孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估

李嘉璐, 蔡凤珊, 严骁, 唐斌, 李敏, 郑晶, 谢春. 孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估[J]. 环境化学, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603
引用本文: 李嘉璐, 蔡凤珊, 严骁, 唐斌, 李敏, 郑晶, 谢春. 孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估[J]. 环境化学, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603
LI Jialu, CAI Fengshan, YAN Xiao, TANG Bin, LI Min, ZHENG Jing, XIE Chun. Characteristics and health risk assessment of household dust exposure and internal exposure to trace elements during pregnancy[J]. Environmental Chemistry, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603
Citation: LI Jialu, CAI Fengshan, YAN Xiao, TANG Bin, LI Min, ZHENG Jing, XIE Chun. Characteristics and health risk assessment of household dust exposure and internal exposure to trace elements during pregnancy[J]. Environmental Chemistry, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603

孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估

    通讯作者: Tel:020-85559609,E-mail:zhengjing@scies.org
  • 基金项目:
    国家自然科学基金 (42007392, 42077404,4222711) 资助.

Characteristics and health risk assessment of household dust exposure and internal exposure to trace elements during pregnancy

    Corresponding author: ZHENG Jing, zhengjing@scies.org
  • Fund Project: the Natural Science Foundation of China (42007392, 42077404,4222711).
  • 摘要: 孕妇妊娠期是胎儿生长发育的关键窗口期,期间母婴容易受到微量元素的影响。室内环境是孕期暴露微量元素的主要场所之一,同时个人生活习惯对微量元素暴露亦有重要影响。本研究采集孕妇尿液和对应的家庭灰尘,并收集孕妇生活习惯等调查问卷,分析了孕妇尿液和家庭灰尘中V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb和Pb 等11种微量元素的浓度水平,评估孕妇尿液和室内灰尘之间微量元素的相关性,探讨孕妇微量元素暴露水平的潜在影响因素,并评估室内灰尘中微量元素对孕妇的健康风险。研究发现,11种微量元素在家庭灰尘中的平均浓度介于1.95—159 μg·g−1,在孕妇尿液的平均浓度介于0.244—37.2 μg·L−1。与国内外研究报道的平均浓度相比,家庭灰尘中的有毒微量元素Cr、Ni和As含量较高,孕妇尿液中有毒微量元素主要为As和Ni,必需微量元素Se的含量偏低。相关性分析和主成分分析结果发现,家庭灰尘中Mn、Co和Mo,Se和Cd分别具有可能的相同来源;而孕妇尿液中Pb和Sb,Mo、Se、As和Co分别具有潜在相同的暴露源和途径。人口学特征的多元回归分析中,孕妇尿液必需微量元素Mn和有毒微量元素Cd、Pb的浓度增加与吸烟环境有关,在妊娠期应警惕生活环境如烟尘带来的危害。健康风险评估结果表明,家庭灰尘中必需微量元素Mn对孕妇健康可能存在低风险,孕妇尿液中必需微量元素Mo和有毒微量元素Cr、As、Pb存在低风险。根据本研究的分析结果,微量元素Mo、Mn、Cr、As和Pb对孕妇及胎儿的健康影响可能存在危害,需要考虑采取干预措施。
  • 加载中
  • 图 1  家庭灰尘微量元素相关性分析 (P<0.05)

    Figure 1.  Correlation analysis of trace elements in household dust (P<0.05)

    图 2  家庭灰尘主成分分析载量图

    Figure 2.  Principal component analysis load map of household dust

    图 3  孕妇尿液微量元素相关性分析 (P<0.05)

    Figure 3.  Correlation analysis of trace elements in urine of pregnant women (P<0.05)

    图 4  孕妇尿液主成分分析载量图

    Figure 4.  Load map of pregnant woman's urine by principal component analysis

    表 1  孕妇基本信息(n=22)

    Table 1.  Basic information for pregnant women(n=22)

    年龄(周岁)孕前BMI产次教育程度配偶教育程度
    ≤30>30平均<18.5≥18.5平均初产妇经产妇大专以下大专及以上大专以下大专及以上
    28±234±331±416.7±0.38421.6±1.9520.7±2.6054.5%45.5%18.2%81.8%18.2%81.8%
    年龄(周岁)孕前BMI产次教育程度配偶教育程度
    ≤30>30平均<18.5≥18.5平均初产妇经产妇大专以下大专及以上大专以下大专及以上
    28±234±331±416.7±0.38421.6±1.9520.7±2.6054.5%45.5%18.2%81.8%18.2%81.8%
    下载: 导出CSV
    被动吸烟饮用桶装水食用淡水鱼食用海产品补充叶酸
    每周1—3次每周4—6次每周1—3次每周4—6次怀孕前怀孕后
    14.3%85.7%30.0%70.0%95.0%5.0%20.0%80.0%55.0%45.0%
    被动吸烟饮用桶装水食用淡水鱼食用海产品补充叶酸
    每周1—3次每周4—6次每周1—3次每周4—6次怀孕前怀孕后
    14.3%85.7%30.0%70.0%95.0%5.0%20.0%80.0%55.0%45.0%
    下载: 导出CSV

    表 2  国内外不同城市家庭灰尘微量元素浓度比较(μg·g−1)

    Table 2.  Comparison of trace element concentration in household dust of different cities at home and abroad (μg·g−1)

    省/市
    Province/city
    采样年份
    Sampling date
    样本量
    Sample number

    V

    Mn

    Co

    Se

    Mo

    Cr

    Ni

    As

    Cd

    Sb

    Pb
    文献
    Reference
    广州2020—20212223.94579.661.955.1110712515.62.218.78159本研究
    广东省清远市2013—20147841.62.45214[46]
    广东省清远农村2013—20147829.44.18392[46]
    山西省太原市20197248.84448.1913440.517.40.56050.3[43]
    四川省成都市2014—20159082.752.62.37123[23]
    安徽省合肥市20184118.017729.526.14.392.0095.4[45]
    安徽省农村201012552.610.311438.94.46349[44]
    加拿大201612515.02505.401.608.3092.060.013.011.036.0450[15]
    伊拉克202050289.510614.875.6[48]
    沙特阿拉伯20162046.732.20.540[47]
    伊朗20161914357.15.31209[49]
      注:—表示无数据。表格中数据为国内外不同城市家庭灰尘微量元素平均值.
      — Indicates no data. The data in the table are the average values of trace elements in household dust in different cities at home and abroad.
    省/市
    Province/city
    采样年份
    Sampling date
    样本量
    Sample number

    V

    Mn

    Co

    Se

    Mo

    Cr

    Ni

    As

    Cd

    Sb

    Pb
    文献
    Reference
    广州2020—20212223.94579.661.955.1110712515.62.218.78159本研究
    广东省清远市2013—20147841.62.45214[46]
    广东省清远农村2013—20147829.44.18392[46]
    山西省太原市20197248.84448.1913440.517.40.56050.3[43]
    四川省成都市2014—20159082.752.62.37123[23]
    安徽省合肥市20184118.017729.526.14.392.0095.4[45]
    安徽省农村201012552.610.311438.94.46349[44]
    加拿大201612515.02505.401.608.3092.060.013.011.036.0450[15]
    伊拉克202050289.510614.875.6[48]
    沙特阿拉伯20162046.732.20.540[47]
    伊朗20161914357.15.31209[49]
      注:—表示无数据。表格中数据为国内外不同城市家庭灰尘微量元素平均值.
      — Indicates no data. The data in the table are the average values of trace elements in household dust in different cities at home and abroad.
    下载: 导出CSV

    表 3  国内外不同城市居民尿液微量元素浓度比较(μg·L−1)

    Table 3.  Comparison of urinary trace elements concentrations of residents in different cities at home and abroad (μg·L−1)

    省/市
    Province/city
    人口类别
    Population category
    采样年份
    Sampling date
    样本量
    Sample number

    V

    Mn

    Co

    Se

    Mo

    Cr

    Ni

    As

    Cd

    Sb

    Pb
    文献
    Reference
    广州孕妇2020—2021220.3392.680.49516.137.25.632.6426.60.5380.2445.24本研究
    中国武汉孕妇2014—20166750.9601.1220.00.6302.54[54]
    中国武汉成人2014—20162260.53034.00.24040.91.090.920[30]
    广东深圳成人2016—20173345.8030.14.4648.81.474.69[56]
    西班牙孕妇2004—200813460.52017.138.81.2734.40.2300.3501.14[57]
    加拿大孕妇2016290.1700.6300.63058.20.1300.9607.400.1200.160[55]
    马来西亚成人2017—20188175.7382.30.4701.53[60]
    美国成人2003—201495370.34038.68.850.2400.060.50[58]
    伊朗成人20143310216.7[59]
      注:—表示无数据。表格中数据为国内外不同城市居民尿液微量元素平均值.
      — Indicates no data. The data in the table are the average values of urine trace elements of residents in different cities at home and abroad.
    省/市
    Province/city
    人口类别
    Population category
    采样年份
    Sampling date
    样本量
    Sample number

