-
微量元素分为潜在有毒化学致癌物和生物学意义的必需非化学致癌物[1],在生理功能、内稳态和酶活性中起着重要的作用。过量的必需微量元素或低剂量的有毒微量元素均会引起毒性作用,导致肾脏毒性、肝脏毒性、神经毒性甚至诱导肿瘤发生[2-4],严重危害人体健康。孕妇及胎儿等敏感人群更容易受到微量元素的影响。Mayumi等[5]发现镉(Cd)可能会导致孕妇早产,Mistry等[6]发现孕妇体内缺乏时硒(Se)和锰(Mn)可能会导致流产。已有研究表明砷(As)、Cd和铅(Pb)等有毒微量元素可通过胎盘屏障进入胚胎或胎儿体内[7] ,从而引起胚胎毒性和致畸作用。Boucher等[8]的研究表明孕期Pb暴露会对婴儿产生神经毒性,Cabrera-Rodríguez等[9]的研究发现孕期锑(Sb)和镍(Ni)暴露与新生儿出生体重呈负相关关系。必需微量元素的缺乏或过量也会对胎儿的生长发育产生不良影响[10]。Vigeh等[11]的研究发现Mn的缺乏与胎儿宫内发育迟缓有关,Ozel等[12]的研究发现孕妇孕期Mn水平较高与新生儿神经管畸形有关。
微量元素具有持久性、生物富集和放大、不易生物降解及不可逆等特性,其可长期存在于水、土壤、灰尘和空气等环境中[13-15]。灰尘是一种重要的室内污染物赋存介质[16],是有机和无机化合物的复杂混合物[17]。人们日益关注家庭灰尘中的微量元素对人类健康的影响[18]。室内环境是人体暴露有毒有害微量元素的重要场所[19-21];尤其是孕妇和婴儿,其大部分的时间在室内度过,更容易受到微量元素影响[22]。室内灰尘进入人体的主要途径是呼吸摄入和皮肤接触,其中的微量元素存在潜在的健康风险[23],Sharma等[24]发现室内灰尘蓄积的As和Pb是人体暴露有毒微量元素的主要来源;Doyi等[19]发现室内灰尘中的铬(Cr)和Pb对儿童健康存在潜在健康风险。因此,对于人类特别是孕妇的健康,室内灰尘中微量元素的研究具有重要意义。生物监测可作为人类评估微量元素暴露水平的指标,可为公共卫生提供有效数据[25-26]。尿液是大多数化学物质的主要排泄方式,也是评估环境暴露水平的重要途径[27] ,有60%的微量元素经尿液排出体内,其余微量元素在8 h 内被自然免疫系统还原为离子态[28]。中国多个地区已经开展人体尿液中微量元素的生物监测,系统了解当地居民尿液中微量元素含量[29-30],并检测出孕妇尿液中微量元素对胎儿生长发育的影响[31-32]。室内灰尘是室内污染的长期储存“库”,可以反映孕期微量元素经灰尘这一途径的环境暴露状况,而孕妇尿液则可作为生物监测材料,反映孕期内暴露状况。相对于普通人群,孕妇和胎儿由于其特殊的生理特点,对化学物质暴露更加敏感,因此有必要监测家庭环境和母体内微量元素的暴露情况及其潜在健康风险。
广州是具有1800万人口的沿海特大城市,是中国经济和城市化发展最快的地区。作为中国最重要的工业中心之一,主要的产业有电子通讯设备、汽车制造、石油化工等。环境中微量元素的来源主要是汽车尾气、焚化炉、工业废物和大气沉降等[33]。近年来,微量元素Cd和Pb在广州污染严重,特别是土壤中的Pb的浓度[34],邹梦遥等[35]研究发现,广东省室内灰尘中Cd和Pb的污染较为严重。环境中微量元素的增加对孕妇健康可能存在危害,因此探究广州孕妇微量元素的暴露特征。
本研究招募孕妇志愿者,采集孕妇孕晚期尿液及其生活环境的室内灰尘,分析其必需微量元素钒(V)、Mn、钴(Co)、Se、钼(Mo),以及有毒微量元素Cr、Ni、As、Cd、Sb、Pb的浓度水平及特征,探讨微量元素与室内环境和生活习惯对孕妇微量元素之间的关联暴露的影响,评估其对孕妇的健康风险,为人群健康防护提供基础数据。
孕期微量元素家庭灰尘暴露和内暴露特征及健康风险评估
Characteristics and health risk assessment of household dust exposure and internal exposure to trace elements during pregnancy
-
摘要: 孕妇妊娠期是胎儿生长发育的关键窗口期,期间母婴容易受到微量元素的影响。室内环境是孕期暴露微量元素的主要场所之一,同时个人生活习惯对微量元素暴露亦有重要影响。本研究采集孕妇尿液和对应的家庭灰尘,并收集孕妇生活习惯等调查问卷,分析了孕妇尿液和家庭灰尘中V、Mn、Co、Se、Mo、Cr、Ni、As、Cd、Sb和Pb 等11种微量元素的浓度水平,评估孕妇尿液和室内灰尘之间微量元素的相关性,探讨孕妇微量元素暴露水平的潜在影响因素,并评估室内灰尘中微量元素对孕妇的健康风险。研究发现,11种微量元素在家庭灰尘中的平均浓度介于1.95—159 μg·g−1,在孕妇尿液的平均浓度介于0.244—37.2 μg·L−1。与国内外研究报道的平均浓度相比,家庭灰尘中的有毒微量元素Cr、Ni和As含量较高,孕妇尿液中有毒微量元素主要为As和Ni,必需微量元素Se的含量偏低。相关性分析和主成分分析结果发现,家庭灰尘中Mn、Co和Mo,Se和Cd分别具有可能的相同来源;而孕妇尿液中Pb和Sb,Mo、Se、As和Co分别具有潜在相同的暴露源和途径。人口学特征的多元回归分析中,孕妇尿液必需微量元素Mn和有毒微量元素Cd、Pb的浓度增加与吸烟环境有关,在妊娠期应警惕生活环境如烟尘带来的危害。健康风险评估结果表明,家庭灰尘中必需微量元素Mn对孕妇健康可能存在低风险,孕妇尿液中必需微量元素Mo和有毒微量元素Cr、As、Pb存在低风险。根据本研究的分析结果,微量元素Mo、Mn、Cr、As和Pb对孕妇及胎儿的健康影响可能存在危害,需要考虑采取干预措施。Abstract: Pregnancy period is a critical time window for fetal growth and development, during which the pregnant woman and fetus are vulnerable populations to exposure to trace elements. Indoor environment is one of the main places where maternal and infant exposure to trace elements, and living habits had significant effects on the exposure levels. In this study, pregnant women's urine and corresponding household indoor dust were collected, and pregnant women's living habits were collected by questionnaires. The levels of 11 trace elements (V, Mn, Co, Se, Mo, Cr, Ni, As, Cd, Sb, and Pb) in urine and household indoor dust were determined by inductively coupled plasma mass spectrometer. Pearson correlation analysis and principal component analysis were applied to evaluate the correlation of trace elements