-
纳米氧化铈(CeO2NPs)是一种重要的纳米稀土化合物,具有较强的静电吸引力、较高的氧亲和力和氧化还原电位等独特的理化性质,被广泛用于抛光材料、吸附剂、汽车尾气催化剂、氧传感器等[1 − 4]. 此外,CeO2NPs在氧化应激相关疾病的药物治疗上具有较好的应用前景,如神经退行性疾病、自身免疫性疾病、糖尿病和癌症[5]. CeO2NPs是生产最多的纳米颗粒之一,全球年产量约10000 t[6]. CeO2NPs及其相关产品的大规模生产和使用,必然会导致越来越多CeO2NPs通过各种途径进入大气、土壤和水等环境介质及生物体中. 由于纳米颗粒的特殊性质(如粒径为1—100 nm),目前的分离和分析技术还很难检测环境中CeO2NPs的真实背景浓度. Giese等[6]结合科学模型和经济模型,评估了2017—2050年自然介质中CeO2NPs的浓度,预计2050年大气、地表水、沉积物和土壤中的CeO2NPs浓度分别为0.60—30.93 ng·m−3、4.49—148.93 ng·L−1、2.35—1844.20 μg·kg−1、680.81—17792.55 ng·kg−1.
无脊椎动物是生物类群的重要组成,其中大多数物种是低营养级动物. 相较脊椎动物具有易富集污染物、对环境变化更敏感、不占用空间便于大量饲养、个体较小便于操作、生活史短等特点[7]. 具有较多的生态、环境和动物毒理实验用模式动物,如线虫、蚯蚓、水溞、果蝇等. 近年来,越来越多的学者以无脊椎动物为研究材料开展了一系列CeO2NPs生物毒性研究. 但关于CeO2NPs对无脊椎动物影响综述性内容非常有限,现有的资料也仅局限于各类纳米颗粒对土壤或海洋无脊椎动物的影响,且侧重于CeO2NPs理化性质对生物体的影响[8 − 13].
本文从生物累积、行为反应、组织损伤、生长发育毒性、免疫毒性、生殖毒性和遗传毒性等方面综述了CeO2NPs对无脊椎动物的影响以及CeO2NPs毒性效应的影响因素,总结了CeO2NPs对无脊椎动物的毒性机制,最后基于目前研究不足提出CeO2NPs对无脊椎动物毒性研究建议,以期为CeO2NPs的毒性评价、安全生产、排放和商品化等提供参考.
纳米氧化铈对无脊椎动物的毒性效应
Toxic effects of cerium oxide nanoparticles in invertebrates: A review
-
摘要: 近年来,纳米氧化铈(CeO2NPs)独特的理化性质使其生产规模和应用范围逐渐扩大,但CeO2NPs在生产、运输和商品化过程中不可避免地被释放到环境中,具有环境污染的潜在风险,其生物安全性受到越来越多的关注. 无脊椎动物是生物类群的重要组成,本文研究了国内外近十年的科学文献,综述了CeO2NPs在生物累积、行为反应、组织损伤、生长发育毒性、免疫毒性、生殖毒性、遗传毒性等方面对无脊椎动物的影响以及CeO2NPs毒性效应影响因素,总结了CeO2NPs对无脊椎动物的毒性机制,最后对未来研究方向进行了展望,以期为CeO2NPs的毒性评价、安全生产与应用提供参考.Abstract: In recent years, due to the unique physicochemical properties of cerium oxide nanoparticles (CeO2NPs), the production scale and application range of these particles have gradually expanded. However, CeO2NPs are inevitably released into the environment during production, transportation, and commercialization, which can cause environmental pollution, and their biosafety has received increasing attention. Invertebrates are an important component of biological taxa. In this review, studies performed in China and other countries and published in the past 10 years are studied. The effects of CeO2NPs on invertebrates in terms of bioaccumulation, behavioral response, tissue damage, growth and development toxicity, immunotoxicity, reproductive toxicity, genotoxicity, and the influencing factors of CeO2NPs toxicity are reviewed. Furthermore, the toxicity mechanism of CeO2NPs in invertebrates is discussed. Finally, new research direction are proposed to study the toxicity, safe production, and application of CeO2NPs in the future.
-
Key words:
- cerium oxide nanoparticles /
- invertebrate /
- toxic effect /
- influencing factor.