    V

    Mn

    Co

    Se

    Mo

    Cr

    Ni

    As

    Cd

    Sb

    Pb
    文献
    Reference
    广州孕妇2020—2021220.3392.680.49516.137.25.632.6426.60.5380.2445.24本研究
    中国武汉孕妇2014—20166750.9601.1220.00.6302.54[54]
    中国武汉成人2014—20162260.53034.00.24040.91.090.920[30]
    广东深圳成人2016—20173345.8030.14.4648.81.474.69[56]
    西班牙孕妇2004—200813460.52017.138.81.2734.40.2300.3501.14[57]
    加拿大孕妇2016290.1700.6300.63058.20.1300.9607.400.1200.160[55]
    马来西亚成人2017—20188175.7382.30.4701.53[60]
    美国成人2003—201495370.34038.68.850.2400.060.50[58]
    伊朗成人20143310216.7[59]
      注:—表示无数据。表格中数据为国内外不同城市居民尿液微量元素平均值.
      — Indicates no data. The data in the table are the average values of urine trace elements of residents in different cities at home and abroad.
    下载: 导出CSV

    表 4  尿液微量元素浓度影响因素的多元线性回归模型结果

    Table 4.  Multivariate linear regression model results of factors influencing urinary trace element concentration

    微量元素
    Trace elements
    影响因素
    Influence factor
    标准化系数
    Standardized Coefficients
    95%置信区间95%
    Confidence interval
    R2调整R2
    Adjust R2
    BetaSig下界
    Lower bound
    上界
    Upper bound
    Mn常量0.050−3.640.0040.5660.499
    被动吸烟(是)0.8480.0010.9122.93
    Co常量0.302−1.173.440.7570.669
    教育程度(大专以下)−0.9620.003−4.06−1.05
    被动吸烟(是)−0.5940.0053.05−0.672
    食用海产品
    (4—6次/周)
    0.6980.0200.4253.95
    Se补充叶酸(怀孕前)0.9090.0001.082.69
    常量0.023−2.47−0.2120.5000.428
    补充叶酸(怀孕前)0.5520.0120.2451.68
    Mo常量0.183−1.225.780.5580.422
    产次(经产妇)0.5740.0120.3072.04
    配偶教育程度
    (大专及以上)
    1.940.0041.847.66
    被动吸烟(是)−1.540.004−6.79−1.63
    食用海产品
    (4—6次/周)
    −0.7860.024−4.69−0.396
    Ni常量0.0022.026.420.8420.771
    饮用桶装水(是)−0.3730.032−1.55−0.086
    Cd常量0.638−2.191.400.7850.695
    Cd(灰尘)−0.8700.000−1.33−0.600
    被动吸烟(是)1.240.0011.725.04
    Pb常量0.214−2.280.5540.7440.709
    被动吸烟(是)1.510.0002.725.48
      注:—表示无数据。— Indicates no data.
    微量元素
    Trace elements
    影响因素
    Influence factor
    标准化系数
    Standardized Coefficients
    95%置信区间95%
    Confidence interval
    R2调整R2
    Adjust R2
    BetaSig下界
    Lower bound
    上界
    Upper bound
    Mn常量0.050−3.640.0040.5660.499
    被动吸烟(是)0.8480.0010.9122.93
    Co常量0.302−1.173.440.7570.669
    教育程度(大专以下)−0.9620.003−4.06−1.05
    被动吸烟(是)−0.5940.0053.05−0.672
    食用海产品
    (4—6次/周)
    0.6980.0200.4253.95
    Se补充叶酸(怀孕前)0.9090.0001.082.69
    常量0.023−2.47−0.2120.5000.428
    补充叶酸(怀孕前)0.5520.0120.2451.68
    Mo常量0.183−1.225.780.5580.422
    产次(经产妇)0.5740.0120.3072.04
    配偶教育程度
    (大专及以上)
    1.940.0041.847.66
    被动吸烟(是)−1.540.004−6.79−1.63
    食用海产品
    (4—6次/周)
    −0.7860.024−4.69−0.396
    Ni常量0.0022.026.420.8420.771
    饮用桶装水(是)−0.3730.032−1.55−0.086
    Cd常量0.638−2.191.400.7850.695
    Cd(灰尘)−0.8700.000−1.33−0.600
    被动吸烟(是)1.240.0011.725.04
    Pb常量0.214−2.280.5540.7440.709
    被动吸烟(是)1.510.0002.725.48
      注:—表示无数据。— Indicates no data.
    下载: 导出CSV

    表 5  健康风险评估

    Table 5.  Health risk assessment

    微量元素
    Trace
    element
    RfD/
    (μg·kg−1·d−1)
    RfC/
    (μg·kg−1·d−1)
    家庭灰尘 均值±标准差(范围)
    Household dust Mean ± Standard deviation(range)
    孕妇尿液 均值±标准差(范围)
    Pregnant women urine Mean ± Standard deviation(range)
    HQ摄取
    HQ ingestion
    HQ吸入
    HQ inhalation
    HIDI/
    (μg·kg-1BW·d−1)
    HQ
    V5.040.1(2.16×10−3±9.39×10−4)
    (7.55×10−4—4.01×10−3)
    (1.09×10−1±4.73×10−2)
    (3.81×10−2—2.02×10−1)
    (1.11×10−1±
    4.83×10−2)
    0.0470±0.0563
    (nd.—0.252)
    0.00933±0.0112
    (nd.—0.0500)
    Mn1400.05(1.45×10−3±6.92×10−4)
    (5.63×10−4—3.55×10−3)
    4.07±1.94
    (1.58—9.94)
    4.07±1.945.40±4.73
    (nd.—16.3)
    0.0386±0.0338
    (nd.—0.117)
    Co0.30.006(1.42×10−2±6.42×10−3)
    (5.56×10−3—3.47×10−2)
    (7.11×10−1±3.21×10−1)
    (2.78×10−1—1.74)
    (7.26×10−1±
    3.28×10−1)
    0.0695±0.0726
    (nd.—0.262)
    0.232±0.242
    (nd.—0.872)
    Se520(1.78×10−4±6.83×10−5)
    (7.35×10−5—3.24×10−4)
    (4.42×10−5±1.71×10−5 )
    (1.71×10−5—8.10×10−5)
    (2.21×10−4±
    8.54×10−5)
    1.01±0.854
    (nd.—28.0)
    0.261±0.317
    (nd.—15.0)
    Mo52(4.53×10−4±3.57×10−4)
    (1.62×10−4—1.77×10−3)
    (1.13×10−3±8.93×10−4)
    (4.04×10−4—4.42×10−3)
    (1.59×10−3±
    1.25×10−3)
    10.7±9.51
    (0.343—35.4)
    2.14±1.90
    (0.0685—7.07)
    Cr30.1(1.81×10−4±1.55×10−4)
    (5.74×10−5—5.84×10−4)
    (5.43×10−3±4.65×10−3)
    (1.72×10−3—1.75×10−2)
    (5.61×10−3±
    4.80×10−3)
    3.23±2.64
    (nd.—7.50)
    1.08±0.881
    (nd.—2.50)
    Ni200.09(2.75×10−3±1.96×10−3 )
    (6.89×10−4—9.09×10−3)
    (6.11×10−1±4.35×10−1)
    (1.53×10−1—2.02)
    (6.14×10−1±
    4.37×10−1)
    0.698±0.502
    (nd.—2.14)
    0.0349±0.021
    (nd.—0.107)
    As0.30.015(2.27×10−2±2.25×10−2)
    (7.46×10−3—1.10×10−1)
    (4.55×10−1±4.51×10−1)
    (1.49×10−1—2.20)
    (4.77×10−1±
    4.73×10−1)
    18.4±14.3
    (2.83—52.6)
    44.5±27.1
    (9.43—102)
    Cd0.10.01(9.63×10−3±7.48×10−3)
    (3.56×10−3—3.32×10−2)
    (9.63×10−2±7.48×10−2)
    (3.56×10−2—3.32×10−1)
    (1.06×10−1±
    8.22×10−2)
    5.44±3.31
    (0.303—11.1)
    0.544±0.331
    (0.0303—1.11)
    Sb0.40.3(9.77×10−3±4.63×10−3)
    (2.86×10−3—2.08×10−2)
    (1.30×10−2±6.18×10−3)
    (3.82×10−3—2.78×10−2)
    (2.28×10−2±
    1.08×10−2)
    0.0668±0.225
    (nd.—1.09)
    0.167±0.561
    (nd.—2.72)
    Pb3.53.52(2.01×10−2±1.92×10−2)
    (2.67×10−4—7.15×10−2)
    (2.00×10−2±1.91×10−2)
    (2.65×10−4—7.10×10−2)
    (4.00×10−2±
    3.83×10−2)
    46.0±18.3
    (14.5—83.5)
    13.2±7.50
    (4.14—23.9)
      注:nd.,未检出。nd.,not detected.
    微量元素
    Trace
    element
    RfD/
    (μg·kg−1·d−1)
    RfC/
    (μg·kg−1·d−1)
    家庭灰尘 均值±标准差(范围)
    Household dust Mean ± Standard deviation(range)
    孕妇尿液 均值±标准差(范围)
    Pregnant women urine Mean ± Standard deviation(range)
    HQ摄取
    HQ ingestion
    HQ吸入
    HQ inhalation
    HIDI/
    (μg·kg-1BW·d−1)
    HQ
    V5.040.1(2.16×10−3±9.39×10−4)
    (7.55×10−4—4.01×10−3)
    (1.09×10−1±4.73×10−2)
    (3.81×10−2—2.02×10−1)
    (1.11×10−1±
    4.83×10−2)
    0.0470±0.0563
    (nd.—0.252)
    0.00933±0.0112
    (nd.—0.0500)
    Mn1400.05(1.45×10−3±6.92×10−4)
    (5.63×10−4—3.55×10−3)
    4.07±1.94
    (1.58—9.94)
    4.07±1.945.40±4.73
    (nd.—16.3)
    0.0386±0.0338
    (nd.—0.117)
    Co0.30.006(1.42×10−2±6.42×10−3)
    (5.56×10−3—3.47×10−2)
    (7.11×10−1±3.21×10−1)
    (2.78×10−1—1.74)
    (7.26×10−1±
    3.28×10−1)
    0.0695±0.0726
    (nd.—0.262)
    0.232±0.242
    (nd.—0.872)
    Se520(1.78×10−4±6.83×10−5)
    (7.35×10−5—3.24×10−4)
    (4.42×10−5±1.71×10−5 )
    (1.71×10−5—8.10×10−5)
    (2.21×10−4±
    8.54×10−5)
    1.01±0.854
    (nd.—28.0)
    0.261±0.317
    (nd.—15.0)
    Mo52(4.53×10−4±3.57×10−4)
    (1.62×10−4—1.77×10−3)
    (1.13×10−3±8.93×10−4)
    (4.04×10−4—4.42×10−3)
    (1.59×10−3±
    1.25×10−3)
    10.7±9.51
    (0.343—35.4)
    2.14±1.90
    (0.0685—7.07)
    Cr30.1(1.81×10−4±1.55×10−4)
    (5.74×10−5—5.84×10−4)
    (5.43×10−3±4.65×10−3)
    (1.72×10−3—1.75×10−2)
    (5.61×10−3±
    4.80×10−3)
    3.23±2.64
    (nd.—7.50)
    1.08±0.881
    (nd.—2.50)
    Ni200.09(2.75×10−3±1.96×10−3 )
    (6.89×10−4—9.09×10−3)
    (6.11×10−1±4.35×10−1)
    (1.53×10−1—2.02)
    (6.14×10−1±
    4.37×10−1)
    0.698±0.502
    (nd.—2.14)
    0.0349±0.021
    (nd.—0.107)
    As0.30.015(2.27×10−2±2.25×10−2)
    (7.46×10−3—1.10×10−1)
    (4.55×10−1±4.51×10−1)
    (1.49×10−1—2.20)
    (4.77×10−1±
    4.73×10−1)
    18.4±14.3
    (2.83—52.6)
    44.5±27.1
    (9.43—102)
    Cd0.10.01(9.63×10−3±7.48×10−3)
    (3.56×10−3—3.32×10−2)
    (9.63×10−2±7.48×10−2)
    (3.56×10−2—3.32×10−1)
    (1.06×10−1±
    8.22×10−2)
    5.44±3.31
    (0.303—11.1)
    0.544±0.331
    (0.0303—1.11)
    Sb0.40.3(9.77×10−3±4.63×10−3)
    (2.86×10−3—2.08×10−2)
    (1.30×10−2±6.18×10−3)
    (3.82×10−3—2.78×10−2)
    (2.28×10−2±
    1.08×10−2)
    0.0668±0.225
    (nd.—1.09)
    0.167±0.561
    (nd.—2.72)
    Pb3.53.52(2.01×10−2±1.92×10−2)
    (2.67×10−4—7.15×10−2)
    (2.00×10−2±1.91×10−2)
    (2.65×10−4—7.10×10−2)
    (4.00×10−2±
    3.83×10−2)
    46.0±18.3
    (14.5—83.5)
    13.2±7.50
    (4.14—23.9)
      注:nd.,未检出。nd.,not detected.
    下载: 导出CSV
  • [1] 杨雅茹, 钟瑶, 李帅东, 等. 水产品中重金属对人体的危害研究进展 [J]. 农业技术与装备, 2020(10): 55-56. doi: 10.3969/j.issn.1673-887X.2020.10.025

