尔科技公司
     | Show Table
    DownLoad: CSV

    将玉米秸秆置于马弗炉中,在500 ℃下反应3 h,制得热解生物炭(BC);将玉米秸秆与水以1:20的质量比混合后置于反应釜中,在300 ℃下反应1 h,制得水热生物炭(SBC);将SBC分别与ZVI、黄铁矿以不同质量比置于球磨机中,以550 r·min−1运行3 h,制得不同炭铁质量比的ZVI改性水热生物炭(ZBC)和黄铁矿改性水热生物炭(HBC),所有制得的生物炭均过100目筛使其均质. 对改性水热炭的表面形貌、官能团以及施加到土壤前后的元素及价态的变化进行表征.

    (1)热解炭与水热炭对土壤中Cr赋存形态的影响

    以8 g·kg−1 的投加量向20 g污染土壤分别投加BC、SBC,混匀后置于50 mL离心管,调土壤含水率为30%,静置15 d后采用Tessier法[33]对土壤的Cr进行提取分析,每个处理重复3次并作对照实验.

    (2)改性水热炭对土壤中Cr固化效能的影响

    以10 g·kg−1 的投加量向10 g污染土壤分别投加不同改性水热炭,混匀后置于锥形瓶中,再加入100 mL水后放置于摇床中,设置速度为120 r·min−1振荡48 h,分时间取上清液过0.45 μm滤膜后测定总铬浓度,每个处理重复3次并作对照实验.

    (3)不同材料对土壤中Cr固化效能的影响

    以不同投加量向20 g污染土壤分别投加不同材料,混匀后置于50 mL离心管,调土壤含水率为30%,静置15 d后测定土壤浸出液总铬浓度,并对投加ZVI、黄铁矿、ZBC和HBC的土壤有效铁含量进行测定,每个处理重复3次并作对照实验.

    向Cr污染土壤中分别加入5 g·kg−1的ZBC和HBC,保持土壤含水率为30%,在恒温培养箱中培养20 d备用,并作未施加炭的对照实验(CK). 土柱装置为高20 cm、内径4 cm的圆型有机玻璃柱,底部开口连接橡胶管,用于收集浸出液. 向土柱下层填充10 cm的未污染土壤,上层分别填充8 cm不同处理的污染土壤,每个处理重复3次. 从底部注水使土壤饱和后静置24 h,随后从顶部进行淋洗,淋洗液总体积为900 mL,采用间歇浸出法. 得到的浸出液过0.45 μm滤膜后测定总铬浓度. 实验结束后将土柱上下层分段取出,将上层土壤风干后过100目筛得到施加到土壤中的炭,并进行表征;测定下层土壤总铬与Cr(Ⅵ)浓度,观察Cr的纵向迁移性.

    土壤总铬浓度的测定参照HJ 491—2019,Cr(Ⅵ)浓度的测定参照HJ 1082—2019,土壤浸出液中总铬浓度的测定参照HJ 749—2015;土壤有效铁含量的测定采用火焰原子吸收分光光度法测定,测定前使用二乙基三氨五乙酸法浸提.

    Tessier五步提取法可以把土壤中的Cr分为5种形态,这些形态按照生物利用度和其毒性大小由低到高依次为残渣晶格结合态(RES)、有机质及硫化物结合态(OM)、铁锰氧化物结合态(FeMnOx)、碳酸盐结合态(Cab)、金属可交换态(EXC). 结果如图1所示,与对照土壤相比,施用生物炭处理促进了EXC、Cab和FeMnOx向OM和RES转化,土壤中Cr的稳定性提高,毒性下降. EXC、Cab和FeMnOx组分主要由可溶性高、交换性较强的重金属离子及其碳酸盐态组成[34],这些组分的减少说明生物炭施用后土壤中Cr的稳定性提高. 除生物炭的吸附作用外[35],生物炭与Cr(Ⅵ)的静电吸引以及与Cr(Ⅲ)的络合反应[36]也可能是Cr稳定性提升的原因. 而与BC处理相比,SBC处理后(OM+RES)组分占比增加更为显著,这表明水热炭对土壤中Cr的固定效果更好,可能是由于水热炭拥有更丰富的表面官能团,通过配位键等作用将重金属由活性状态转化为惰性状态[37].

    图 1  BC、SBC施加后土壤中Cr的赋存形态
    Figure 1.  Speciation of chromium in soil after application of BC or SBC

    按炭铁质量比2:1、1:1、1:2,将ZVI改性水热炭依次记作Ⅰ-ZBC、Ⅱ-ZBC、Ⅲ-ZBC,将黄铁矿改性生物炭依次记作Ⅰ-HBC、Ⅱ-HBC、Ⅲ-HBC. 由图2可知,施用改性水热炭均降低浸出液总铬含量. 其中施用Ⅰ-ZBC、Ⅱ-ZBC、Ⅲ-ZBC浸出液总铬浓度分别下降27.4%、29.7%、30.0%,彼此无显著差异;施用Ⅰ-HBC、Ⅱ-HBC、Ⅲ-HBC浸出液总铬浓度分别下降32.0%、33.4%、38.9%,整体处理效果优于ZBC,Ⅲ-HBC处理效果突出.

    图 2  ZVI改性水热炭(a)、黄铁矿改性水热炭(b)对土壤中Cr固化效能的影响
    Figure 2.  Effect of ZVI modified hydrochar (a) or pyrite modified hydrochar (b) on the immobilization efficiency of Cr in soil

    图2中看出,Cr的释放过程分为两个阶段[38]. 第一阶段土壤表面吸附的Cr和土壤中迁移性较强的Cr(Ⅵ)迅速释放到溶液中,浸出液总铬浓度快速升高. 与对照实验(CK)相比,添加ZBC、HBC后总铬含量显著降低,且增长速率减缓. 在反应进行1 h后进入第二阶段,此时Cr的释放由土壤颗粒表面转为内部,释放速度降低. 施加ZBC、HBC的土壤浸出液总铬浓度在4 h达到最大值后呈下降趋势. 而未投加炭的对照组总铬浓度在6 h后变化趋于平稳,但仍呈上升状态. 因此,施加ZBC、HBC对土壤中的Cr有固定作用. 根据实验结果,选择处理效果较好的Ⅲ-ZBC和Ⅲ-HBC进行后续实验研究,后续提到的ZBC、HBC均为Ⅲ-ZBC、Ⅲ-HBC.

    图3可知,随材料投加量的增加,土壤浸出液中总铬含量整体均呈下降趋势. ZVI在投加量为8 g·kg−1时达到最佳处理效果,此时总铬含量为29.012 mg·L−1,与对照组相比降低27.5%. 增大投加量到10 g·kg−1时,总铬浓度反而上升,可能是高投加量下ZVI会因其磁性造成颗粒团聚,导致炭表面活性位点减少[14]. 且ZVI将Cr(Ⅵ)还原成Cr(Ⅲ)会在其表面形成氧化膜,阻碍活性位点与重金属接触[39]. 相比ZVI,黄铁矿处理效果更好,在投加量为8 g·kg−1时浸出液总铬含量降低到27.3 mg·L−1,与对照组相比降低31.8%. 在所有材料中,BC处理效果最差,投加量为10 g·kg−1时浸出液总铬含量仅降低13.4%,而SBC处理效果较好. 随SBC投加量的增加,其处理效果显著增强. 当投加量为10 g·kg−1时,浸出液总铬含量降低到26.4 mg·L−1,与对照组相比降低35.0%. 这可能是由于水热炭拥有更丰富的表面含氧官能团(如羧基、羟基等),对Cr有更强的吸附能力[40]. 两种改性水热炭处理效果更为优秀,且达到最佳处理效果所需投加量较低,节省材料使用量. 这可能是因为球磨改性后炭颗粒粒径变小,比表面积增大[41],ZVI、黄铁矿较好地负载到炭骨架上,且铁颗粒的团聚现象减弱,增强改性炭对土壤中Cr的吸附和还原能力[26]. 在5 g·kg−1最佳投加量下,ZBC处理后浸出液总铬含量降低到26.0 mg·L−1,比对照组降低35.8%;而HBC处理效果最好,其浸出液总铬含量降低到24.5 mg·L−1,比对照组降低39.6%.