in pregnant women’s urine and those in indoor dust. Multiple linear regression model was applied to evaluate the potential influencing factors of trace element exposure in pregnant women. Besides, the health risks for pregnant women exposure to trace elements in indoor dust were assessed. The average concentrations of 11 trace element individuals ranged from 1.95 μg·g−1 to 159 μg·g−1 in household dust, and 0.244 μg·L−1 to 37.2 μg·L−1 in the urine of pregnant women, respectively. Compared with the average concentration in domestic and foreign studies, relative high levels of toxic trace elements like Cr, Ni, and As were observed in indoor dust. As and Ni were the primary toxic trace elements in urine of pregnant women, whilst the levels of essential trace element Se were relatively low. The results of correlation analysis and principal component analysis showed that Mn, Co and Mo, Se and Cd in household dust may have the same source, respectively. Pb and Sb, and Mo, Se, As and Co in urine of pregnant women may have the same exposure sources and pathways respectively. Multiple regression analysis of demographic characteristics showed that the increase of essential trace elements Mn and toxic trace elements Cd and Pb in urine of pregnant women was associated with smoking environment. The results of health risk assessment showed that the levels of essential trace elements Mo and toxic trace elements Cr, As and Pb in the urine of pregnant women suggested a low risk, and essential trace element Mn in household dust may pose a low risk to the health of pregnant women. According to the analysis results of this study, trace elements Mo, Mn, Cr, As and Pb may have harmful effects on the health of pregnant women and fetuses, and intervention measures should be considered.
-
Key words:
- Trace elements /
- pregnant woman /
- urine /
- household dust /
- exposure characteristics
-
表 1 孕妇基本信息(n=22)
Table 1. Basic information for pregnant women(n=22)
年龄(周岁) 孕前BMI 产次 教育程度 配偶教育程度 ≤30 >30 平均 <18.5 ≥18.5 平均 初产妇 经产妇 大专以下 大专及以上 大专以下 大专及以上 28±2 34±3 31±4 16.7±0.384 21.6±1.95 20.7±2.60 54.5% 45.5% 18.2% 81.8% 18.2% 81.8% 被动吸烟 饮用桶装水 食用淡水鱼 食用海产品 补充叶酸 是 否 是 否 每周1—3次 每周4—6次 每周1—3次 每周4—6次 怀孕前 怀孕后 14.3% 85.7% 30.0% 70.0% 95.0% 5.0% 20.0% 80.0% 55.0% 45.0% 表 2 国内外不同城市家庭灰尘微量元素浓度比较(μg·g−1)
Table 2. Comparison of trace element concentration in household dust of different cities at home and abroad (μg·g−1)
省/市
Province/city采样年份
Sampling date样本量
Sample number钒
V锰
Mn钴
Co硒
Se钼
Mo铬
Cr镍
Ni砷
As镉
Cd锑
Sb铅
Pb文献
Reference广州 2020—2021 22 23.9 457 9.66 1.95 5.11 107 125 15.6 2.21 8.78 159 本研究 广东省清远市 2013—2014 78 — — — — — 41.6 — — 2.45 — 214 [46] 广东省清远农村 2013—2014 78 — — — — — 29.4 — — 4.18 — 392 [46] 山西省太原市 2019 72 48.8 444 8.19 — — 134 40.5 17.4 0.560 — 50.3 [43] 四川省成都市 2014—2015 90 — — — — — 82.7 52.6 — 2.37 — 123 [23] 安徽省合肥市 2018 41 18.0 177 — — — 29.5 26.1 — 4.39 2.00 95.4 [45] 安徽省农村 2010 125 52.6 — 10.3 — — 114 38.9 4.46 — — 349 [44] 加拿大 2016 125 15.0 250 5.40 1.60 8.30 92.0 60.0 13.0 11.0 36.0 450 [15] 伊拉克 2020 50 — — — — — 289.5 106 — 14.8 — 75.6 [48] 沙特阿拉伯 2016 20 — — — — — 46.7 32.2 — 0.540 — — [47] 伊朗 2016 19 — — — — — 143 57.1 — 5.31 — 209 [49] 注:—表示无数据。表格中数据为国内外不同城市家庭灰尘微量元素平均值.