    YANG Y R, ZHONG Y, LI S D, et al. Research progress on the harm of heavy metals to human body in aquatic products [J]. Agricultural Technology & Equipment, 2020(10): 55-56(in Chinese). doi: 10.3969/j.issn.1673-887X.2020.10.025

    [2] MAROUF B H. Association between serum heavy metals level and cancer incidence in darbandikhan and Kalar Area, Kurdistan Region, Iraq [J]. Nigerian Journal of Clinical Practice, 2018, 21(6): 766-771. doi: 10.4103/njcp.njcp_384_16
    [3] ROMANIUK А, LYNDIN M, SIKORA V, et al. Heavy metals effect on breast cancer progression [J]. Journal of Occupational Medicine and Toxicology, 2017, 12: 32. doi: 10.1186/s12995-017-0178-1
    [4] CICERO C E, MOSTILE G, VASTA R, et al. Metals and neurodegenerative diseases. A systematic review [J]. Environmental Research, 2017, 159: 82-94. doi: 10.1016/j.envres.2017.07.048
    [5] TSUJI M, SHIBATA E, MOROKUMA S, et al. The association between whole blood concentrations of heavy metals in pregnant women and premature births: The Japan Environment and Children’s Study (JECS) [J]. Environmental Research, 2018, 166: 562-569. doi: 10.1016/j.envres.2018.06.025
    [6] MISTRY H D, WILLIAMS P J. The importance of antioxidant micronutrients in pregnancy [J]. Oxidative Medicine and Cellular Longevity, 2011, 2011: 841749.
    [7] BOCCA B, RUGGIERI F, PINO A, et al. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood [J]. Environmental Research, 2019, 177: 108599. doi: 10.1016/j.envres.2019.108599
    [8] BOUCHER O, MUCKLE G, JACOBSON J L, et al. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: Results from the Environmental Contaminants and Child Development Study in Nunavik [J]. Environmental Health Perspectives, 2014, 122(3): 310-316. doi: 10.1289/ehp.1206323
    [9] CABRERA-RODRGUEZ R, LUZARDO O P, GONZLEZ-ANTUA A, et al. Occurrence of 44 elements in human cord blood and their association with growth indicators in newborns [J]. Environment International, 2018, 116: 43-51. doi: 10.1016/j.envint.2018.03.048
    [10] BANK-NIELSEN P I, LONG M H, BONEFELD-JRGENSEN E C. Pregnant Inuit women’s exposure to metals and association with fetal growth outcomes: ACCEPT 2010—2015 [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1171. doi: 10.3390/ijerph16071171
    [11] VIGEH M, YOKOYAMA K, RAMEZANZADEH F, et al. Blood Manganese concentrations and intrauterine growth restriction [J]. Reproductive Toxicology, 2008, 25(2): 219-223. doi: 10.1016/j.reprotox.2007.11.011
    [12] ÖZEL Ş, OZYER S, AYKUT O, et al. Maternal second trimester blood levels of selected heavy metals in pregnancies complicated with neural tube defects[J]. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 2019, 32(15): 2547-2553.
    [13] CUI Y B, BAI L, LI C H, et al. Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region [J]. Sustainable Cities and Society, 2022, 80: 103796. doi: 10.1016/j.scs.2022.103796
    [14] GUPTA S, GRAHAM D W, SREEKRISHNAN T R, et al. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution [J]. Science of the Total Environment, 2023, 857: 159059. doi: 10.1016/j.scitotenv.2022.159059
    [15] DINGLE J H, KOHL L, KHAN N, et al. Sources and composition of metals in indoor house dust in a mid-size Canadian city [J]. Environmental Pollution, 2021, 289: 117867. doi: 10.1016/j.envpol.2021.117867
    [16] 万千, 赵静, 韦旭, 等. 电子废弃物拆解车间灰尘中重金属污染特征及职业人群健康风险评价 [J]. 环境化学, 2022, 41(3): 883-892. doi: 10.7524/j.issn.0254-6108.2020110901

    WAN Q, ZHAO J, WEI X, et al. Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population [J]. Environmental Chemistry, 2022, 41(3): 883-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110901

    [17] BARRIO-PARRA F, de MIGUEL E, LZARO-NAVAS S, et al. Indoor dust metal loadings: A human health risk assessment [J]. Exposure and Health, 2018, 10(1): 41-50. doi: 10.1007/s12403-017-0244-z
    [18] OLUJIMI O, STEINER O, GOESSLER W. Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria [J]. Journal of African Earth Sciences, 2015, 101: 396-404. doi: 10.1016/j.jafrearsci.2014.10.007
    [19] DOYI I N Y, ISLEY C F, SOLTANI N S, et al. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes[J]. Environment International, 2019, 133(Pt A): 105125.
    [20] NWANAJI-ENWEREM J C, ALLEN J G, BEAMER P I. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy [J]. Journal of Exposure Science & Environmental Epidemiology, 2020, 30(5): 773-775.
    [21] 张舒婷, 李晓燕. 城市室内灰尘重金属的水平及来源 [J]. 环境化学, 2014, 33(7): 1201-1207. doi: 10.7524/j.issn.0254-6108.2014.07.024

    ZHANG S T, LI X Y. Concentrations and sources of heavy metals in indoor dust of cities [J]. Environmental Chemistry, 2014, 33(7): 1201-1207(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.024