    图 3  ZVI、黄铁矿、BC、SBC、ZBC、HBC对土壤中Cr固化效能的影响
    Figure 3.  Effect of ZVI, pyrite, BC, SBC, ZBC, and HBC on the immobilization efficiency of Cr in soil

    施用ZVI、黄铁矿等进行土壤修复时存在Fe释放过度的问题[14],因此对投加ZVI、黄铁矿、ZBC和HBC的土壤中的有效铁含量进行测定,结果如图4所示.

    图 4  ZVI、黄铁矿、ZBC 和 HBC投加量对土壤有效铁含量的影响
    Figure 4.  Effect of dosage of ZVI, pyrite, ZBC, and HBC on available iron content in soil

    随ZVI、黄铁矿投加量的增加,土壤中有效铁含量增加. 在最佳投加量8 g·kg−1的条件下,ZVI处理使土壤中有效铁含量增加40.1%,黄铁矿处理使土壤中有效铁含量增加10.1%. 而ZBC、HBC投加量的增加对土壤中有效铁含量影响较小,在投加量为5 g·kg−1的条件下,土壤中有效铁含量的分别增长0.6 mg·L−1和0.4 mg·L−1,涨幅均小于0.1%,有效解决Fe释放过度的问题.

    6种改性水热炭的表面形貌及对应的mapping测试结果见图5,可以看到经过球磨后,ZVI、黄铁矿在炭表面分散,炭的表面粗糙,结构不规则. 低铁炭掺杂比的炭存在着Fe元素分布较少或颗粒团聚的现象[14],这可能会导致炭有效孔隙和活性位点减少,降低炭的吸附能力. 随着铁炭掺杂比增大,Fe元素重量百分比上升,分布愈发均匀. 这可能是由于较多ZVI、黄铁矿可与水热炭在球磨过程中更充分地相互摩擦和碰撞,通过球磨介质的作用,使其在生物炭断裂、变形过程中分布到生物炭的表面及孔隙结构中[26],增加炭的活性位点,增强对Cr的吸附能力[42].

    图 5  不同改性水热炭扫描电镜图及mapping图
    Figure 5.  Scanning electron microscope (SEM) and mapping images of different modified hydrochar

    为进一步探究水热炭改性后对土壤中Cr的固定机理,对SBC和6种改性水热炭的红外特征峰进行分析(图6). O—H等氧化还原活性官能团被认为是生物炭氧化还原能力的驱动力[17],可与重金属阳离子交换[43]. 1730—1734 cm−1处羧基、醛、酮和酯类基团上的C=O峰和1612—1615 cm−1处C=C、C=O峰的强度随着铁炭掺杂比的增加而增大,说明改性后炭含氧官能团增加. C=O等含氧官能团可以为重金属提供大量结合位点,增加炭吸附能力,形成络合物[21]. 543 cm−1处为Fe—O的弱峰[44],证明Fe与含氧基团结合,成功地负载在水热炭表面.

    图 6  SBC及改性水热炭FTIR谱图
    Figure 6.  FTIR images of SBC and modified hydrochar

    对两种改性水热炭施加到土壤前后的样品进行XPS测定,结果如图7所示. 观察全谱图可得,二者全谱图中均存在Fe峰,说明Fe成功负载到炭骨架上,其中HBC表面还存在S元素. 炭在施加到土壤后全谱图中均出现Cr峰,且O峰的强度增加,说明改性水热炭可能将Cr吸附在表面并形成铁铬氧化物. 对比施加前后的Fe2p谱图,代表Fe(Ⅱ)的峰强度均下降,Fe(Ⅲ)峰强度相对增强,表明ZBC、HBC中的Fe对土中的Cr(Ⅵ)具有还原能力. 在HBC的Fe2p谱图中,代表FeS2[45-46]的峰强度前后变化明显,这表明FeS2参与了对Cr(Ⅵ)的还原. Cr2p谱图中在577—579 eV处存在代表Cr(Ⅲ)的多重轨道分裂峰[47],表明炭表面存在Cr的氧化物和氢氧化物;在580 eV附近存在代表Cr(VI)的弱峰且拟合较差,进一步说明ZBC、HBC将污染土中的Cr(Ⅵ)还原成Cr(Ⅲ),炭表面不存在或存在极少量的Cr(Ⅵ).

    图 7  不同改性水热炭XPS谱图:
    Figure 7.  XPS images of different modified hydrochar
    (a) ZBC施加到土壤前后的全谱图;(b) ZBC施加到土壤前的Fe2p谱图;(c) ZBC施加到土壤后的Fe2p谱图;(d) HBC施加到土壤前后的全谱图XPS谱图;(e) HBC施加到土壤前的Fe2p谱图;(f) HBC施加到土壤后的Fe2p谱图;(g) ZBC施加到土壤后的Cr2p谱图;(h) HBC施加到土壤后的Cr2p谱图
    (a) XPS survey of ZBC before and after it was placed to the soil; (b) Fe2p image of ZBC before it was placed to the soil; (c) Fe2p image of ZBC after it was placed to the soil; (d) XPS survey of HBC before and after it was placed to the soil; (e) Fe2p image of HBC before it was placed to the soil; (f) Fe2p image of HBC after it was placed to the soil; (g) Cr2p image of ZBC after it was placed to the soil; (h) Cr2p image of HBC after it was placed to the soil

    各土柱淋溶液中总铬累积含量变化如图8所示. 在淋溶初期,可溶态重金属快速释放到浸出液中[48],淋溶液中的重金属累积量均快速增加,当淋溶液体积达到300 mL时,ZBC、HBC凭借表面官能团和优秀的吸附性能,将土壤颗粒内部释放的Cr(Ⅵ)还原为较稳定的Cr(Ⅲ)并吸附在炭表面,使得淋溶液中总铬含量的增长速率减缓,而CK淋溶液中的总铬含量一直呈快速上升状态. 实验结束时CK、ZBC、HBC淋溶液总铬含量分别为1700.22、1235.22、1031.49 mg·L−1. 与CK相比,ZBC、HBC总铬含量分别下降27.3%、39.3%,均表现出良好的Cr固定效果,降低了Cr的迁移性.

    图 8  土柱淋溶液累积总铬含量变化
    Figure 8.  Changes of cumulative total chromium content in soil column leaching solution

    土壤中重金属迁移、释放和转化的影响因素复杂,采用动力学模型拟合重金属的累积释放有助于了解过程,阐述机理. 双常数速率方程、抛物线扩散方程常用于描述土壤化学过程,表达式如下:

    lny=a+blnx (1)
    线y=a+bx0.5 (2)

    式中,y表示重金属释放量;x表示淋溶体积;ab为常数.

    双常数速率方程是一种经验方程,可用于反映重金属与土壤表面吸附亲和力的差异[49]. 而抛物线扩散方程常用于描述土壤内部物质的扩散,反映多个扩散机制共同控制的动力学过程[50]. 采用这两种方程对土壤中Cr的累积释放过程进行拟合,得到结果如图9表3所示. 总的来说两种动力学模型均能较好地描述各土柱淋溶时释放Cr的动力学过程,这说明Cr在炭土环境中的释放机制复杂. 其中双常数速率方程对CK的拟合效果更为优秀,其模拟结果R2值为0.9985. 这说明未投加改性水热炭时,土壤表面吸附点位对Cr亲和力的差异较大,不能有效固定Cr. 抛物线扩散方程对ZBC和HBC的拟合效果更为优秀,其模拟结果R2值分别为0.9954、0.9887. 这说明投加改性水热炭后,土壤表面的Cr被有效吸附,淋溶液中的Cr主要来自于土壤颗粒内部的扩散作用.