— Indicates no data. The data in the table are the average values of trace elements in household dust in different cities at home and abroad.表 3 国内外不同城市居民尿液微量元素浓度比较(μg·L−1)
Table 3. Comparison of urinary trace elements concentrations of residents in different cities at home and abroad (μg·L−1)
省/市
Province/city人口类别
Population category采样年份
Sampling date样本量
Sample number钒
V锰
Mn钴
Co硒
Se钼
Mo铬
Cr镍
Ni砷
As镉
Cd锑
Sb铅
Pb文献
Reference广州 孕妇 2020—2021 22 0.339 2.68 0.495 16.1 37.2 5.63 2.64 26.6 0.538 0.244 5.24 本研究 中国武汉 孕妇 2014—2016 675 0.960 — — — — 1.12 — 20.0 0.630 — 2.54 [54] 中国武汉 成人 2014—2016 226 — 0.530 — 34.0 — 0.240 — 40.9 1.09 — 0.920 [30] 广东深圳 成人 2016—2017 334 — 5.80 — 30.1 — 4.46 — 48.8 1.47 — 4.69 [56] 西班牙 孕妇 2004—2008 1346 — — 0.520 17.1 38.8 — 1.27 34.4 0.230 0.350 1.14 [57] 加拿大 孕妇 2016 29 0.170 0.630 0.630 58.2 — 0.130 0.960 7.40 0.120 — 0.160 [55] 马来西亚 成人 2017—2018 817 — — — — — — 5.73 82.3 0.470 — 1.53 [60] 美国 成人 2003—2014 9537 — — 0.340 — 38.6 — — 8.85 0.240 0.06 0.50 [58] 伊朗 成人 2014 33 — — — 102 — — — — — — 16.7 [59] 注:—表示无数据。表格中数据为国内外不同城市居民尿液微量元素平均值.
— Indicates no data. The data in the table are the average values of urine trace elements of residents in different cities at home and abroad.表 4 尿液微量元素浓度影响因素的多元线性回归模型结果
Table 4. Multivariate linear regression model results of factors influencing urinary trace element concentration
微量元素
Trace elements影响因素
Influence factor标准化系数
Standardized Coefficients95%置信区间95%
Confidence intervalR2 调整R2
Adjust R2Beta Sig 下界
Lower bound上界
Upper boundMn 常量 — 0.050 −3.64 0.004 0.566 0.499 被动吸烟(是) 0.848 0.001 0.912 2.93 — — Co 常量 — 0.302 −1.17 3.44 0.757 0.669 教育程度(大专以下) −0.962 0.003 −4.06 −1.05 — — 被动吸烟(是) −0.594 0.005 3.05 −0.672 — — 食用海产品
(4—6次/周)0.698 0.020 0.425 3.95 — — Se 补充叶酸(怀孕前) 0.909 0.000 1.08 2.69 — — 常量 — 0.023 −2.47 −0.212 0.500 0.428 补充叶酸(怀孕前) 0.552 0.012 0.245 1.68 — — Mo 常量 — 0.183 −1.22 5.78 0.558 0.422 产次(经产妇) 0.574 0.012 0.307 2.04 — — 配偶教育程度
(大专及以上)1.94 0.004 1.84 7.66 — — 被动吸烟(是) −1.54 0.004 −6.79 −1.63 — — 食用海产品
(4—6次/周)−0.786 0.024 −4.69 −0.396 — — Ni 常量 — 0.002 2.02 6.42 0.842 0.771 饮用桶装水(是) −0.373 0.032 −1.55 −0.086 — — Cd 常量 — 0.638 −2.19 1.40 0.785 0.695 Cd(灰尘) −0.870 0.000 −1.33 −0.600 — — 被动吸烟(是) 1.24 0.001 1.72 5.04 — — Pb 常量 — 0.214 −2.28 0.554 0.744 0.709 被动吸烟(是) 1.51 0.000 2.72 5.48 — — 注:—表示无数据。— Indicates no data. 表 5 健康风险评估
Table 5. Health risk assessment
微量元素
Trace
elementRfD/
(μg·kg−1·d−1)RfC/
(μg·kg−1·d−1)家庭灰尘 均值±标准差(范围)
Household dust Mean ± Standard deviation(range)孕妇尿液 均值±标准差(范围)
Pregnant women urine Mean ± Standard deviation(range)HQ摄取
HQ ingestionHQ吸入
HQ inhalationHI DI/
(μg·kg-1BW·d−1)HQ V 5.04 0.1 (2.16×10−3±9.39×10−4)
(7.55×10−4—4.01×10−3)(1.09×10−1±4.73×10−2)
(3.81×10−2—2.02×10−1)(1.11×10−1±
4.83×10−2)0.0470±0.0563
(nd.—0.252)0.00933±0.0112
(nd.—0.0500)Mn 140 0.05 (1.45×10−3±6.92×10−4)
(5.63×10−4—3.55×10−3)4.07±1.94
(1.58—9.94)4.07±1.94 5.40±4.73
(nd.—16.3)0.0386±0.0338
(nd.—0.117)Co 0.3 0.006 (1.42×10−2±6.42×10−3)
(5.56×10−3—3.47×10−2)(7.11×10−1±3.21×10−1)
(2.78×10−1—1.74)(7.26×10−1±
3.28×10−1)0.0695±0.0726
(nd.—0.262)0.232±0.242
(nd.—0.872)Se 5 20 (1.78×10−4±6.83×10−5)
(7.35×10−5—3.24×10−4)(4.42×10−5±1.71×10−5 )
(1.71×10−5—8.10×10−5)(2.21×10−4±
8.54×10−5)1.01±0.854
(nd.—28.0)0.261±0.317
(nd.—15.0)Mo 5 2 (4.53×10−4±3.57×10−4)
(1.62×10−4—1.77×10−3)(1.13×10−3±8.93×10−4)
(4.04×10−4—4.42×10−3)(1.59×10−3±
1.25×10−3)10.7±9.51
(0.343—35.4)2.14±1.90
(0.0685—7.07)Cr 3 0.1 (1.81×10−4±1.55×10−4)
(5.74×10−5—5.84×10−4)(5.43×10−3±4.65×10−3)
(1.72×10−3—1.75×10−2)(5.61×10−3±
4.80×10−3)3.23±2.64
(nd.—7.50)1.08±0.881
(nd.—2.50)Ni 20 0.09 (2.75×10−3±1.96×10−3 )
(6.89×10−4—9.09×10−3)(6.11×10−1±4.35×10−1)
(1.53×10−1—2.02)(6.14×10−1±
4.37×10−1)0.698±0.502
(nd.—2.14)0.0349±0.021
(nd.—0.107)As 0.3 0.015 (2.27×10−2±2.25×10−2)
(7.46×10−3—1.10×10−1)(4.55×10−1±4.51×10−1)
(1.49×10−1—2.20)(4.77×10−1±
4.73×10−1)18.4±14.3
(2.83—52.6)44.5±27.1
(9.43—102)Cd 0.1 0.01 (9.63×10−3±7.48×10−3)
(3.56×10−3—3.32×10−2)(9.63×10−2±7.48×10−2)
(3.56×10−2—3.32×10−1)(1.06×10−1±
8.22×10−2)5.44±3.31
(0.303—11.1)0.544±0.331
(0.0303—1.11)Sb 0.4 0.3 (9.77×10−3±4.63×10−3)
(2.86×10−3—2.08×10−2)(1.30×10−2±6.18×10−3)