    [22] HU J, WU C S, ZHENG T Z, et al. Critical windows for associations between Manganese exposure during pregnancy and size at birth: A longitudinal cohort study in Wuhan, China [J]. Environmental Health Perspectives, 2018, 126(12): 127006. doi: 10.1289/EHP3423
    [23] CHENG Z, CHEN L J, LI H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China [J]. Science of the Total Environment, 2018, 619/620: 621-629. doi: 10.1016/j.scitotenv.2017.11.144
    [24] SHARMA B, HANDIQUE S, JYETHI D S. Elemental composition of rural household dust in Brahmaputra fluvial plain: Insights from SEM-EDS, receptor model, and risk assessment[J]. Environmental Geochemistry and Health, 2022: 1-14.
    [25] ZHANG X, CUI X Y, LIN C Y, et al. Reference levels and relationships of nine elements in first-spot morning urine and 24-h urine from 210 Chinese children [J]. International Journal of Hygiene and Environmental Health, 2017, 220(2): 227-234. doi: 10.1016/j.ijheh.2016.10.013
    [26] CUI Y J, ZHONG Q, HU M J, et al. Human biomonitoring of eight trace elements in urine of residents living in rural areas along the Yangtze River, China [J]. Environmental Science and Pollution Research, 2017, 24(36): 27963-27973. doi: 10.1007/s11356-017-0414-3
    [27] dos SANTOS M, FLORES SOARES M C, MARTINS BAISCH P R, et al. Biomonitoring of trace elements in urine samples of children from a coal-mining region [J]. Chemosphere, 2018, 197: 622-626. doi: 10.1016/j.chemosphere.2018.01.082
    [28] JUNAID M, HASHMI M Z, MALIK R N, et al. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review [J]. Environmental Science and Pollution Research, 2016, 23(20): 20151-20167. doi: 10.1007/s11356-016-7463-x
    [29] SHI H Z, WANG J J, YUAN J, et al. Biomonitoring human urinary levels of 26 metal elements in multi-race coexistence region of Xinjiang, China [J]. Science of the Total Environment, 2020, 711: 134752. doi: 10.1016/j.scitotenv.2019.134752
    [30] ZENG H L, LIU C W B, LU J, et al. Analysis of urinary trace element levels in general population of Wuhan in central China [J]. Environmental Science and Pollution Research, 2019, 26(27): 27823-27831. doi: 10.1007/s11356-019-05973-7
    [31] SUN X J, JIANG Y Q, XIA W, et al. Association between prenatal nickel exposure and preterm low birth weight: Possible effect of selenium [J]. Environmental Science and Pollution Research, 2018, 25(26): 25888-25895. doi: 10.1007/s11356-018-2622-x
    [32] WAI K M, UMEZAKI M, KOSAKA S, et al. Impact of prenatal heavy metal exposure on newborn leucocyte telomere length: A birth-cohort study [J]. Environmental Pollution, 2018, 243: 1414-1421. doi: 10.1016/j.envpol.2018.09.090
    [33] AWASTHI A K, WANG M M, AWASTHI M K, et al. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review [J]. Environmental Pollution, 2018, 243: 1310-1316. doi: 10.1016/j.envpol.2018.08.037
    [34] GU Y G, GAO Y P, LIN Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in Southern China’s largest city, Guangzhou [J]. Applied Geochemistry, 2016, 67: 52-58. doi: 10.1016/j.apgeochem.2016.02.004
    [35] 邹梦遥, 周遗品, 邓金川, 等. 某铅锌矿周边地区室内灰尘中重金属的生态风险评价 [J]. 安徽农学通报, 2015, 21(16): 83-87. doi: 10.3969/j.issn.1007-7731.2015.16.041

    ZOU M Y, ZHOU Y P, DENG J C, et al. The ecological risk assessment of heavy metals in household dust from a lead-zinc core mine [J]. Anhui Agricultural Science Bulletin, 2015, 21(16): 83-87(in Chinese). doi: 10.3969/j.issn.1007-7731.2015.16.041

    [36] ISLEY C F, FRY K L, LIU X C, et al. International analysis of sources and human health risk associated with trace metal contaminants in residential indoor dust [J]. Environmental Science & Technology, 2022, 56(2): 1053-1068.
    [37] LEE I, PLMKE C, RINGBECK B, et al. Urinary concentrations of major phthalate and alternative plasticizer metabolites in children of Thailand, Indonesia, and Saudi Arabia, and associated risks [J]. Environmental Science & Technology, 2021, 55(24): 16526-16537.
    [38] AL LASER M, EL-YAZIGI A, CROFT S L. Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis [J]. Pharmaceutical Research, 1995, 12(1): 113-116. doi: 10.1023/A:1016251023427
    [39] PANE E F, McDONALD M D, CURRY H N, et al. Hydromineral balance in the marine gulf toadfish (Opsanus beta) exposed to waterborne or infused nickel [J]. Aquatic Toxicology, 2006, 80(1): 70-81. doi: 10.1016/j.aquatox.2006.07.015
    [40] WERNER E, ROTH P, HEINRICHS U, et al. Internal biokinetic behaviour of molybdenum in humans studied with stable isotopes as tracers [J]. Isotopes in Environmental and Health Studies, 2000, 36(2): 123-132. doi: 10.1080/10256010008032938
    [41] GREGUS Z, KLAASSEN C D. Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals [J]. Toxicology and Applied Pharmacology, 1986, 85(1): 24-38. doi: 10.1016/0041-008X(86)90384-4
    [42] AL-BAYATI M A, RAABE O G, GIRI S N, et al. Distribution of vanadate in the rat following subcutaneous and oral routes of administration [J]. Journal of the American College of Toxicology, 1991, 10(2): 233-241. doi: 10.3109/10915819109078633
    [43] 黄浩, 徐子琪, 严俊霞, 等. 太原市城乡居民区采暖季室内灰尘中重金属的污染特征及其生态风险评价 [J]. 环境科学, 2021, 42(5): 2143-2152. doi: 10.13227/j.hjkx.202008045

    HUANG H, XU Z Q, YAN J X, et al. Characteristics of heavy metal pollution and ecological risk evaluation of indoor dust from urban and rural areas in Taiyuan city during the heating season [J]. Environmental Science, 2021, 42(5): 2143-2152(in Chinese). doi: 10.13227/j.hjkx.202008045

    [44] LIN Y S, FANG F M, WANG F, et al. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China [J]. Environmental Monitoring and Assessment, 2015, 187(9): 565. doi: 10.1007/s10661-015-4763-4
    [45] ZHOU L, LIU G J, SHEN M C, et al. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China [J]. Environmental Pollution, 2019, 251: 839-849. doi: 10.1016/j.envpol.2019.05.058
    [46] HE C T, ZHENG X B, YAN X, et al. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure [J]. Ecotoxicology and Environmental Safety, 2017, 140: 109-115. doi: 10.1016/j.ecoenv.2017.02.041
    [47] SALEM ALI ALBAR H M, ALI N, ALI MUSSTJAB AKBER SHAH EQANI S, et al. Trace metals in different socioeconomic indoor residential settings, implications for human health via dust exposure [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109927. doi: 10.1016/j.ecoenv.2019.109927
    [48] AL-DULAIMI E, SHARTOOH S, AL-HEETY E. Concentration, distribution, and potential sources of heavy metals in households dust in Al-fallujah, Iraq [J]. Iraqi Geological Journal, 2021, 54(2F): 120-130. doi: 10.46717/igj.54.2F.11ms-2021-12-28
    [49] HASHEMI S E, FAZLZADEH M, AHMADI E, et al. Occurrence, potential sources, in vitro bioaccessibility and health risk assessment of heavy metal in indoor dust from different microenvironment of Bushehr, Iran [J]. Environmental Geochemistry and Health, 2020, 42(11): 3641-3658. doi: 10.1007/s10653-020-00598-z
    [50] WANG X, WANG B, XIAO L L, et al. Sources of 24-h personal exposure to PM2.5-bound metals: Results from a panel study in Wuhan, China [J]. Environmental Science and Pollution Research, 2021, 28(22): 27555-27564. doi: 10.1007/s11356-021-12386-y
    [51] GURBANOV A G, BOGATIKOV O A, VINOKUROV S F, et al. Geochemical evaluation of environmental conditions in the area of activity of the Tyrnyauz Tungsten–Molybdenum Plant (Kabardino-Balkaria, North Caucasus): Sources of environment contamination, impact upon neighboring areas, and ways for recovery [J]. Doklady Earth Sciences, 2015, 464(1): 967-971. doi: 10.1134/S1028334X15090172
    [52] ZHU Y L, HUANG W, LIU Z L, et al. Application of supramolecular nano-material adsorbent in the treatment of heavy metal pollution in acid selenium-rich soils in South China [J]. Integrated Ferroelectrics, 2021, 217(1): 69-81. doi: 10.1080/10584587.2021.1911297
    [53] BARTKOWIAK A, LEMANOWICZ J, BREZA-BORUTA B. Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution [J]. Environmental Science and Pollution Research, 2017, 24(30): 23893-23902. doi: 10.1007/s11356-017-0013-3
    [54] SUN X J, LIU W Y, ZHANG B, et al. Maternal heavy metal exposure, thyroid hormones, and birth outcomes: A prospective cohort study [J]. The Journal of Clinical Endocrinology & Metabolism, 2019, 104(11): 5043-5052.
    [55] CARON-BEAUDOIN , BOUCHARD M, WENDLING G, et al. Urinary and hair concentrations of trace metals in pregnant women from Northeastern British Columbia, Canada: A pilot study [J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(5): 613-623.
    [56] YANG D F, LIU Y L, LIU S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China [J]. Chemosphere, 2020, 250: 126289. doi: 10.1016/j.chemosphere.2020.126289
    [57] LOZANO M, MURCIA M, SOLER-BLASCO R, et al. Exposure to metals and metalloids among pregnant women from Spain: Levels and associated factors [J]. Chemosphere, 2022, 286: 131809. doi: 10.1016/j.chemosphere.2021.131809
    [58] WANG X, MUKHERJEE B, PARK S K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U. S. adults in NHANES 2003–2014 [J]. Environment International, 2018, 121: 683-694. doi: 10.1016/j.envint.2018.09.035
    [59] SHAHBAZIAN H, ABSALAN A, JALALI M T, et al. Comparison of zinc, copper, selenium, magnesium, aluminium and lead blood concentrations in end-stage renal disease patients and healthy volunteers in Ahvaz, southwest of Iran [J]. Russian Open Medical Journal, 2018, 7(1): e0105. doi: 10.15275/rusomj.2018.0105
    [60] MOHAMMAD SHAM N, ANUAL Z F, SHAHARUDIN R. GIS based interpolation method to urinary metal concentrations in Malaysia [J]. Food and Chemical Toxicology:an International Journal Published for the British Industrial Biological Research Association, 2022, 163: 112949. doi: 10.1016/j.fct.2022.112949
    [61] GRIEGER J A, GRZESKOWIAK L E, WILSON R L, et al. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility [J]. Nutrients, 2019, 11(7): 1609. doi: 10.3390/nu11071609
    [62] JEANJEAN M, GOIX S, DRON J, et al. Influence of environmental and dietary exposures on metals accumulation among the residents of a major industrial harbour (Fos-sur-Mer, France) [J]. Journal of Trace Elements in Medicine and Biology, 2022, 73: 127021. doi: 10.1016/j.jtemb.2022.127021
    [63] ZHAO H, TANG J, ZHU Q H, et al. Associations of prenatal heavy metals exposure with placental characteristics and birth weight in Hangzhou Birth Cohort: Multi-pollutant models based on elastic net regression [J]. Science of the Total Environment, 2020, 742: 140613. doi: 10.1016/j.scitotenv.2020.140613
    [64] MASSADEH A M, AL-SAFI S. Analysis of cadmium and lead: Their immunosuppressive effects and distribution in various organs of mice [J]. Biological Trace Element Research, 2005, 108(1/2/3): 279-286.
    [65] ZHUO H H, WU Y L, LIU Y B, et al. Source, distribution and potential risk of antimony in water and sediments of Danjiangkou Reservoir: Impact from dam [J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12367. doi: 10.3390/ijerph191912367
    [66] 孙慧, 毕如田, 郭颖, 等. 广东省土壤重金属溯源及污染源解析 [J]. 环境科学学报, 2018, 38(2): 704-714. doi: 10.13671/j.hjkxxb.2017.0351