    图 9  双常数速率方程拟合图(a),抛物线扩散方程拟合图(b)
    Figure 9.  Fitting figure of two-constant rate equation (a) and parabolic diffusion equation (b)
    表 3  总铬累积释放的动力学拟合结果
    Table 3.  Kinetic fitting results of cumulative release of total chromium
    土柱Soil column双常数速率方程Two-constant rate equation抛物线扩散方程Parabolic diffusion equation
    abR2abR2
    CK11.15070.75060.9985−346.683669.60500.9882
    ZBC24.34990.59190.9900−140.859849.73650.9954
    HBC32.31840.52030.9865−41.481538.59620.9887
     | Show Table
    DownLoad: CSV

    图10可知,CK土柱中Cr表现出较强的纵向迁移性,在水的淋洗与重力沉降等作用下由上部污染土壤向下部未污染土壤迁移,最终CK土柱下部土壤中总铬浓度为1378.550 mg·kg−1,Cr(Ⅵ)浓度为197.802 mg·kg−1,污染严重. 与CK相比,施加ZBC和HBC后土柱下部土壤的总铬和Cr(Ⅵ)浓度明显下降,其中投加ZBC的土柱下部土壤中总铬含量相比CK降低31.4%,Cr(Ⅵ)浓度相比CK降低51.7%;投加HBC的土柱下部土壤中总铬含量相比CK降低56.3%,Cr(Ⅵ)浓度相比CK降低44.4%.

    图 10  各土柱中总铬与Cr(Ⅵ)浓度
    Figure 10.  Concentrations of total Chromium and Cr(Ⅵ) in each soil column

    Cr(Ⅵ)在土壤中的离子态主要为HCrO4和CrO4,由于污染土壤pH为8.49,偏碱性,HCrO4更多地转变为CrO4. 负载ZVI的ZBC会与CrO4在土壤中发生以下反应[51]

    2CrO24+3Fe0+16H+2Cr3++3Fe2++8H2O (3)
    CrO24+3Fe2++8H+Cr3++3Fe3++4H2O (4)
    (1x)Fe3++xCr3++3H2OCrxFe1x(OH)3+3H+ (5)

    通过Fe0、Fe2+的还原能力,最终将Cr(Ⅵ)还原成Cr(Ⅲ),并形成CrxFe1-x(OH)3,固定在土壤中. 从反应式可以看出,酸性条件更利于反应进行,而本实验污染土壤偏碱性,这可能是导致ZBC施加后总铬浓度降低效果较HBC差的一个原因. 而负载黄铁矿(FeS2)的HBC则与CrO4在土壤中发生以下反应[52]

    FeS2+CrO24+4H2OFe3++Cr3++2S0+8OH (6)
    4S0+4OHS2O23+2HS+H2O (7)
    HS+S0S22+H+ (8)

    且最终Fe3+与Cr3+会发生式(5)反应. 其中S0及其水解产物(S2O32−、S22−)可长期保持土壤对Cr(Ⅵ)的还原能力[52]. 结合XPS表征结果,可知HBC中的FeS2参加反应,而在整个氧化过程中,FeS2可向Fe3+和SO42−提供15个电子,更有利于对Cr(Ⅵ)的还原,故施加HBC后土柱总铬浓度下降明显,更多的Cr(Ⅵ)被还原成Cr(Ⅲ)固定在土壤中. 但ZBC施加后Cr(Ⅵ)浓度降低效果优于HBC,结合浸出液总铬浓度进行分析,可能是由于土壤偏碱性,ZBC与土壤中的Cr(Ⅵ)反应较缓,未完全反应的Cr(Ⅵ)随淋洗液的冲洗快速下沉,使得浸出液中总铬浓度明显升高,而土柱中Cr(Ⅵ)浓度下降. 总的来看,施加HBC后土柱及其淋洗液中的总铬浓度下降程度更大,说明其对污染土壤中的Cr具有更好的固定效果.

    (1)施加水热炭(SBC)使土壤中稳定性高、毒性低的有机质及硫化物结合态(OM)和残渣晶格结合态(RES)的Cr增加17%,处理效果优于热解炭(BC).

    (2)土壤提取实验表明,较大铁炭掺杂比(2:1)制备的改性水热炭ZBC、HBC在低投加量(5 g·kg−1)下对土壤中的Cr表现出更好的固定效果,与对照组相比其土壤浸出液中总铬浓度分别降低了35.8%、39.6%,既节省了材料用量,且不存在向土壤中过度释放铁的现象.

    (3)土柱淋溶实验表明,Cr在炭土环境中的释放机制复杂,双常数速率方程对CK土柱拟合较好,表明未施加炭时,土壤表面吸附点位对Cr亲和力的差异较大,不能有效固定Cr;抛物线扩散方程对ZBC和HBC土柱拟合较好,表明投加炭后土壤表面的Cr被有效吸附,淋溶液中的Cr主要来自土壤颗粒内部的扩散作用.

    (4)土柱实验结束后,ZBC土柱下部未污染土壤中总铬含量相比CK降低了31.4%,Cr(Ⅵ)浓度相比CK降低了51.7%;HBC土柱下部未污染土壤中总铬含量相比CK降低了56.3%,Cr(Ⅵ)浓度相比CK降低了44.4%. 结合表征结果可得,ZBC、HBC可吸附对土中的Cr,水热炭负载的Fe对土中的Cr(Ⅵ)具有还原能力,可将其还原成Cr(Ⅲ)固定在土壤中. HBC中存在FeS2,有效参与对Cr(Ⅵ)的还原,对污染土壤中Cr的固化效果更好. 此材料可为水热炭修复重金属污染土壤的应用提供思路与探索.

  • 图 1  元素平均质量浓度

    Figure 1.  Average mass concentration of elements

    图 2  微量元素富集因子

    Figure 2.  Element enrichment factor

    图 3  PMF源解析因子贡献比例

    Figure 3.  Contribution ratio of PMF source analytical factor

    图 4  三亚市PM2.5源解析结果

    Figure 4.  Analysis results of PM2.5 sources in Sanya city

    图 5  人群超额危险度

    Figure 5.  Population excess risk

    表 1  经呼吸进入人体的暴露参数

    Table 1.  Exposure parameters of breathing into human body

    重金属元素Heavy metal element性质Characteristic致癌因子/((kg·d)· μg−1)SF参考剂量/(μg·(kg·d) −1)RfD
    As致癌2.01×10−2
    Cd致癌8.40×10−3
    Ni致癌1.19×10−3
    Al非致癌4.00×10−1
    Cu非致癌2.00
    Mn非致癌3.00×10−1
    Pb非致癌4.30×10−1
    Se非致癌1.00
    Zn非致癌1.00×10−2
    重金属元素Heavy metal element性质Characteristic致癌因子/((kg·d)· μg−1)SF参考剂量/(μg·(kg·d) −1)RfD
    As致癌2.01×10−2
    Cd致癌8.40×10−3
    Ni致癌1.19×10−3
    Al非致癌4.00×10−1
    Cu非致癌2.00
    Mn非致癌3.00×10−1
    Pb非致癌4.30×10−1
    Se非致癌1.00
    Zn非致癌1.00×10−2
    下载: 导出CSV