(3.82×10−3—2.78×10−2)(2.28×10−2±
1.08×10−2)0.0668±0.225
(nd.—1.09)0.167±0.561
(nd.—2.72)Pb 3.5 3.52 (2.01×10−2±1.92×10−2)
(2.67×10−4—7.15×10−2)(2.00×10−2±1.91×10−2)
(2.65×10−4—7.10×10−2)(4.00×10−2±
3.83×10−2)46.0±18.3
(14.5—83.5)13.2±7.50
(4.14—23.9)注:nd.,未检出。nd.,not detected. -
[1] 杨雅茹, 钟瑶, 李帅东, 等. 水产品中重金属对人体的危害研究进展 [J]. 农业技术与装备, 2020(10): 55-56. doi: 10.3969/j.issn.1673-887X.2020.10.025 YANG Y R, ZHONG Y, LI S D, et al. Research progress on the harm of heavy metals to human body in aquatic products [J]. Agricultural Technology & Equipment, 2020(10): 55-56(in Chinese). doi: 10.3969/j.issn.1673-887X.2020.10.025
[2] MAROUF B H. Association between serum heavy metals level and cancer incidence in darbandikhan and Kalar Area, Kurdistan Region, Iraq [J]. Nigerian Journal of Clinical Practice, 2018, 21(6): 766-771. doi: 10.4103/njcp.njcp_384_16 [3] ROMANIUK А, LYNDIN M, SIKORA V, et al. Heavy metals effect on breast cancer progression [J]. Journal of Occupational Medicine and Toxicology, 2017, 12: 32. doi: 10.1186/s12995-017-0178-1 [4] CICERO C E, MOSTILE G, VASTA R, et al. Metals and neurodegenerative diseases. A systematic review [J]. Environmental Research, 2017, 159: 82-94. doi: 10.1016/j.envres.2017.07.048 [5] TSUJI M, SHIBATA E, MOROKUMA S, et al. The association between whole blood concentrations of heavy metals in pregnant women and premature births: The Japan Environment and Children’s Study (JECS) [J]. Environmental Research, 2018, 166: 562-569. doi: 10.1016/j.envres.2018.06.025 [6] MISTRY H D, WILLIAMS P J. The importance of antioxidant micronutrients in pregnancy [J]. Oxidative Medicine and Cellular Longevity, 2011, 2011: 841749. [7] BOCCA B, RUGGIERI F, PINO A, et al. Human biomonitoring to evaluate exposure to toxic and essential trace elements during pregnancy. Part A. concentrations in maternal blood, urine and cord blood [J]. Environmental Research, 2019, 177: 108599. doi: 10.1016/j.envres.2019.108599 [8] BOUCHER O, MUCKLE G, JACOBSON J L, et al. Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: Results from the Environmental Contaminants and Child Development Study in Nunavik [J]. Environmental Health Perspectives, 2014, 122(3): 310-316. doi: 10.1289/ehp.1206323 [9] CABRERA-RODRGUEZ R, LUZARDO O P, GONZLEZ-ANTUA A, et al. Occurrence of 44 elements in human cord blood and their association with growth indicators in newborns [J]. Environment International, 2018, 116: 43-51. doi: 10.1016/j.envint.2018.03.048 [10] BANK-NIELSEN P I, LONG M H, BONEFELD-JRGENSEN E C. Pregnant Inuit women’s exposure to metals and association with fetal growth outcomes: ACCEPT 2010—2015 [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1171. doi: 10.3390/ijerph16071171 [11] VIGEH M, YOKOYAMA K, RAMEZANZADEH F, et al. Blood Manganese concentrations and intrauterine growth restriction [J]. Reproductive Toxicology, 2008, 25(2): 219-223. doi: 10.1016/j.reprotox.2007.11.011 [12] ÖZEL Ş, OZYER S, AYKUT O, et al. Maternal second trimester blood levels of selected heavy metals in pregnancies complicated with neural tube defects[J]. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 2019, 32(15): 2547-2553. [13] CUI Y B, BAI L, LI C H, et al. Assessment of heavy metal contamination levels and health risks in environmental media in the northeast region [J]. Sustainable Cities and Society, 2022, 80: 103796. doi: 10.1016/j.scs.2022.103796 [14] GUPTA S, GRAHAM D W, SREEKRISHNAN T R, et al. Heavy metal and antibiotic resistance in four Indian and UK rivers with different levels and types of water pollution [J]. Science of the Total Environment, 2023, 857: 159059. doi: 10.1016/j.scitotenv.2022.159059 [15] DINGLE J H, KOHL L, KHAN N, et al. Sources and composition of metals in indoor house dust in a mid-size Canadian city [J]. Environmental Pollution, 2021, 289: 117867. doi: 10.1016/j.envpol.2021.117867 [16] 万千, 赵静, 韦旭, 等. 电子废弃物拆解车间灰尘中重金属污染特征及职业人群健康风险评价 [J]. 环境化学, 2022, 41(3): 883-892. doi: 10.7524/j.issn.0254-6108.2020110901 WAN Q, ZHAO J, WEI X, et al. Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population [J]. Environmental Chemistry, 2022, 41(3): 883-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110901