    SUN H, BI R T, GUO Y, et al. Source apportionment analysis of trace metal contamination in soils of Guangdong Province, China [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 704-714(in Chinese). doi: 10.13671/j.hjkxxb.2017.0351

    [67] HAYS S M, MACEY K, NONG A, et al. Biomonitoring equivalents for selenium [J]. Regulatory Toxicology and Pharmacology, 2014, 70(1): 333-339. doi: 10.1016/j.yrtph.2014.07.017
    [68] ASHRAP P, WATKINS D J, MUKHERJEE B, et al. Predictors of urinary and blood Metal(loid) concentrations among pregnant women in Northern Puerto Rico [J]. Environmental Research, 2020, 183: 109178. doi: 10.1016/j.envres.2020.109178
    [69] WANG X, QI L, PENG Y, et al. Urinary concentrations of environmental metals and associating factors in pregnant women [J]. Environmental Science and Pollution Research, 2019, 26(13): 13464-13475. doi: 10.1007/s11356-019-04731-z
    [70] de MATOS A R, FARIA M C S, FREIRE B M, et al. Determination of 14 trace elements in blood, serum and urine after environmental disaster in the Doce River Basin: Relationship between mining waste and metal concentration in the population [J]. Journal of Trace Elements in Medicine and Biology, 2022, 70: 126920. doi: 10.1016/j.jtemb.2021.126920
    [71] EGUCHI A, YANASE K, YAMAMOTO M, et al. The relationship of maternal PCB, toxic, and essential trace element exposure levels with birth weight and head circumference in Chiba, Japan [J]. Environmental Science and Pollution Research, 2019, 26(15): 15677-15684. doi: 10.1007/s11356-019-05009-0
    [72] PARK J, KIM J, KIM E, et al. Association between prenatal cadmium exposure and cord blood DNA methylation [J]. Environmental Research, 2022, 212: 113268. doi: 10.1016/j.envres.2022.113268
    [73] DEMIR N, BAŞARANOĞLU M, HUYUT Z, et al. The relationship between mother and infant plasma trace element and heavy metal levels and the risk of neural tube defect in infants [J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2019, 32(9): 1433-1440.
    [74] DANIALI S S, YAZDI M, HEIDARI-BENI M, et al. Birth size outcomes in relation to maternal blood levels of some essential and toxic elements [J]. Biological Trace Element Research, 2023, 201(1): 4-13. doi: 10.1007/s12011-022-03121-w
    [75] BARAQUONI N A, QOUTA S R, VNSK M, et al. It takes time to unravel the ecology of war in Gaza, Palestine: Long-term changes in maternal, newborn and toddlers' heavy metal loads, and infant and toddler developmental milestones in the aftermath of the 2014 military attacks [J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6698. doi: 10.3390/ijerph17186698
    [76] LIU C Q, HUANG L L, HUANG S Z, et al. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study [J]. Environmental Research, 2022, 205: 112450. doi: 10.1016/j.envres.2021.112450
    [77] LI Z J, LIANG C M, XIA X, et al. Association between maternal and umbilical cord serum cobalt concentration during pregnancy and the risk of preterm birth: The Ma'anshan birth cohort (MABC) study [J]. Chemosphere, 2019, 218: 487-492. doi: 10.1016/j.chemosphere.2018.11.122
    [78] KANTOLA M, PURKUNEN R, KRGER P, et al. Selenium in pregnancy: Is selenium an active defective ion against environmental chemical stress? [J]. Environmental Research, 2004, 96(1): 51-61. doi: 10.1016/j.envres.2004.03.003
    [79] HAWKES W C, ALKAN Z, LANG K, et al. Plasma selenium decrease during pregnancy is associated with glucose intolerance [J]. Biological Trace Element Research, 2004, 100(1): 19-29. doi: 10.1385/BTER:100:1:019
    [80] MISTRY H D, KURLAK L O, YOUNG S D, et al. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants [J]. Maternal & Child Nutrition, 2014, 10(3): 327-334.
    [81] LI Y W, PI L, HU W L, et al. Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China [J]. Environmental Science and Pollution Research, 2016, 23(9): 9082-9092. doi: 10.1007/s11356-016-6045-2
    [82] LIN Y S, FANG F M, WU J Y, et al. Indoor and outdoor levels, sources, and health risk assessment of mercury in dusts from a coal-industry city of China [J]. Human and Ecological Risk Assessment:an International Journal, 2017, 23(5): 1028-1040. doi: 10.1080/10807039.2017.1296759
    [83] ZHONG Z J, LI Q, GUO C S, et al. Urinary heavy metals in residents from a typical city in South China: Human exposure and health risks [J]. Environmental Science and Pollution Research, 2022, 29(11): 15827-15837. doi: 10.1007/s11356-021-16954-0
  • 加载中
图( 4) 表( 6)
计量
  • 文章访问数:  2244
  • HTML全文浏览数:  2244
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-16
  • 录用日期:  2023-03-22
  • 刊出日期:  2023-07-27
李嘉璐, 蔡凤珊, 严骁, 唐斌, 李敏, 郑晶, 谢春. 孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估[J]. 环境化学, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603
引用本文: 李嘉璐, 蔡凤珊, 严骁, 唐斌, 李敏, 郑晶, 谢春. 孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估[J]. 环境化学, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603
LI Jialu, CAI Fengshan, YAN Xiao, TANG Bin, LI Min, ZHENG Jing, XIE Chun. Characteristics and health risk assessment of household dust exposure and internal exposure to trace elements during pregnancy[J]. Environmental Chemistry, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603
Citation: LI Jialu, CAI Fengshan, YAN Xiao, TANG Bin, LI Min, ZHENG Jing, XIE Chun. Characteristics and health risk assessment of household dust exposure and internal exposure to trace elements during pregnancy[J]. Environmental Chemistry, 2023, 42(7): 2304-2316. doi: 10.7524/j.issn.0254-6108.2022111603

孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估

    通讯作者: Tel:020-85559609,E-mail:zhengjing@scies.org
  • 1. 贵州医科大学公共卫生与健康学院,环境污染与疾病监控教育部重点实验室,贵阳,550025
  • 2. 生态环境部华南环境科学研究所,新污染物研究团队国家环境保护环境污染健康风险评价重点实验室,广州,510655
基金项目:
国家自然科学基金 (42007392, 42077404,4222711) 资助.