    表 2  重金属经呼吸进人体的剂量-反应参数

    Table 2.  Dose-response parameters of heavy metals breathing into human body

    人群Crowd呼吸速率/(m3·d−1)IR体重/kgBW暴露持续时间/dED致癌暴露时间/dAT-Carcinogenesis非致癌暴露时间/dAT-Non-carcinogens
    儿童8.7036.0018.0070.0018.00
    成年女性14.1757.3030.0070.0030.00
    成年男性19.0266.2030.0070.0030.00
    人群Crowd呼吸速率/(m3·d−1)IR体重/kgBW暴露持续时间/dED致癌暴露时间/dAT-Carcinogenesis非致癌暴露时间/dAT-Non-carcinogens
    儿童8.7036.0018.0070.0018.00
    成年女性14.1757.3030.0070.0030.00
    成年男性19.0266.2030.0070.0030.00
    下载: 导出CSV

    表 3  三亚市PM2.5重金属元素的质量浓度

    Table 3.  Mass concentration of PM2.5 heavy metal elements in Sanya

    元素Element2019年均值/(μg·m−3)2019 mean6月均值/(μg·m−3)June mean10月均值/(μg·m−3)October mean12月均值/(μg·m−3)December mean标准限值/(μg·m−3)Standard limit
    As4.30×10−34.00×10−44.90×10−36.00×10−3
    Cr7.70×10−37.60×10−38.50×10−37.40×10−32.50×10−5
    Ni3.50×10−33.00×10−34.00×10−33.60×10−3
    Cu1.74×10−21.44×10−21.64×10−22.04×10−2
    Pb1.53×10−21.19×10−21.75×10−21.68×10−35.00×10−1
    Se1.60×10−31.00×10−31.80×10−32.00×10−3
    Zn3.23×10−22.04×10−23.79×10−23.92×10−2
    元素Element2019年均值/(μg·m−3)2019 mean6月均值/(μg·m−3)June mean10月均值/(μg·m−3)October mean12月均值/(μg·m−3)December mean标准限值/(μg·m−3)Standard limit
    As4.30×10−34.00×10−44.90×10−36.00×10−3
    Cr7.70×10−37.60×10−38.50×10−37.40×10−32.50×10−5
    Ni3.50×10−33.00×10−34.00×10−33.60×10−3
    Cu1.74×10−21.44×10−21.64×10−22.04×10−2
    Pb1.53×10−21.19×10−21.75×10−21.68×10−35.00×10−1
    Se1.60×10−31.00×10−31.80×10−32.00×10−3
    Zn3.23×10−22.04×10−23.79×10−23.92×10−2
    下载: 导出CSV

    表 4  南海周边大气颗粒物PM受体模型源解析比较表

    Table 4.  Comparison of source analysis of PM receptor models around the South China Sea

    采样点Sampling site粒径Size采样时间Date模型Model源解析结果Source analysis results参考文献References
    中国海南省三亚市PM2.5n=34)2012, 1.6 — 2.8; 2013.6.6—7.25PMF1.生物质燃烧(23.2%);2.机动车(37.9%); 3.燃煤(22.6%); 4.其他(16.3%);[8]
    PM2.5n=90)2019, 6 — 2019,12PMF1. 海洋源(24.9%); 2. 生物质燃烧源(20.8%); 3. 工业源(20.5%); 4. 土壤源(19%); 5. 交通源(14.8%)本研究
    中国海南省三沙市TSP(n=73)2014.3—2015.2PMF1. 海盐(46.6%); 2. 土壤尘(11.9%); 3. 二次无机气溶胶(30.1%); 4. 海洋排放(11%)[11]
    中国海南省海口市PM2.5n=38)2011.12.26 — 2012.6.3; 2012.4.17—26CMB1. 扬尘(14.9%); 2. 机动车尾气(17.5%); 3. SO42-(9.5%); 4. 海盐(3%);[9]
    PM10n=76)1. 扬尘(23.6%); 2. 机动车尾气(35%); 3. SO42-(15.7%); 4. 海盐(8%);
    中国台湾省高雄港PM2.5n=28)2018.5— 2019.1PMF1. 船舶排放(15.6%);2. 二次无机气溶胶(24%);3. 机动车尾气(12.2%);4. 海盐(20.7%);5. 海盐和生物质燃烧(14.4%);6. 重油, 生物质燃烧(13.2%)[30]
    菲律宾马尼拉PM2.5n=28)2018.5— 2019.1PMF1. 道路扬尘, 燃煤(17.4%);2. 船舶排放, 机动车(19.1%);3. 工业(17.7%);4. 机动车(12.6%);5. 二次气溶胶,土壤, 生物质燃烧(21.3%);6. 海盐, 生物质燃烧(11.8%)[30]
    马来西亚八打灵PM2.5n=247)2017.1.11—2018.2.19PMF1. 混合冶炼工业和道路扬尘(5.6);2. 矿物尘(7.2%);3. 海盐(7.4%);4. 冶金工业(5.1%);5. 农业(19.2%);6. 制造业 (12%);7. 二次无机气溶胶,交通 (28.5%);8.生物质燃烧(15.2%)[31]
    采样点Sampling site粒径Size采样时间Date模型Model源解析结果Source analysis results参考文献References
    中国海南省三亚市PM2.5n=34)2012, 1.6 — 2.8; 2013.6.6—7.25PMF1.生物质燃烧(23.2%);2.机动车(37.9%); 3.燃煤(22.6%); 4.其他(16.3%);[8]
    PM2.5n=90)2019, 6 — 2019,12PMF1. 海洋源(24.9%); 2. 生物质燃烧源(20.8%); 3. 工业源(20.5%); 4. 土壤源(19%); 5. 交通源(14.8%)本研究
    中国海南省三沙市TSP(n=73)2014.3—2015.2PMF1. 海盐(46.6%); 2. 土壤尘(11.9%); 3. 二次无机气溶胶(30.1%); 4. 海洋排放(11%)[11]
    中国海南省海口市PM2.5n=38)2011.12.26 — 2012.6.3; 2012.4.17—26CMB1. 扬尘(14.9%); 2. 机动车尾气(17.5%); 3. SO42-(9.5%); 4. 海盐(3%);[9]
    PM10n=76)1. 扬尘(23.6%); 2. 机动车尾气(35%); 3. SO42-(15.7%); 4. 海盐(8%);
    中国台湾省高雄港PM2.5n=28)2018.5— 2019.1PMF1. 船舶排放(15.6%);2. 二次无机气溶胶(24%);3. 机动车尾气(12.2%);4. 海盐(20.7%);5. 海盐和生物质燃烧(14.4%);6. 重油, 生物质燃烧(13.2%)[30]
    菲律宾马尼拉PM2.5n=28)2018.5— 2019.1PMF1. 道路扬尘, 燃煤(17.4%);2. 船舶排放, 机动车(19.1%);3. 工业(17.7%);4. 机动车(12.6%);5. 二次气溶胶,土壤, 生物质燃烧(21.3%);6. 海盐, 生物质燃烧(11.8%)[30]
    马来西亚八打灵PM2.5n=247)2017.1.11—2018.2.19PMF1. 混合冶炼工业和道路扬尘(5.6);2. 矿物尘(7.2%);3. 海盐(7.4%);4. 冶金工业(5.1%);5. 农业(19.2%);6. 制造业 (12%);7. 二次无机气溶胶,交通 (28.5%);8.生物质燃烧(15.2%)[31]
    下载: 导出CSV

    表 5  三亚市大气PM2.5中重金属元素经呼吸途径对人群的年均超额危险度

    Table 5.  Average annual excess risk of heavy metal elements in atmospheric PM2.5 in Sanya City to the population through respiratory pathway

    元素Elements年均超额危险度R(无量纲) Annual excess risk R(No unit)
    儿童Child成年女性Adult women成年男性Adult men
    As7.64×10−81.30×10−71.51×10−7
    Cr3.85×10−76.57×10−77.63×10−7
    Ni3.68×10−96.27×10−97.28×10−9
    Al2.21×10−92.26×10−92.62×10−9
    Cu3.01×10-113.08×10-113.58×10-11
    Mn5.46×10-105.58×10-106.49×10-10
    Pb1.23×10-101.26×10-101.46×10-10
    Se5.40×10-125.52×10-126.42×10-12
    Zn1.12×10-111.14×10-111.33×10-11
    元素Elements年均超额危险度R(无量纲) Annual excess risk R(No unit)
    儿童Child成年女性Adult women成年男性Adult men
    As7.64×10−81.30×10−71.51×10−7
    Cr3.85×10−76.57×10−77.63×10−7
    Ni3.68×10−96.27×10−97.28×10−9
    Al2.21×10−92.26×10−92.62×10−9
    Cu3.01×10-113.08×10-113.58×10-11
    Mn5.46×10-105.58×10-106.49×10-10
    Pb1.23×10-101.26×10-101.46×10-10
    Se5.40×10-125.52×10-126.42×10-12
    Zn1.12×10-111.14×10-111.33×10-11
    下载: 导出CSV
  • [1] 曹军骥. PM2.5与环境[M]. 北京: 科学出版社, 2014.