[17] BARRIO-PARRA F, de MIGUEL E, LZARO-NAVAS S, et al. Indoor dust metal loadings: A human health risk assessment [J]. Exposure and Health, 2018, 10(1): 41-50. doi: 10.1007/s12403-017-0244-z [18] OLUJIMI O, STEINER O, GOESSLER W. Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria [J]. Journal of African Earth Sciences, 2015, 101: 396-404. doi: 10.1016/j.jafrearsci.2014.10.007 [19] DOYI I N Y, ISLEY C F, SOLTANI N S, et al. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes[J]. Environment International, 2019, 133(Pt A): 105125. [20] NWANAJI-ENWEREM J C, ALLEN J G, BEAMER P I. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy [J]. Journal of Exposure Science & Environmental Epidemiology, 2020, 30(5): 773-775. [21] 张舒婷, 李晓燕. 城市室内灰尘重金属的水平及来源 [J]. 环境化学, 2014, 33(7): 1201-1207. doi: 10.7524/j.issn.0254-6108.2014.07.024 ZHANG S T, LI X Y. Concentrations and sources of heavy metals in indoor dust of cities [J]. Environmental Chemistry, 2014, 33(7): 1201-1207(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.024
[22] HU J, WU C S, ZHENG T Z, et al. Critical windows for associations between Manganese exposure during pregnancy and size at birth: A longitudinal cohort study in Wuhan, China [J]. Environmental Health Perspectives, 2018, 126(12): 127006. doi: 10.1289/EHP3423 [23] CHENG Z, CHEN L J, LI H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China [J]. Science of the Total Environment, 2018, 619/620: 621-629. doi: 10.1016/j.scitotenv.2017.11.144 [24] SHARMA B, HANDIQUE S, JYETHI D S. Elemental composition of rural household dust in Brahmaputra fluvial plain: Insights from SEM-EDS, receptor model, and risk assessment[J]. Environmental Geochemistry and Health, 2022: 1-14. [25] ZHANG X, CUI X Y, LIN C Y, et al. Reference levels and relationships of nine elements in first-spot morning urine and 24-h urine from 210 Chinese children [J]. International Journal of Hygiene and Environmental Health, 2017, 220(2): 227-234. doi: 10.1016/j.ijheh.2016.10.013 [26] CUI Y J, ZHONG Q, HU M J, et al. Human biomonitoring of eight trace elements in urine of residents living in rural areas along the Yangtze River, China [J]. Environmental Science and Pollution Research, 2017, 24(36): 27963-27973. doi: 10.1007/s11356-017-0414-3 [27] dos SANTOS M, FLORES SOARES M C, MARTINS BAISCH P R, et al. Biomonitoring of trace elements in urine samples of children from a coal-mining region [J]. Chemosphere, 2018, 197: 622-626. doi: 10.1016/j.chemosphere.2018.01.082 [28] JUNAID M, HASHMI M Z, MALIK R N, et al. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review [J]. Environmental Science and Pollution Research, 2016, 23(20): 20151-20167. doi: 10.1007/s11356-016-7463-x [29] SHI H Z, WANG J J, YUAN J, et al. Biomonitoring human urinary levels of 26 metal elements in multi-race coexistence region of Xinjiang, China [J]. Science of the Total Environment, 2020, 711: 134752. doi: 10.1016/j.scitotenv.2019.134752 [30] ZENG H L, LIU C W B, LU J, et al. Analysis of urinary trace element levels in general population of Wuhan in central China [J]. Environmental Science and Pollution Research, 2019, 26(27): 27823-27831. doi: 10.1007/s11356-019-05973-7 [31] SUN X J, JIANG Y Q, XIA W, et al. Association between prenatal nickel exposure and preterm low birth weight: Possible effect of selenium [J]. Environmental Science and Pollution Research, 2018, 25(26): 25888-25895. doi: 10.1007/s11356-018-2622-x [32] WAI K M, UMEZAKI M, KOSAKA S, et al. Impact of prenatal heavy metal exposure on newborn leucocyte telomere length: A birth-cohort study [J]. Environmental Pollution, 2018, 243: 1414-1421. doi: 10.1016/j.envpol.2018.09.090 [33] AWASTHI A K, WANG M M, AWASTHI M K, et al. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review [J]. Environmental Pollution, 2018, 243: 1310-1316. doi: 10.1016/j.envpol.2018.08.037 [34] GU Y G, GAO Y P, LIN Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in Southern China’s largest city, Guangzhou [J]. Applied Geochemistry, 2016, 67: 52-58. doi: 10.1016/j.apgeochem.2016.02.004 [35] 邹梦遥, 周遗品, 邓金川, 等. 某铅锌矿周边地区室内灰尘中重金属的生态风险评价 [J]. 安徽农学通报, 2015, 21(16): 83-87. doi: 10.3969/j.issn.1007-7731.2015.16.041 ZOU M Y, ZHOU Y P, DENG J C, et al. The ecological risk assessment of heavy metals in household dust from a lead-zinc core mine [J]. Anhui Agricultural Science Bulletin, 2015, 21(16): 83-87(in Chinese). doi: 10.3969/j.issn.1007-7731.2015.16.041