摘要: 孕妇妊娠期是胎儿生长发育的关键窗口期,期间母婴容易受到微量元素的影响。室内环境是孕期暴露微量元素的主要场所之一,同时个人生活习惯对微量元素暴露亦有重要影响。本研究采集孕妇尿液和对应的家庭灰尘,并收集孕妇生活习惯等调查问卷,分析了孕妇尿液和家庭灰尘中V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb和Pb 等11种微量元素的浓度水平,评估孕妇尿液和室内灰尘之间微量元素的相关性,探讨孕妇微量元素暴露水平的潜在影响因素,并评估室内灰尘中微量元素对孕妇的健康风险。研究发现,11种微量元素在家庭灰尘中的平均浓度介于1.95—159 μg·g−1,在孕妇尿液的平均浓度介于0.244—37.2 μg·L−1。与国内外研究报道的平均浓度相比,家庭灰尘中的有毒微量元素Cr、Ni和As含量较高,孕妇尿液中有毒微量元素主要为As和Ni,必需微量元素Se的含量偏低。相关性分析和主成分分析结果发现,家庭灰尘中Mn、Co和Mo,Se和Cd分别具有可能的相同来源;而孕妇尿液中Pb和Sb,Mo、Se、As和Co分别具有潜在相同的暴露源和途径。人口学特征的多元回归分析中,孕妇尿液必需微量元素Mn和有毒微量元素Cd、Pb的浓度增加与吸烟环境有关,在妊娠期应警惕生活环境如烟尘带来的危害。健康风险评估结果表明,家庭灰尘中必需微量元素Mn对孕妇健康可能存在低风险,孕妇尿液中必需微量元素Mo和有毒微量元素Cr、As、Pb存在低风险。根据本研究的分析结果,微量元素Mo、Mn、Cr、As和Pb对孕妇及胎儿的健康影响可能存在危害,需要考虑采取干预措施。

English Abstract

  • 微量元素分为潜在有毒化学致癌物和生物学意义的必需非化学致癌物[1],在生理功能、内稳态和酶活性中起着重要的作用。过量的必需微量元素或低剂量的有毒微量元素均会引起毒性作用,导致肾脏毒性、肝脏毒性、神经毒性甚至诱导肿瘤发生[2-4],严重危害人体健康。孕妇及胎儿等敏感人群更容易受到微量元素的影响。Mayumi等[5]发现镉(Cd)可能会导致孕妇早产,Mistry等[6]发现孕妇体内缺乏时硒(Se)和锰(Mn)可能会导致流产。已有研究表明砷(As)、Cd和铅(Pb)等有毒微量元素可通过胎盘屏障进入胚胎或胎儿体内[7] ,从而引起胚胎毒性和致畸作用。Boucher等[8]的研究表明孕期Pb暴露会对婴儿产生神经毒性,Cabrera-Rodríguez等[9]的研究发现孕期锑(Sb)和镍(Ni)暴露与新生儿出生体重呈负相关关系。必需微量元素的缺乏或过量也会对胎儿的生长发育产生不良影响[10]。Vigeh等[11]的研究发现Mn的缺乏与胎儿宫内发育迟缓有关,Ozel等[12]的研究发现孕妇孕期Mn水平较高与新生儿神经管畸形有关。

    微量元素具有持久性、生物富集和放大、不易生物降解及不可逆等特性,其可长期存在于水、土壤、灰尘和空气等环境中[13-15]。灰尘是一种重要的室内污染物赋存介质[16],是有机和无机化合物的复杂混合物[17]。人们日益关注家庭灰尘中的微量元素对人类健康的影响[18]。室内环境是人体暴露有毒有害微量元素的重要场所[19-21];尤其是孕妇和婴儿,其大部分的时间在室内度过,更容易受到微量元素影响[22]。室内灰尘进入人体的主要途径是呼吸摄入和皮肤接触,其中的微量元素存在潜在的健康风险[23],Sharma等[24]发现室内灰尘蓄积的As和Pb是人体暴露有毒微量元素的主要来源;Doyi等[19]发现室内灰尘中的铬(Cr)和Pb对儿童健康存在潜在健康风险。因此,对于人类特别是孕妇的健康,室内灰尘中微量元素的研究具有重要意义。生物监测可作为人类评估微量元素暴露水平的指标,可为公共卫生提供有效数据[25-26]。尿液是大多数化学物质的主要排泄方式,也是评估环境暴露水平的重要途径[27] ,有60%的微量元素经尿液排出体内,其余微量元素在8 h 内被自然免疫系统还原为离子态[28]。中国多个地区已经开展人体尿液中微量元素的生物监测,系统了解当地居民尿液中微量元素含量[29-30],并检测出孕妇尿液中微量元素对胎儿生长发育的影响[31-32]。室内灰尘是室内污染的长期储存“库”,可以反映孕期微量元素经灰尘这一途径的环境暴露状况,而孕妇尿液则可作为生物监测材料,反映孕期内暴露状况。相对于普通人群,孕妇和胎儿由于其特殊的生理特点,对化学物质暴露更加敏感,因此有必要监测家庭环境和母体内微量元素的暴露情况及其潜在健康风险。

    广州是具有1800万人口的沿海特大城市,是中国经济和城市化发展最快的地区。作为中国最重要的工业中心之一,主要的产业有电子通讯设备、汽车制造、石油化工等。环境中微量元素的来源主要是汽车尾气、焚化炉、工业废物和大气沉降等[33]。近年来,微量元素Cd和Pb在广州污染严重,特别是土壤中的Pb的浓度[34],邹梦遥等[35]研究发现,广东省室内灰尘中Cd和Pb的污染较为严重。环境中微量元素的增加对孕妇健康可能存在危害,因此探究广州孕妇微量元素的暴露特征。

    本研究招募孕妇志愿者,采集孕妇孕晚期尿液及其生活环境的室内灰尘,分析其必需微量元素钒(V)、Mn、钴(Co)、Se、钼(Mo),以及有毒微量元素Cr、Ni、As、Cd、Sb、Pb的浓度水平及特征,探讨微量元素与室内环境和生活习惯对孕妇微量元素之间的关联暴露的影响,评估其对孕妇的健康风险,为人群健康防护提供基础数据。

    • 2020年1月至2021年2月,在广东省广州市采集22份孕妇孕晚期尿液及其居住家庭灰尘样本,并收集了产妇年龄、产妇孕前身体质量指数(body mass index, BMI)、孕妇及其配偶教育程度、吸烟习惯及饮食信息。尿液使用聚丙烯尿液杯收集于棕色玻璃瓶中,−20℃储存;每户家庭室内地面、桌面等灰尘聚积的地方用软毛刷进行扫取收集,灰尘样本过100目不锈钢筛(150 μm孔径)后用塑料袋包裹,−20℃储存。所有参与者均签署知情同意书,本研究经中山大学附属第六医院伦理委员会批准。

    • 冷冻尿液样本置于室温下解冻,振荡混匀,用1%硝酸以1:10比例稀释尿液,振荡混匀后静置过夜,之后于45 ℃温度下超声1 h,12000 r·min−1离心取上清液,使用电感耦合等离子体质谱仪进行分析。为了质量保证和质量控制,每批尿液样本都进行平行样本、程序空白和加标回收实验,用尿比重校正浓度。各元素的回收率在78%—107%。微量元素V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb、Pb检测限(limit of detection,LOD)分别为0.003、0.024、0.001、0.409、0.005、0.021、0.043、0.014、0.002、0.002、0.026 ng·g−1,标准曲线的相关系数均大于0.999。

    • 称取0.1 g左右灰尘样品,加入6 mL王水(3:1 盐酸:硝酸),在微波消解仪中进行消解。微波消解仪升温程序为:120 ℃保持2 min;150 ℃保持5 min;185 ℃保持40 min。消解液用纯水定容至50 mL,使用电感耦合等离子体质谱仪进行分析。为了质量保证和质量控制,每批灰尘样本都准备了有证标准物质(certified reference material,CRM)和程序空白。CRM中微量元素的回收率在70%—125%。微量元素V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb、Pb的LOD分别为0.005、0.030、0.004、0.607、0.004、0.002、0.058、0.025、0.002、0.027、0.022 ng·g−1,标准曲线的相关系数均大于0.999。

    • 使用 IBM SPSS Statistics(26.0)软件进行描述性统计分析、相关性分析和多元线性回归分析。计算家庭灰尘和孕妇尿液微量元素浓度在LOD以上的中值、最小值和最大值。使用频率和百分比来描述分类变量。孕妇尿液和室内灰尘浓度经 Kolmogorov-Smirnov 正态检验后呈偏态分布,故对其进行对数转换。Pearson相关分析评估孕妇尿液和室内灰尘微量元素之间的关系。采用多元线性回归模型评估孕妇尿液微量元素水平的潜在影响因素,其中人口学特征和室内灰尘对数转换浓度作为自变量,孕妇尿液微量元素的对数转换浓度作为因变量,用后退法进行分析。统计学显著性设定为P<0.05。

    • 对于检出率大于50%的微量元素,参照美国环境保护署(US Environmental Protection Agency,US-EPA)方法进行建模评估。由于模型估计结果与每种微量元素的真实水平具有不确定性,故以95%置信区间(confidence interval,CI)作为健康风险计算的代表值。人体健康风险系数见式(1)—(3)[19]