    CAO J J. PM2.5 and environment[M]. Beijing: Science Press, 2014 (in Chinese) .

    [2] 周元. 努力建设以人民为中心的海南自贸港[N]. 海南日报, 2021-07-27(A02).

    ZHOU Y. Strive to build people-centered Hainan Free Trade Port[N]. Hainan Daily, 2021 /7 /27 / A02 edition (in Chinese).

    [3] 周家茂, 赵由之, 刘随心, 等. 三亚冬季大气PM2.5及碳气溶胶特征与来源分析 [J]. 地球环境学报, 2012, 3(5): 1060-1065.

    ZHOU J M, ZHAO Y Z, LIU S X, et al. Characteristic and source identifications of PM2.5 and carbonaceous aerosol at Sanya durning 2011 winter [J]. Journal of Earth Environment, 2012, 3(5): 1060-1065(in Chinese).

    [4] ZHOU J M, HO S, CAO J J, et al. Chemical characterization of PM2.5 from a southern coastal city of China: Applications of modeling and chemical tracers in demonstration of regional transport [J]. Environmental Science and Pollution Research International, 2018, 25(21): 20591-20605. doi: 10.1007/s11356-018-2238-1
    [5] TIAN J, WANG Q Y, HAN Y M, et al. Contributions of aerosol composition and sources to particulate optical properties in a southern coastal city of China [J]. Atmospheric Research, 2020, 235: 104744. doi: 10.1016/j.atmosres.2019.104744
    [6] WANG Q Y, LIU H K, WANG P, et al. Optical source apportionment and radiative effect of light-absorbing carbonaceous aerosols in a tropical marine monsoon climate zone: The importance of ship emissions [J]. Atmospheric Chemistry and Physics, 2020, 20(24): 15537-15549. doi: 10.5194/acp-20-15537-2020
    [7] WANG P, HAN C, ZHAO Y Z, et al. Characterization of PM2.5 mass concentration in the onshore of Sanya, China [J]. Journal of Atmospheric Science Research, 2020, 3(2): 32-38.
    [8] WANG J Z, HO S, CAO J J, et al. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China [J]. The Science of the Total Environment, 2015, 530/531: 110-119. doi: 10.1016/j.scitotenv.2015.05.005
    [9] FANG X Z, BI X H, XU H, et al. Source apportionment of ambient PM10 and PM2.5 in Haikou, China [J]. Atmospheric Research, 2017, 190: 1-9. doi: 10.1016/j.atmosres.2017.01.021
    [10] LIU B S, ZHANG J Y, WANG L, et al. Characteristics and sources of the fine carbonaceous aerosols in Haikou, China [J]. Atmospheric Research, 2018, 199: 103-112. doi: 10.1016/j.atmosres.2017.08.022
    [11] XIAO H W, XIAO H Y, LUO L, et al. Atmospheric aerosol compositions over the South China Sea: Temporal variability and source apportionment [J]. Atmospheric Chemistry and Physics, 2017, 17(4): 3199-3214. doi: 10.5194/acp-17-3199-2017
    [12] GENG X F, MO Y Z, LI J, et al. Source apportionment of water-soluble brown carbon in aerosols over the northern South China Sea: Influence from land outflow, SOA formation and marine emission [J]. Atmospheric Environment, 2020, 229: 117484. doi: 10.1016/j.atmosenv.2020.117484
    [13] SONG J W, ZHANG Y Y, ZHANG Y L, et al. A case study on the characterization of non-methane hydrocarbons over the South China Sea: Implication of land-sea air exchange [J]. The Science of the Total Environment, 2020, 717: 134754. doi: 10.1016/j.scitotenv.2019.134754
    [14] ZHANG Y L, LI J, ZHANG G, et al. Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan Island, South China [J]. Environmental Science & Technology, 2014, 48(5): 2651-2659.
    [15] XIAO H W, XIE L H, LONG A M, et al. Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea [J]. Atmospheric Environment, 2015, 109: 70-78. doi: 10.1016/j.atmosenv.2015.03.006
    [16] 郑玫, 张延君, 闫才青, 等. 中国PM2.5来源解析方法综述 [J]. 北京大学学报(自然科学版), 2014, 50(6): 1141-1154.

    ZHENG M, ZHANG Y J, YAN C Q, et al. Review of PM2.5 source apportionment methods in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(6): 1141-1154(in Chinese).

    [17] 魏青, 陈文怡, 金麟先. 枣庄市大气PM2.5重金属元素健康风险评价及污染来源解析 [J]. 中国粉体技术, 2020, 26(6): 69-78.

    WEI Q, CHEN W Y, JIN L X. Health risk assessment and source analysis of heavy metal elements in PM2.5 in Zaozhuang City [J]. China Powder Science and Technology, 2020, 26(6): 69-78(in Chinese).

    [18] 单慧, 欧阳钏, 柯鸿阳, 等. 西北地区典型城市PM2.5中重金属污染特征及健康风险评价 [J]. 中国公共卫生, 2022, 38(4): 476-480. doi: 10.11847/zgggws1127718

    SHAN H, OUYANG C, KE H Y, et al. Heavy metals in PM2.5 in four metropolitan cities in Northwest China: Pollution characteristics and health risk assessment [J]. Chinese Journal of Public Health, 2022, 38(4): 476-480(in Chinese). doi: 10.11847/zgggws1127718

    [19] CAO J J, WU F, CHOW J C, et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China [J]. Atmospheric Chemistry and Physics, 2005, 5(11): 3127-3137. doi: 10.5194/acp-5-3127-2005
    [20] WU F, ZHANG D Z, CAO J J, et al. Soil-derived sulfate in atmospheric dust particles at Taklimakan desert [J]. Geophysical Research Letters, 2012, 39(24): L24803.
    [21] ANTONY CHEN L W, CAO J J. PM2.5 source apportionment using a hybrid environmental receptor model [J]. Environmental Science & Technology, 2018, 52(11): 6357-6369.
    [22] USA EPA. Integrated risk information system [DB/OL] [2019-02-03]https://www.epa.gov/research-states/integrated-risk-information-system-iris-webinar-archive.
    [23] ATSDR. Agency for Toxic Substances and Disease Registry[DB/OL]. [2019-02-03] .
    [24] 范逸飞, 陈秀玲, 方滋婧, 等. 漳州市城市公园灰尘重金属来源及健康风险评价 [J]. 地球环境学报, 2021, 12(1): 104-120.

    FAN Y F, CHEN X L, FANG Z J, et al. Heavy metal sources and health risk assessment of dust in Zhangzhou urban parks [J]. Journal of Earth Environment, 2021, 12(1): 104-120(in Chinese).