[36] ISLEY C F, FRY K L, LIU X C, et al. International analysis of sources and human health risk associated with trace metal contaminants in residential indoor dust [J]. Environmental Science & Technology, 2022, 56(2): 1053-1068. [37] LEE I, PLMKE C, RINGBECK B, et al. Urinary concentrations of major phthalate and alternative plasticizer metabolites in children of Thailand, Indonesia, and Saudi Arabia, and associated risks [J]. Environmental Science & Technology, 2021, 55(24): 16526-16537. [38] AL LASER M, EL-YAZIGI A, CROFT S L. Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis [J]. Pharmaceutical Research, 1995, 12(1): 113-116. doi: 10.1023/A:1016251023427 [39] PANE E F, McDONALD M D, CURRY H N, et al. Hydromineral balance in the marine gulf toadfish (Opsanus beta) exposed to waterborne or infused nickel [J]. Aquatic Toxicology, 2006, 80(1): 70-81. doi: 10.1016/j.aquatox.2006.07.015 [40] WERNER E, ROTH P, HEINRICHS U, et al. Internal biokinetic behaviour of molybdenum in humans studied with stable isotopes as tracers [J]. Isotopes in Environmental and Health Studies, 2000, 36(2): 123-132. doi: 10.1080/10256010008032938 [41] GREGUS Z, KLAASSEN C D. Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals [J]. Toxicology and Applied Pharmacology, 1986, 85(1): 24-38. doi: 10.1016/0041-008X(86)90384-4 [42] AL-BAYATI M A, RAABE O G, GIRI S N, et al. Distribution of vanadate in the rat following subcutaneous and oral routes of administration [J]. Journal of the American College of Toxicology, 1991, 10(2): 233-241. doi: 10.3109/10915819109078633 [43] 黄浩, 徐子琪, 严俊霞, 等. 太原市城乡居民区采暖季室内灰尘中重金属的污染特征及其生态风险评价 [J]. 环境科学, 2021, 42(5): 2143-2152. doi: 10.13227/j.hjkx.202008045 HUANG H, XU Z Q, YAN J X, et al. Characteristics of heavy metal pollution and ecological risk evaluation of indoor dust from urban and rural areas in Taiyuan city during the heating season [J]. Environmental Science, 2021, 42(5): 2143-2152(in Chinese). doi: 10.13227/j.hjkx.202008045
[44] LIN Y S, FANG F M, WANG F, et al. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China [J]. Environmental Monitoring and Assessment, 2015, 187(9): 565. doi: 10.1007/s10661-015-4763-4 [45] ZHOU L, LIU G J, SHEN M C, et al. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China [J]. Environmental Pollution, 2019, 251: 839-849. doi: 10.1016/j.envpol.2019.05.058 [46] HE C T, ZHENG X B, YAN X, et al. Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: Spatial characteristics and implications for human exposure [J]. Ecotoxicology and Environmental Safety, 2017, 140: 109-115. doi: 10.1016/j.ecoenv.2017.02.041 [47] SALEM ALI ALBAR H M, ALI N, ALI MUSSTJAB AKBER SHAH EQANI S, et al. Trace metals in different socioeconomic indoor residential settings, implications for human health via dust exposure [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109927. doi: 10.1016/j.ecoenv.2019.109927 [48] AL-DULAIMI E, SHARTOOH S, AL-HEETY E. Concentration, distribution, and potential sources of heavy metals in households dust in Al-fallujah, Iraq [J]. Iraqi Geological Journal, 2021, 54(2F): 120-130. doi: 10.46717/igj.54.2F.11ms-2021-12-28 [49] HASHEMI S E, FAZLZADEH M, AHMADI E, et al. Occurrence, potential sources, in vitro bioaccessibility and health risk assessment of heavy metal in indoor dust from different microenvironment of Bushehr, Iran [J]. Environmental Geochemistry and Health, 2020, 42(11): 3641-3658. doi: 10.1007/s10653-020-00598-z [50] WANG X, WANG B, XIAO L L, et al. Sources of 24-h personal exposure to PM2.5-bound metals: Results from a panel study in Wuhan, China [J]. Environmental Science and Pollution Research, 2021, 28(22): 27555-27564. doi: 10.1007/s11356-021-12386-y [51] GURBANOV A G, BOGATIKOV O A, VINOKUROV S F, et al. Geochemical