      总风险:

      式中,HQ(hazard quotient)为非致癌性风险熵,HI(hazard index )为总风险危害指数;RfD(reference dose)为摄取途径下每日最高允许摄入的参考剂量(μg·kg−1·d−1);RfC(reference concentration)为吸入途径下每日最高允许摄入得参考剂量(μg·kg−1·d−1);CDI(chronic daily intake)为每日摄入量(mg·kg−1·d−1)。

      当HI值大于1.0时为超出可承受风险,应考虑采取干预措施。环境样品的六价铬(Cr(Ⅵ))较为复杂,因为在样品收集、储存和分析期间Cr会在三价态和六价态之间过渡,本研究中的数据为总Cr浓度。六价铬有毒且RfC的适宜因子仅适用于六价铬,为避免总铬健康风险表达过度,采用物种评价的保守比率(Cr(Ⅵ)=0.25:1)估算RfC值[36]。由于其他暴露介质、外部环境因素和样品微量元素生物利用度尚未得到评估,本文使用的建模方法对家庭灰尘中微量元素的健康风险提供了保守估计。如果健康风险超过可容忍限度,应对这些因素进行进一步调查。

    • 本研究同时对孕妇尿液内暴露进行了健康风险评估,其计算公式见式(4)—(5)[37]

      式中: DI(daily intake)为每个微量元素的日摄入量(μg·kgBW−1·d−1);UE(urinary excretion)为尿液中微量元素的浓度(μmol·L−1);UV(volume of daily urinary excretion)为24 h尿液排出量( L·d−1);MW(molecular weight)为母体微量元素的原子量;Fue(urinary rexcretion fraction for a given metabolite)表示尿液中微量元素的尿排泄分数,V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb、Pb的Fue分别为0.66、0.049、0.726、0.176、0.600、0.163、0.400、0.109、0.020、0.800、0.0363[38-42];RfD为参考剂量(μg·kg−1·d−1),参照同灰尘。

    • 本次研究的22名孕妇的基本信息见表1。孕妇的平均年龄为(31±4 )岁(周岁)。81.8%的孕妇孕前BMI在正常范围(18.5—24.5)内,81.8%的孕妇及其配偶接受过大专及以上教育,54.5%的孕妇为第一次生产。所有孕妇均不吸烟,14.3%的孕妇在孕期存在被动的烟草烟雾暴露。在妊娠期间,30.0%的孕妇饮用桶装水,所有孕妇均食用了淡水鱼及海产品,55.0%的孕妇在怀孕前补充了叶酸。

    • 11种微量元素在室内灰尘的检出率均为100%。灰尘中微量元素含量(平均值、中位值、范围浓度)由高到低排序依次是:Mn(456 μg·g−1、416 μg·g−1、131—1109 μg·g−1)> Pb(159 μg·g−1、96.3 μg·g−1、2.27—592 μg·g−1)> Ni(125 μg·g−1、99.9 μg·g−1、23.0—451 μg·g−1)> Cr(107 μg·g−1、113 μg·g−1、44.7—147 μg·g−1)> V(23.9 μg·g−1、23.0 μg·g−1、8.88—41.6 μg·g−1)> As(15.6 μg·g−1、11.1 μg·g−1、3.73—21.9 μg·g−1)> Co(9.66 μg·g−1、8.24 μg·g−1、2.78—23.3 μg·g−1)> Sb(8.78 μg·g−1、8.80 μg·g−1、2.90—19.7 μg·g−1)> Mo(5.11 μg·g−1、3.56 μg·g−1、1.75—19.7 μg·g−1)> Cd(2.21 μg·g−1、1.62 μg·g−1、0.62—7.86 μg·g−1)> Se(1.95 μg·g−1、1.70 μg·g−1、0.796—3.18 μg·g−1)。室内灰尘中微量元素含量目前还未有公认的参考值,本研究与国内外研究进行了比较,见表2

      对于必需微量元素,本研究的家庭灰尘中V浓度(23.9 μg·g−1)与国内城市[43-44](45.0—55.0 μg·g−1)相比较低,与国外城市[15](10.0—20.0 μg·g−1)浓度接近;Mn浓度(456 μg·g−1)与国内[45]和国外[15]城市(150—250 μg·g−1)相比较高,但与华东城市[43](400—500 μg·g−1)浓度一致;Co浓度(9.66 μg·g−1)高于国外城市[15](5.00—6.00 μg·g−1),与国内城市[43-44](8.00—11.0 μg·g−1)浓度相当;Se浓度(1.95 μg·g−1)与国外城市[15](1.00—2.00 μg·g−1)浓度接近;家庭灰尘中Mo浓度(5.11 μg·g−1)与国外城市[15](8.00—9.00 μg·g−1)相比较低。对于有毒微量元素,家庭灰尘中Cr浓度(107 μg·g−1)比国内南方城市[23,45-46]和沙特阿拉伯[47](25.0—85.0 μg·g−1)高,比国内北方城市[43]和亚洲国家[48-49](130—300 μg·g−1)低;Ni浓度(125 μg·g−1)与国内外城市[15,23,43-45,47,49](20.0—60.0 μg·g−1)相比较高,与伊拉克[48](100—130 μg·g−1)浓度相当;As浓度(15.6 μg·g−1)比国内南方城市[44](4.00—5.00 μg·g−1)高,与国内北方城市[43]和国外城市[15](10.0—20.0 μg·g−1)相当;Cd浓度(2.21 μg·g−1)比国外城市[15,48](10.0—15.0 μg·g−1)低,与国内南方城市[23,45-46](2.00—5.00 μg·g−1)相当;Sb浓度(8.78 μg·g−1)比国内城市[45](1.00—3.00 μg·g−1)高,比国外城市[15](30.0—40.0 μg·g−1)低;Pb浓度(159 μg·g−1)比国内农村[44,46]和加拿大[15](300—500 μg·g−1)低,与国内南方城市[23,45-46] (100—250 μg·g−1)相当。总的来说,本研究的孕妇家庭灰尘中Cr、Ni和As浓度水平较高,需要注意其对孕妇健康的危害。

      室内灰尘中微量元素之间存在相关性(图1),灰尘中Mn和Co(r=0.898)、Mo(r=0.722)、Cr(r=0.750)、Ni(r =0.559)、As(r=0.761)呈正相关关系(P<0.05)。Co和Mo(r=0.784)、Cr(r=0.714)、Ni(r=0.675)、As(r=0.768)、Sb(r=0.431)呈正相关关系(P<0.05)。Mo和Cr(r=0.521)、Ni(r=0.814)、As(r=0.791)、Sb(r=0.464)、Pb(r=0.525)呈正相关关系(P<0.05)。Cr和Ni(r=0.580)、As(r=0.736),Ni和As(r=0.696)、Sb(r=0.512)、Pb(r=0.475),Sb和Cd(r=0.436)、Pb(r=0.543)呈正相关关系(P<0.05)。主成分分析提取了4个因子,占总方差的84.3%(F1为45.5%;F2为15.9%;F3为13.9%;F4为8.98%),其中Mn、Co、Mo和As是主要变量。从图2的主成分分析载量图可以看出,家庭灰尘中Mn、Co和Mo聚集在一起,Se和Cd聚集在一起,与相关性分析的结果一致。Wang等[50]的研究表明空气中Mn和Co的强相关性可能来源于机动车自然粉尘,Gurbanov等[51]研究表明Mo存在于土壤中,所以家庭灰尘中Mn、Co和Mo可能具有共同的来源。有研究表明,Se易在土壤中富集[52],Cd在道路灰尘中是主要富集元素之一[53],家庭灰尘中Se和Cd可能共同来源于室外道路粉尘或土壤环境。

    • 孕妇尿液中,除Sb的检出率为54.6%外,其余微量元素检出率均在75%以上。尿液微量元素(平均值、中位值、浓度范围)按照平均值排列为:Mo(37.2 μg·L−1、21.1 μg·L−1、1.19—123 μg·L−1)>As(26.6 μg·L−1、11.7 μg·L−1、2.29—214 μg·L−1)>Se(16.1 μg·L−1、10.0 μg·L−1、nd. —92.6 μg·L−1) >Pb (5.81 μg·L−1、4.32 μg·L−1、1.41—325 μg·L−1)>Cr(5.63 μg·L−1、4.78 μg·L−1、nd. —13.1 μg·L−1)>Mn(2.68 μg·L−1、2.56 μg·L−1、nd. —8.10 μg·L−1)>Ni(2.64 μg·L−1、2.91 μg·L−1、nd. —8.09 μg·L−1)>Cd(0.538 μg·L−1、11.7 μg·L−1、2.29—214 μg·L−1)>Co(0.495 μg·L−1、0.310 μg·L−1、nd. —1.79 μg·L−1)>V(0.339 μg·L−1、0.218 μg·L−1、nd. —1.81 μg·L−1)>Sb(0.244 μg·L−1、0.530 μg·L−1、0.0300—1.10 μg·L−1)。本研究与国内外研究孕妇和成人的尿液微量元素浓度进行了比较(表3)。