    [25] 郑乃嘉, 谭吉华, 段菁春, 等. 大气颗粒物水溶性重金属元素研究进展 [J]. 环境化学, 2014, 33(12): 2109-2116. doi: 10.7524/j.issn.0254-6108.2014.12.005

    ZHENG N J, TAN J H, DUAN J C, et al. Research progress on water-soluble heavy metal in atmospheric particulate mattters [J]. Environmental Chemistry, 2014, 33(12): 2109-2116(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.12.005

    [26] YAO X H, CHAN C K, FANG M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China [J]. Atmospheric Environment, 2002, 36(26): 4223-4234. doi: 10.1016/S1352-2310(02)00342-4
    [27] LEE Y N, WEBER R, MA Y, et al. Airborne measurement of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P [J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D23): 8646. doi: 10.1029/2002JD003265
    [28] MA Y, WEBER R J, LEE Y N, et al. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21),doi:10.1029/2002JD003128.
    [29] 海南日报. 2020 年海南省生态环境状况公报[N]. 2021 年/6 月/5 日/第A06 版.

    Hainan Daily. Ecological and Environmental Status Report of Hainan Province in 2020 [N] . 2021/26/25/A06 edition (in Chinese).

    [30] TSENG Y L, WU C H, YUAN C S, et al. Inter-comparison of chemical characteristics and source apportionment of PM2.5 at two harbors in the Philippines and Taiwan [J]. Science of the Total Environment, 2021, 793: 148574. doi: 10.1016/j.scitotenv.2021.148574
    [31] HASSAN H, LATIF M T, JUNENG L, et al. Chemical characterization and sources identification of PM2.5 in a tropical urban city during non-hazy conditions [J]. Urban Climate, 2021, 39: 100953. doi: 10.1016/j.uclim.2021.100953
    [32] ROVIRA J, ROIG N, NADAL M, et al. Human health risks of formaldehyde indoor levels: An issue of concern [J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2016, 51(4): 357-363.
  • 期刊类型引用(3)

    1. 彭晓,杨萌,王笑欢,娄英斌,张玉凤,曹姗姗. 大连市PM_(2.5)中重金属的污染特征、来源及健康风险评价. 生态毒理学报. 2024(04): 294-310 . 百度学术
    2. 郭昭伟,王平,路放,赵由之,丁文慈,黄鼎,杜嘉欣. 海南生物质燃烧源排放清单的时空配分. 生态学杂志. 2024(11): 3470-3477 . 百度学术
    3. 吴凯章,刘明,罗中华,陈来国,蔡立梅,王安侯,郑昱,陆海涛. 大宝山矿区周边大气重金属来源与风险评估. 中国环境科学. 2023(12): 6270-6280 . 百度学术

    其他类型引用(2)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.2 %DOWNLOAD: 4.2 %HTML全文: 91.6 %HTML全文: 91.6 %摘要: 4.2 %摘要: 4.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.8 %其他: 97.8 %XX: 1.0 %XX: 1.0 %上海: 0.1 %上海: 0.1 %北京: 0.4 %北京: 0.4 %宜昌: 0.1 %宜昌: 0.1 %杭州: 0.1 %杭州: 0.1 %枣庄: 0.1 %枣庄: 0.1 %海口: 0.1 %海口: 0.1 %赣州: 0.1 %赣州: 0.1 %其他XX上海北京宜昌杭州枣庄海口赣州Highcharts.com
图( 5) 表( 5)
计量
  • 文章访问数:  3018
  • HTML全文浏览数:  3018
  • PDF下载数:  46
  • 施引文献:  5
出版历程
  • 收稿日期:  2022-02-09
  • 录用日期:  2022-05-24
  • 刊出日期:  2023-07-27
李曾曾, 王平, 丁文慈, 路放, 赵由之, 郭昭伟, 黄鼎. 2019年三亚市PM2.5微量元素的源解析和健康评价[J]. 环境化学, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905
引用本文: 李曾曾, 王平, 丁文慈, 路放, 赵由之, 郭昭伟, 黄鼎. 2019年三亚市PM2.5微量元素的源解析和健康评价[J]. 环境化学, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905
LI Cengceng, WANG Ping, DING Wenci, LU Fang, ZHAO Youzhi, GUO Zhaowei, HUANG Ding. Source analysis and health assessment of PM2.5 trace elements in Sanya City in 2019[J]. Environmental Chemistry, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905
Citation: LI Cengceng, WANG Ping, DING Wenci, LU Fang, ZHAO Youzhi, GUO Zhaowei, HUANG Ding. Source analysis and health assessment of PM2.5 trace elements in Sanya City in 2019[J]. Environmental Chemistry, 2023, 42(7): 2282-2291. doi: 10.7524/j.issn.0254-6108.2022020905

2019年三亚市PM2.5微量元素的源解析和健康评价

    通讯作者: E-mail:wpalong@hntou.edu.cn;  ;E-mail:dingwenci@hotmail.com; 
  • 1. 海南热带海洋学院,三亚 ,570022
  • 2. 中国科学院地球环境研究所,气溶胶化学与物理重点实验室,西安,710061
基金项目:
国家自然科学基金 (41867046,42267015),海南省基础与应用基础研究计划(自然科学领域)高层次人才项目基金(2019RC243,2019RC240),中国科学研究院气溶胶化学与物理重点实验室开放基金(KLACP2001),海南省高等学校教育改革项目(Hnky2019-56)和海南省研究生创新项目(Hys2020-396)资助.

摘要: 本研究通过滤膜采样分析得到三亚市PM2.5微量元素数据,结合富集因子,表征化学特征;使用PMF模型进行源解析,定量估算各排放源的贡献比例,并与南海周边城市源解析比较;根据暴露评估模型评估健康效应. 结果表明,三亚市致癌性重金属Cr(7.70×10-3 μg·m−3)已经超过标准限值(2.50×10−5 μg·m−3),S的富集因子高达825.46,表明三亚PM2.5受S元素污染严重;源排放贡献大小比例分别为:海洋源(24.9%)>生物质燃烧源(20.8%)>工业源(20.5%)>土壤源(19%)>交通源(14.8%),源解析结果比较得知,海盐贡献比例与采样点离岸距离有梯度变化特征;滨海城市的主要人为排放源受制于城市经济发展程度;二次无机气溶胶的贡献与工业源的比例呈反比,取决于SAN SNA标识物的配分;重金属污染对三亚不同人群的影响大小顺序为:成年男子>成年女子>儿童;9种重金属元素对 3 类人群经呼吸途径暴露的健康风险均为Cr>As>Ni>Al>Mn>Pb>Cu>Zn>Se.

English Abstract

  • 大气颗粒物PM2.5与气候变化、人体健康、生态环境等密切相关[1]. 三亚市(18°18′N,109°31′E)位于海南岛的最南端,地处低纬度,属热带海洋性季风气候区. 随着海南自由贸易港建设进展加快、国际旅游岛对外开放和海南热带气候等区位优势,海南人口激增与经济快速发展,空气质量的压力越来越大[2],三亚市政府和国内外游客也日益重视PM2.5的健康效应.

    三亚PM2.5研究报道较少,与之关联的是南海大气化学研究. 前人研究如下:三亚PM2.5中OC和EC [3-4];PM2.5光学特征[5-6];PM2.5的潜在源定性分析[4,7];PMF模型定量源解析[8]. 海口CMB模型源解析[9-10];南海PMF模型源解析[11-12];南海有机气溶胶分子标识物和同位素示踪来源[13-15];上述源解析很少单用微量元素. 受体模型PMF源解析优点在于灵活性(不需源谱)和操作性(模型软件化和源个数“眼球法”),缺点在于共线源问题和源解析结果时空差异大[16]. 基于PMF的优缺点,在实际运用中,呈现两种局面:一方面是接受PMF优点,广泛应用,同时,单用微量元素组分进行源解析,多与PM2.5中重金属健康效应结合 [17-18];另一方面是将受体模型、源清单法和源过程法等方法结合,进行多种源解析,相互验证解决PMF不足 [19]. 本文基于微量元素数据及其健康评价,采用PMF源解析第一情况,其不足在于微量元素标识物的共线源问题,优势在于微量元素相对于有机组分来说,其变化程度小. 三亚市PM2.5微量元素的源解析尚鲜见报道,研究PM2.5中微量元素污染特征及健康评价具有十分重要的意义.