evaluation of environmental conditions in the area of activity of the Tyrnyauz Tungsten–Molybdenum Plant (Kabardino-Balkaria, North Caucasus): Sources of environment contamination, impact upon neighboring areas, and ways for recovery [J]. Doklady Earth Sciences, 2015, 464(1): 967-971. doi: 10.1134/S1028334X15090172 [52] ZHU Y L, HUANG W, LIU Z L, et al. Application of supramolecular nano-material adsorbent in the treatment of heavy metal pollution in acid selenium-rich soils in South China [J]. Integrated Ferroelectrics, 2021, 217(1): 69-81. doi: 10.1080/10584587.2021.1911297 [53] BARTKOWIAK A, LEMANOWICZ J, BREZA-BORUTA B. Evaluation of the content of Zn, Cu, Ni and Pb as well as the enzymatic activity of forest soils exposed to the effect of road traffic pollution [J]. Environmental Science and Pollution Research, 2017, 24(30): 23893-23902. doi: 10.1007/s11356-017-0013-3 [54] SUN X J, LIU W Y, ZHANG B, et al. Maternal heavy metal exposure, thyroid hormones, and birth outcomes: A prospective cohort study [J]. The Journal of Clinical Endocrinology & Metabolism, 2019, 104(11): 5043-5052. [55] CARON-BEAUDOIN , BOUCHARD M, WENDLING G, et al. Urinary and hair concentrations of trace metals in pregnant women from Northeastern British Columbia, Canada: A pilot study [J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(5): 613-623. [56] YANG D F, LIU Y L, LIU S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China [J]. Chemosphere, 2020, 250: 126289. doi: 10.1016/j.chemosphere.2020.126289 [57] LOZANO M, MURCIA M, SOLER-BLASCO R, et al. Exposure to metals and metalloids among pregnant women from Spain: Levels and associated factors [J]. Chemosphere, 2022, 286: 131809. doi: 10.1016/j.chemosphere.2021.131809 [58] WANG X, MUKHERJEE B, PARK S K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U. S. adults in NHANES 2003–2014 [J]. Environment International, 2018, 121: 683-694. doi: 10.1016/j.envint.2018.09.035 [59] SHAHBAZIAN H, ABSALAN A, JALALI M T, et al. Comparison of zinc, copper, selenium, magnesium, aluminium and lead blood concentrations in end-stage renal disease patients and healthy volunteers in Ahvaz, southwest of Iran [J]. Russian Open Medical Journal, 2018, 7(1): e0105. doi: 10.15275/rusomj.2018.0105 [60] MOHAMMAD SHAM N, ANUAL Z F, SHAHARUDIN R. GIS based interpolation method to urinary metal concentrations in Malaysia [J]. Food and Chemical Toxicology:an International Journal Published for the British Industrial Biological Research Association, 2022, 163: 112949. doi: 10.1016/j.fct.2022.112949 [61] GRIEGER J A, GRZESKOWIAK L E, WILSON R L, et al. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility [J]. Nutrients, 2019, 11(7): 1609. doi: 10.3390/nu11071609 [62] JEANJEAN M, GOIX S, DRON J, et al. Influence of environmental and dietary exposures on metals accumulation among the residents of a major industrial harbour (Fos-sur-Mer, France) [J]. Journal of Trace Elements in Medicine and Biology, 2022, 73: 127021. doi: 10.1016/j.jtemb.2022.127021 [63] ZHAO H, TANG J, ZHU Q H, et al. Associations of prenatal heavy metals exposure with placental characteristics and birth weight in Hangzhou Birth Cohort: Multi-pollutant models based on elastic net regression [J]. Science of the Total Environment, 2020, 742: 140613. doi: 10.1016/j.scitotenv.2020.140613 [64] MASSADEH A M, AL-SAFI S. Analysis of cadmium and lead: Their immunosuppressive effects and distribution in various organs of mice [J]. Biological Trace Element Research, 2005, 108(1/2/3): 279-286. [65] ZHUO H H, WU Y L, LIU Y B, et al. Source, distribution and potential risk of antimony in water and sediments of Danjiangkou Reservoir: Impact from dam [J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12367. doi: 10.3390/ijerph191912367 [66] 孙慧, 毕如田, 郭颖, 等. 广东省土壤重金属溯源及污染源解析 [J]. 环境科学学报, 2018, 38(2): 704-714. doi: 10.13671/j.hjkxxb.2017.0351 SUN H, BI R T, GUO Y, et al. Source apportionment analysis of trace metal contamination in soils of Guangdong Province, China [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 704-714(in Chinese). doi: 10.13671/j.hjkxxb.2017.0351