      对于必需微量元素,本研究的孕妇尿液中V浓度(0.339 μg·g−1)比国内孕妇[54](0.900—1.00 μg·g−1)低,比国外孕妇[55](0.100—0.200 μg·g−1)高;孕妇尿液中Mn浓度(2.68 μg·g−1)比武汉成人[30]和国外孕妇[55](0.500—0.700 μg·g−1)高,与广东深圳成人[56]尿液中的浓度(2.00—10.0 μg·g−1)相当;孕妇尿液中Co浓度(0.495 μg·g−1)与国外[57-58](0.300—0.800 μg·g−1)一致;孕妇尿液中Se浓度(16.1 μg·g−1)低于国内外孕妇和成人[30,55-56,59]浓度(30.0—110 μg·g−1),与西班牙孕妇[57]尿液浓度(10.0—20.0 μg·g−1)相当;Mo浓度(37.2 μg·g−1)与国外孕妇和成人[57-58]尿液浓度(30—40 μg·g−1)相当。整体来看,本研究的孕妇尿液中Se水平较低,早产与Se水平低有很强的关系[61],需要注意在妊娠期间Se的补充。

      对于有毒微量元素,本研究的孕妇尿液中Cr浓度(5.63 μg·g−1)比武汉孕妇和成人[54-55](0.200—1.50 μg·g−1)高,但与广东深圳成人[56](4.00—6.00 μg·g−1)相当;孕妇尿液中Ni浓度(2.64 μg·g−1)略高于孕妇[55,57](0.500—1.50 μg·g−1)尿液浓度,低于成人[60](5.00—6.00 μg·g−1);孕妇尿液中As浓度(26.6 μg·g−1)略高于国内外孕妇和成人[54-55,58](5.00—20.0 μg·g−1);孕妇尿液中Cd浓度(0.538 μg·g−1)与国内外浓度[30,54-58,60](0.100—1.50 μg·g−1)一致;孕妇尿液中Sb浓度(0.244 μg·g−1)比美国成人[58](0—0.100 μg·g−1)高,与西班牙孕妇[57](0.100—0.500 μg·g−1)相当;孕妇尿液中Pb浓度(5.24 μg·g−1)与广东深圳浓度[56](3.00—6.00 μg·g−1)一致。本研究的孕妇尿液As和Ni浓度较高,且其家庭灰尘中As和Ni浓度水平较高,提示在妊娠期间需要注意家庭灰尘中有毒微量元素As和Ni对孕妇和胎儿的危害。

      孕妇尿液中微量元素之间存在相关性(图3),孕妇尿液中Se和Co(r=0.481)、Mo(r=0.472)、As(r=0.631)、Cd(r=0.546)呈正相关关系(P<0.05);Co和Ni(r=0.676)呈正相关关系(P<0.05)。这与Maxime等[62]研究中Co和Ni的相关性一致,Zhao 等[63]也发现尿液中Co和Ni、Cd和Se之间存在显著相关性。孕妇尿液中Mo和As(r=0.646,P<0.05)呈正相关关系。Pb和Cd(r=0.475)、Sb(r=0.647)呈正相关关系(P<0.05),有研究表明Pb和Cd之间具有免疫抑制的协同效应[64]。主成分分析提取了4个因子,占总方差的76.5%(F1为27.4%;F2为23.7%;F3为15.6%;F4为9.73%),其中Pb、Sb、Mo和Ni是主要变量。从图4孕妇尿液主成分分析载量图可以看出,孕妇尿液中Pb和Sb聚集在一起,Mo、Se、As和Co聚集在一起,与相关分析结果一致。近年来,Pb和Sb广泛应用和大规模开采,导致其在水和土壤中的污染日益严重[65-66],Pb和Sb可能经口进入体内。有研究表明Mo、Se、As和Co主要来源与饮食有关[57,67-69]。所以孕妇尿液中Pb和Sb,Mo、Se、As和Co可能具有相同的来源或代谢过程。该结果与家庭灰尘的结果不尽相同,表明孕妇尿液中微量元素的影响因素不只是家庭灰尘,还需要进一步分析其他影响因素,如饮水和食物等途径。

    • 根据环境因素和饮食习惯的调查问卷,使用多元线性回归研究其对孕妇尿液微量元素浓度的潜在影响。每种微量元素的最终回归模型的结果如表4。结果显示,显著影响孕妇尿液微量元素浓度的因素是有限的;室内灰尘中Cd的浓度是孕妇尿液Cd浓度(β=−0.870,P<0.01)的重要预测因素。孕妇尿液Mn(β=0.848,P=0.001)、Cd(β=1.24,P=0.001)和Pb(β=1.51,P<0.01)浓度增加,Co(β=−0.594,P<0.01)和Mo(β=1.94,P=0.004)浓度减少,均与被动吸烟有关。Isley等[36]的研究发现尿液中较高浓度的Mn和Pb可能与室内吸烟有关;De 等[70]发现吸烟可使尿液中Cd含量增加;Manuel等[57]研究发现Co含量降低与怀孕期间被动吸烟有关。有毒微量元素会对孕妇和胎儿造成不良影响。Eguchi等[71]发现孕妇体内Mn的浓度水平与新生儿的出生头围呈负相关。Cd是Ⅰ类人类致癌物,妊娠期暴露Cd会影响胎儿的生长和器官发育[72]。高浓度的Pb会引起神经管缺陷[73],Daniali等[74]发现孕妇体内Pb浓度水平与新生儿出生体重呈负相关。因此在妊娠期应警惕生活环境如烟尘带来的危害。

      同时,孕妇尿液中Co(β=0.698,P=0.020)的浓度增加,尿Mo(β=−0.786,P=0.024)的浓度减少,与频繁食用海产品有关;经产妇的尿Mo浓度比初产妇高(β=0.574,P=0.012)。Baraquoni等[75]发现新生儿Mo浓度高与发育迟缓有关,Chaoqun等[76]发现妊娠期间暴露Mo与胎儿神经发育有关。孕妇体内Se(β=0.552,P=0.012)和Co(β=0.909,P<0.01)的浓度增加与早期补充叶酸有关;孕妇尿液中Co与教育程度呈正相关(β=−0.962,P=0.003)。Co在体内是必需微量元素之一,Zhi等[77]研究表明孕妇体内Co水平较低可能会引发早产。Se在妊娠期对机体起到保护作用[78],Hawkes等[79]发现孕妇Se的水平过低会导致妊娠糖尿病,Se的浓度过低会增加胎儿过小的风险[80];Wang 等[69]的研究显示尿Mn浓度与孕期补充叶酸显著相关,本研究未发现此结果,但是尿Se浓度增加这一结果与本研究一致。本研究结果提示可以通过食用海产品补充孕妇体内Co的含量,尽早补充叶酸增加孕妇体内Se的含量。

    • 表5列出了孕妇微量元素暴露的健康风险评估;家庭灰尘Mn、Mo、Cr、As和Pb的总风险分别为(4.07±1.94)、(1.59×10−3±1.25×10−3)、(5.61×10−3±4.80×10−3)、(4.77×10−1±4.73×10−1)和(4.00×10−2±3.83×10−2). 本研究家庭灰尘Mn的总风险较高,其中主要为吸入暴露贡献。然而,以往研究普遍发现吸入微量元素对人体的健康风险较低[23,81-82]。建议孕妇妊娠期需要注意及时打扫室内卫生,防止灰尘堆积。由于本研究样本量较少,且室内灰尘健康风险评价的准确性受到其他因素的影响,如灰尘粒径大小、采样时的环境、居住地周围环境等未收集分析,所以对于室内灰尘的健康风险评估还需要进一步开展深入研究。

      针对孕妇尿液的健康风险评估中显示Mo、Cr、As、Pb处于潜在风险(HQ>1),Cd和Sb分别有3人和1人HQ>1,Zhong等[83]研究也表明广州居民尿液中As具有潜在风险。孕妇尿液种Cr和Pb水平相对较高,且家庭灰尘Cr和Pb水平也较高,说明家庭灰尘可能会影响孕妇尿液Cr和Pb的浓度水平。在家庭灰尘中Mn的HQ>1,而孕妇尿液中Mn的HQ<1,说明家庭灰尘可能不是影响孕妇体内Mn含量的主要因素。Mo、Cr、As、Pb在家庭灰尘中HQ<1,而在孕妇尿液中HQ>1,这说明灰尘摄入可能并非Mo、Cr、As和Pb进入孕妇体内的主要途径。

    • 本研究检测了孕妇尿液及家庭灰尘中必需微量元素(V、Mn、Co、Se和Mo)和有毒微量元素(Cr、Ni、As、Cd、Sb和Pb)的浓度水平,家庭灰尘中的Cr、Ni和As含量较高;孕妇尿液中As和Ni的含量较高,Se的含量偏低。在吸烟环境会使孕妇尿液中Mn、Cd和Pb的浓度增加,建议在妊娠期避免在室内抽烟。本研究健康风险评估家庭灰尘中Mn的HQ>1,孕妇尿液中Mo、Cr、As和Pb的HQ>1,虽然本研究没有观察到早产、自然流产和畸形等严重的临床影响,但是根据本研究的分析,这些微量元素对孕妇及胎儿的健康影响可能存在危害,还要考虑采取干预措施。由于本研究的样本量较少,还需要进一步进行调查研究,以便更好地阐明微量元素对孕妇和胎儿的影响。

    参考文献 (83)

返回顶部

目录

/

返回文章
返回