    本文通过离线滤膜样品采集得到三亚市PM2.5微量元素数据,结合富集因子分析,表征三亚市PM2.5微量元素的化学特征;使用受体PMF模型进行源解析,定量估算微量元素排放源对三亚市PM2.5的贡献比例;利用暴露评估模型,评价PM2.5中微量元素的健康效应. 此论文为三亚市PM2.5的空气质量监测及防治提供思路及措施.

    • 本研究样品采集地点位于三亚市吉阳区热带海洋学院实验楼8栋楼顶大气颗粒物采样室. 采样时间选用2019年6月(代表夏季)和10月(秋季)、12月(冬季)作为季节性代表进行采样. 每天1个样,每个滤膜样品每天收集大气颗粒物至少20 h,每月30个样品,共计90个样品. 样品采集使用仪器为mini-volume便携式大气颗粒物PM2.5采样器,流量是5 L·min−1,该仪器已得USEPA(美国环保局)认可,选择特氟龙滤膜收集元素组分.

    • 本实验样品分析地点是在中科院地球与环境研究所化学与物理重点实验室,使用X射线荧光光谱仪对特氟龙膜上气溶胶所含的26种元素(Na、Mg、Al、Si、P、S、Cl、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Se、Br、Sr、Ba、Pb)进行了分析测定. 仪器采用美国Micro Matter公司的薄膜滤纸作为标准物质建立工作曲线;采用NIST SRM 2783号标准物质进行质量控制,每8个样品任意挑选1个做复检. 检查各个元素的浓度测量值,并给出最终结果. 结合采样面积和采样流量,将初始浓度转化为最终的大气质量浓度单位. 样品分析过程中的质量保证/质量控制详见文献 [20].

    • 元素富集因子法简称“富集因子法”(Enrichment Factor,EF). 用以表示大气颗粒物中元素的富集程度,并判断和评价颗粒物中元素来源(自然来源和人为来源)的因子. 根据前人研究,元素的富集因子<10,主要来源为自然源;元素的富集因子>10,则认为其受到人为污染源的影响,富集因子越高,其受人为活动影响越大[1]. 富集因子EF的定义如下:

      式中,Cx是指研究中感兴趣的元素浓度,Cr为参考元素的浓度,分子的含义是样品中待测元素与参考元素的浓度比值,分母的含义为参考质中待元素与参考元素的浓度比值.

    • PMF法(Positive Matrix Factorization)是美国环保署EPA确定的区域环境污染评价的重要方法之一[21]. PMF法不依赖于排放源的排放条件、气象、地形等数据,能够定量确定污染源的类型和贡献比例 [19]. 受体模型PMF法的原理为:假设有p种来源、来源类型或来源区域影响一个受体,对观测得到的大气颗粒物中各种组分的浓度按照各因素的影响进行线性拟合. 数学表达式如下:

      式中,Xij是受体第i天第j种组分的浓度;gik是第k种因素在第i天对受体的贡献;fkj是组分j在第k种因素中所占的部分;eij是第i天第j种组分的残余部分. EPA PMF的任务就是最小化总方差,即Q值最小.

      式中,Sij是第i天第j种组分的不确定性,用户可以根据公式(4)和(5)确定每个Xij的不确定性,当化学组分浓度小于最低检测限(MDL)时,不确定度用公式(4)计算;当化学组分浓度大于最低检测限(MDL)时,不确定度用公式(5)计算,式中Error Fraction 的计算基于重复样测试结果计算,MDL 组分分析设备都会有该数据.

      本研究采用美国环保署认可的 EPA PMF 5.0 模型软件进行分析运算,以采样点位共计90个 PM2.5 样品中的26个微量组分浓度及其不确定性作为输入文件. 根据各因子的特征来解释污染源类型和贡献大小 (下载地址:http://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses).

    • 本文选取9种重金属元素(As、Cr、Ni、Al、Cu、Mn、Pb、Se、Zn)进行健康评价. 依据美国环保署综合风险信息数据库和国际癌症研究机构的研究结论,大气细颗粒物重金属中的As、Cr、Ni属于致癌性物质,Al、Cu、Mn、Pb、Se、Zn属于非致癌性物质 [22-23]. 经呼吸途径暴露的健康风险评价公式如下:

      其中,R为人群超额危险度,无量纲;LADD(life average daily dose)为致癌物质终身日均暴露剂量[μg·(kg·d)−1];ADD(average daily dose)为非致癌物质日均暴露剂量[μg·(kg·d)−1];AL(average life)为人均寿命参数,取常量70;SF(slope factor)为致癌化学物质的致癌斜率因子[(kg·d)·μg−1;RfD(reference dose)为参考剂量[μg·(kg·d)−1];SF与RfD获得自美国环保署颁布的化学物质人体健康效应评价文件(HEA)(https://www.epa.gov/),见表1.

      暴露剂量率计算方法为:

      其中,C(concentration)为污染物浓度(μg·m−3);IR(inhalation rate)为呼吸速率参数(m3·d−1);ED(exposure duration)为暴露持续时间(d);BW(body weight)为体重(kg);AT(averaging time)为平均暴露时间(d);经呼吸途径进入人体的暴露剂量参数来自美国环保署( https://www.epa.gov/),其中成年男性与女性的IR与BW来自生态环境部(https://www.mee.gov.cn/),见表2.

    • 26种微量元素平均浓度见图1. 从图1可知,S(1.040 μg·m−3)、Mg(0.906 μg·m−3)、Na(0.325 μg·m−3)、Al(0.235 μg·m−3)、Si(0.228 μg·m−3)、K(0.214 μg·m−3)、Fe(0.126 μg·m−3)、Ca(0.112 μg·m−3)等元素含量较高. Na和K是碱金属元素,Ca和Mg是碱土金属元素,Al、Si和Fe是造岩元素或土壤中主量元素,Mg含量排序第二,表明样品受土壤排放源影响大. S是非金属元素,来源于含硫矿物燃烧,含量排序第一,表明三亚市大气颗粒物PM2.5已受人为源的影响[3-4,7-8].

      表3 是PM2.5中7种重金属元素浓度均值. 由表3可知,三亚市重金属元素的年均质量浓度排序为:Zn>Cu>Pb>Cr>As>Ni>Se. Zn的质量浓度最高,其中致癌性重金属Cr(7.70×10−3 μg·m−3)已超过《环境空气质量标准》(GB 3095—2012)中规定标准限值2.50×10−5 μg·m−3. 大气Zn排放源较多,除受电镀、冶金、化工等工业影响外,还与机动车辆橡胶轮胎磨损、垃圾焚烧、含锌矿石的开采等多种因素有关[24];Cr广泛应用于汽车零件,铝合金和钛合金等制品、轮胎摩擦产生的粉尘也含有Cr元素[25],研究表明,受海洋气候影响,滨海城市Cr高于内陆城市. 三亚是国际旅游城市,高速公路和景区常见大陆各省车辆,加之行车道路环境的不熟悉,高浓度的Zn和致癌性重金属Cr可能与车辆橡胶轮胎磨损有关;同时,海南岛处于季风交互地带,受大陆污染影响严重[4,7-8],这也是三亚重金属Cr超标原因之一.