[67] HAYS S M, MACEY K, NONG A, et al. Biomonitoring equivalents for selenium [J]. Regulatory Toxicology and Pharmacology, 2014, 70(1): 333-339. doi: 10.1016/j.yrtph.2014.07.017 [68] ASHRAP P, WATKINS D J, MUKHERJEE B, et al. Predictors of urinary and blood Metal(loid) concentrations among pregnant women in Northern Puerto Rico [J]. Environmental Research, 2020, 183: 109178. doi: 10.1016/j.envres.2020.109178 [69] WANG X, QI L, PENG Y, et al. Urinary concentrations of environmental metals and associating factors in pregnant women [J]. Environmental Science and Pollution Research, 2019, 26(13): 13464-13475. doi: 10.1007/s11356-019-04731-z [70] de MATOS A R, FARIA M C S, FREIRE B M, et al. Determination of 14 trace elements in blood, serum and urine after environmental disaster in the Doce River Basin: Relationship between mining waste and metal concentration in the population [J]. Journal of Trace Elements in Medicine and Biology, 2022, 70: 126920. doi: 10.1016/j.jtemb.2021.126920 [71] EGUCHI A, YANASE K, YAMAMOTO M, et al. The relationship of maternal PCB, toxic, and essential trace element exposure levels with birth weight and head circumference in Chiba, Japan [J]. Environmental Science and Pollution Research, 2019, 26(15): 15677-15684. doi: 10.1007/s11356-019-05009-0 [72] PARK J, KIM J, KIM E, et al. Association between prenatal cadmium exposure and cord blood DNA methylation [J]. Environmental Research, 2022, 212: 113268. doi: 10.1016/j.envres.2022.113268 [73] DEMIR N, BAŞARANOĞLU M, HUYUT Z, et al. The relationship between mother and infant plasma trace element and heavy metal levels and the risk of neural tube defect in infants [J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2019, 32(9): 1433-1440. [74] DANIALI S S, YAZDI M, HEIDARI-BENI M, et al. Birth size outcomes in relation to maternal blood levels of some essential and toxic elements [J]. Biological Trace Element Research, 2023, 201(1): 4-13. doi: 10.1007/s12011-022-03121-w [75] BARAQUONI N A, QOUTA S R, VNSK M, et al. It takes time to unravel the ecology of war in Gaza, Palestine: Long-term changes in maternal, newborn and toddlers' heavy metal loads, and infant and toddler developmental milestones in the aftermath of the 2014 military attacks [J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6698. doi: 10.3390/ijerph17186698 [76] LIU C Q, HUANG L L, HUANG S Z, et al. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study [J]. Environmental Research, 2022, 205: 112450. doi: 10.1016/j.envres.2021.112450 [77] LI Z J, LIANG C M, XIA X, et al. Association between maternal and umbilical cord serum cobalt concentration during pregnancy and the risk of preterm birth: The Ma'anshan birth cohort (MABC) study [J]. Chemosphere, 2019, 218: 487-492. doi: 10.1016/j.chemosphere.2018.11.122 [78] KANTOLA M, PURKUNEN R, KRGER P, et al. Selenium in pregnancy: Is selenium an active defective ion against environmental chemical stress? [J]. Environmental Research, 2004, 96(1): 51-61. doi: 10.1016/j.envres.2004.03.003 [79] HAWKES W C, ALKAN Z, LANG K, et al. Plasma selenium decrease during pregnancy is associated with glucose intolerance [J]. Biological Trace Element Research, 2004, 100(1): 19-29. doi: 10.1385/BTER:100:1:019 [80] MISTRY H D, KURLAK L O, YOUNG S D, et al. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants [J]. Maternal & Child Nutrition, 2014, 10(3): 327-334. [81] LI Y W, PI L, HU W L, et al. Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China [J]. Environmental Science and Pollution Research, 2016, 23(9): 9082-9092. doi: 10.1007/s11356-016-6045-2 [82] LIN Y S, FANG F M, WU J Y, et al. Indoor and outdoor levels, sources, and health risk assessment of mercury in dusts from a coal-industry city of China [J]. Human and Ecological Risk Assessment:an International Journal, 2017, 23(5): 1028-1040. doi: 10.1080/10807039.2017.1296759 [83] ZHONG Z J, LI Q, GUO C S, et al. Urinary heavy metals in residents from a typical city in South China: Human exposure and health risks [J]. Environmental Science and Pollution Research, 2022, 29(11): 15827-15837. doi: 10.1007/s11356-021-16954-0