    • 以Fe为参考物质,对Na、Mg、Al、Si、P、S、Cl、K、Ca、Ti、V、Cr、Mn、Fe、Cu等15种元素进行富集因子分析,分析结果如图2. 由图2可知,S(825.46)、Cl(97.67)、Cu(67.87)、Cr(31.21)、Mn(18.80)、Mg(17.20)、V(10.57)均出现较高的EF值,其中S的富集因子高达825.46,表明这些元素已经明显受到人为活动的影响,与前人研究三亚PM2.5空气质量结果一致[4,7-8]. 三亚市PM2.5主要来源是海洋源、工业源和交通源等,故S、Cl、Cu等元素富集因子较高.

    • 为了确定因子(源)数量,分别对模型进行了迭代运算,通过比较分析,最终确定5个因子最为合理(“眼球法”) [21]. 5个因子的贡献比例如图3所示.

      本研究根据前人文献及研究,交通源用Pb、Zn等来指示,K来指示生物质燃烧源,Na来指示海洋源[1], Mn、Si、Ca、Fe来指示土壤源,V、Cu、Zn来指示工业源[16]. 对照相关因子浓度贡献占比及其时间序列,第1个因子是海洋源:标识物为Na、Cl和Br,Na是碱金属元素,Cl和Br是海洋卤族元素;第2个因子是生物质燃烧源:标识物为K、P,二者是植物生长的营养元素;第3个因子是工业源,标识物为Cu、Zn、V、Ni、Cr,这些都是重金属元素;第4个因子为土壤源,标识物为Ca、Si、Fe、Ti,其中,Ca是碱土金属,剩余的都是造岩元素,也是土壤的主量元素;第5个因子是交通源,标识物为S、Pb、Cl,其中,S和Pb是交通燃烧源的指纹,Cl是海洋源和燃烧源(如生物质燃烧、机动车燃烧和燃煤燃烧)的标识物 [26-28]. 虽然Cl是作物生长发育不可或缺的一种元素,是构成作物生长所必须的16种元素之一,可归属于生物质燃烧源,但限于Cl元素的共线源问题和PMF模型“眼球法”识别源个数的主观性,综合考虑,本文将Cl归属于交通源排放.

      图4是三亚市PM2.5源解析结果,5种排放源大小比例分别是:海洋源(24.9%)>生物质燃烧源(20.8%)>工业源(20.5%)>土壤源(19%)>交通源(14.8%). 结果表明,三亚比邻南海,海洋表层微生物或植物是第一自然排放源,与前人研究结果一致[6-7];海南岛属热带气候,森林覆盖率达80%,生物质燃烧多以谷物秸秆、烤槟榔、枯枝落叶等燃烧排放为主 [29],生物质燃烧是第二排放源;工业源为第三排放源;土壤源为第四贡献源;交通源是第五贡献源.

      表4是南海周边国家利用受体模型对PM(TSP、PM10、PM2.5)进行源解析的结果比较. 结果表明如下:1) 滨海城市中海盐贡献占比<10%, 如马来西亚八打灵海盐(7.4%),在贫营养化的三沙永兴岛,海盐占比高达46.6%;在离大陆最近的城市海口,海盐占比低达3%,这一现象说明海盐贡献比例与采样点离岸距离有梯度变化特征 [30]. 2) 滨海城市的主要人为排放源受制于城市经济发展程度,如三亚旅游国际岛,交通源占比高达37.9%;海口是海南省会城市,经济综合发展,交通源占比17.5%;中国台湾省高雄,港口贸易发达,船舶排放占比15.6%;马来西亚八打灵市工业发达,制造业(12%)+混合冶炼工业和道路扬尘(5.6)+冶金工业(5.1%)+ 矿物尘(7.2%),工业源的贡献比例高达30%;菲律宾马尼拉市是工业欠发达,以基础工业为主,如燃煤(17.4%),工业(17.7%),机动车(12.6%)等,工业源的贡献比例更高达50% [30-31]. 3) 二次无机气溶胶由于是二次生成,在滨海城市中,随着工业污染占比高,其贡献比呈现下降趋势,比例范围在20%—30%. 如海南省三沙市二次无机气溶胶(30.1%);海南省海口SO42-(9.5%);马来西亚八打灵二次无机气溶胶(28.5%);中国台湾省高雄港二次无机气溶胶(24%);菲律宾马尼拉二次气溶胶(21.3%)等 [30-31]. 4) 二次无机气溶胶是有SO42-、NO3-和NH4+组成(简称SNA),在PMF模型源解析中,中国大陆学者将其归为二次污染物,但溯源对应不了经济产业部门,而东南亚学者将标识物SO42-基本归为工业燃煤源;NO3-归为交通源;NH4+归为农业源,这是PMF源解析结果差异之一 [21]. 5) 具体确定生物质燃烧源的贡献比,如通用K+标识物外,应加上左旋葡萄糖等有机分子标识物,因为K+还来源于土壤等[16].

    • 根据经呼吸途径暴露的健康风险评价模型[18],分别计算出的PM2.5重金属元素对儿童、成年女性和成年男性的平均超额危险度见表5. 9种重金属元素的年均超额危险度在5.40×10-12—7.63×10−7之间,均低于人群可接受危险水平标准1.00×10-6 [32];9种重金属元素对3类人群经呼吸途径暴露的健康风险均为Cr > As > Ni > Al > Mn > Pb > Cu > Zn > Se,致癌性物质As、Cr、Ni年均超额危险度数量级为10−7—10−9,远高于非致癌性物质Al、Cu、Mn、Pb、Se、Zn在量级为10−9—10-12的年均超额危险度;结合表3可看出,Cr元素质量浓度超标,造成Cr的年均超额危险度接近人群可接受危险水平标准. 得出三亚市大气颗粒物PM2.5重金属元素对人群基本无健康风险,但致癌性元素Cr浓度超过国家标准,并且对人群具有潜在的危害. 较之前人研究结果[17],三亚市年均超额危险度量级更低,三亚人口较少,且无采暖季节,海陆风盛行导致扩散条件好,污染物不容易累积[3].

      各选取一种代表性致癌性重金属元素和非致癌性重金属元素代入健康风险评价公式,得出每日人群超额危险度见图5. 致癌性重金属代表元素Ni对儿童、成年女性、成年男性人群超额危险度分别为3.68×10−9、6.27×10−9、7.28×10−9;非致癌性重金属Al对儿童、成年女性、成年男性人群超额危险度分别为2.21×10−9、2.26×10−9、2.62×10−9,结合图5得出不同人群的健康风险评价结果为:成年男性>成年女性>儿童,与山东省枣庄市研究结果一致[17].

    • (1)26种微量元素中S、Mg、Na、Al、Si、K、Fe、Ca元素平均质量浓度较高,其中,重金属元素Zn的质量浓度最高,致癌性重金属Cr已经超过标准限值,S的富集因子高达825.46.

      (2)PMF源解析结果为海洋源(24.9%)>生物质燃烧源(20.8%)>工业源(20.5%)>土壤源(19%)>交通源(14.8%);对比南海周边滨海城市PMF,结果表明,海盐贡献比例与采样点离岸距离有梯度变化特征;滨海城市的主要排放源受制于城市主导经济产业发展;二次无机气溶胶的贡献与工业源的比例呈反比,取决于SNA标识物的分配;除K+作为生物质标识物外,应加上左旋葡萄糖等有机分子标识物.

      (3)三亚市大气颗粒物PM2.5重金属污染对不同人群的影响为:成年男子>成年女子>儿童;不同季节影响为冬季>秋季>夏季:9种重金属元素对3类人群经呼吸途径暴露的健康风险均为Cr > As > Ni > Al > Mn > Pb > Cu > Zn > Se,其年均超额危险度均低于可接受危险水平标准.

    参考文献 (32)

返回顶部

目录

/

返回文章
返回