-
表 1 CeO2NPs在无脊椎动物中的生物累积
Table 1. Bioaccumulation of CeO2NPs in invertebrates
受试生物
Tested organism粒径/nm
Size暴露时长
Exposure
duration暴露途径
Exposure
pathway浓度
Concentration生物累积量
Bioaccumulation参考文献
Reference赤子爱胜蚓
(Eisenia fetida)<25 14 d 表皮 50 mg·kg−1 2.3 mg·kg−1 [15] 赤子爱胜蚓
(Eisenia fetida)20—200 28 d 表皮 1000 mg·kg−1和
2000 mg·kg−1BC-350:1.36—36.02 mg·kg−1;
BC-600:4.87—100.28 mg·kg−1[16] 赤子爱胜蚓
(Eisenia fetida)50—105 28 d 表皮 346.6 mg·kg−1 (1.5±0.0036)mg·g−1 [17] 粉正蚓
(Lumbricus rubellus)— 7 d 表皮 5000 mg·kg−1 5.3 µg·g−1 [18] 紫贻贝
(Mytilus galloprovincialis)5、50 28 d 水体 100 μg·L−1 Ce Naked:(0.25±0.113)µg·g−1;
Ce@Chitosan:(0.26±0.029)µg·g−1;
Ce@Alginate:(0.21±0.030)µg·g−1[19] 紫贻贝
(Mytilus galloprovincialis)231±16 4 d 水体 10 mg·L−1 62 µg·g−1 [20] 斑马贻贝
(Dreissena polymorpha)3—4 21 d 水体 1 mg·L−1 ba-CeO2:(10.2±1.3)μg·g−1;
ci-CeO2:(29.1±10.3)µg·g−1[21] 斑马贻贝
(Dreissena polymorpha)8 4 d 水体 100 μg·L−1 15 µg·g−1 [22] 钩虾
(Gammarus roeseli)8 4 d 水体 100 μg·L−1 59 µg·g−1 [22] 静水椎实螺
(Lymnaea stagnalis)3.8、185 270 d 摄食 5 mg·L−1 3.8 nm:(44±18)ng;
185 nm:(2.6±0.4)ng[23] 赤子爱胜蚓
(Eisenia fetida)5—80 28 d、56 d 表皮 256 mg·kg−1 NM-213 CeO2:4.82 mg·g−1;
NM-212 CeO2:4.41 mg·g−1;
NM-211 CeO2:4.56 mg·g−1[24] 蟋蟀
(Acheta domesticus)<10 14 d 摄食 707 ng·g−1 33.6 ng·g−1 [25] 墨西哥豆甲虫
(Epilacha vanvestis)8±1 36 d 摄食 2000 mg·kg−1 21.40 mg·kg−1 [26] 摇蚊
(Chironomus riparius)2—5 28 d 摄食 1 mg·L−1 柠檬酸涂层:606 mg·kg−1;
裸露:282 mg·kg−1[27] 注:BC-350和BC-600代表由核桃壳在350 ℃和600 ℃裂解产生的生物炭;NM-213、NM-212、NM-211为CeO2NPs特定代码,分别为CeO2(100—300 nm)、CeO2(10—80 nm)、CeO2(10—50 nm);Ce Naked代表裸露CeO2NPs、Ce@Chitosan代表海藻酸包覆的CeO2NPs、Ce@Alginate代表壳聚糖包覆的CeO2NPs;ci-CeO2代表柠檬酸包覆的CeO2NPs、ba-CeO2代表裸露的CeO2NPs;表中暴露浓度仅适用于受试生物的生物累积.
Note: BC-350 and BC-600 refers to biochar produced by cracking walnut shells at 350 ℃ and 600 ℃; NM-213, NM-212, and NM-211 are CeO2NPs specific codes for CeO2 (100—300 nm), CeO2 (10—80 nm), and CeO2 (10—50 nm), respectively; Ce Naked refers to naked CeO2NPs, Ce@Chitosan refers to alginate-coated CeO2NPs, Ce@Alginate refers to chitosan-coated CeO2NPs; ci-CeO2 refers to citric acid-coated CeO2NPs, ba-CeO2 refers to naked CeO2NPs; The exposure concentration in the table apply only to the bioaccumulation of the tested organisms.表 2 CeO2NPs对无脊椎动物的EC50/LC50
Table 2. EC50/LC50 of CeO2NPs in invertebrates
受试生物
Tested organism粒径/nm
Size暴露时长
Exposure durationEC50/LC50 参考文献
Reference蚯蚓(Eisenia hortensis) 22 48 h LC50:80 μg·mL−1 [34] 秀丽隐杆线虫(Caenorhabditis elegans) 4 48 h L1期 LC50:15.5 mg·L−1;L3期 LC50:272 mg·L−1 [35] 大型溞(Daphnia magna) 8 48 h LC50:0.012 mg·mL−1(0.011—0.015) [36] 大型溞(Daphnia magna) 50 48 h EC50:20.08 mg·L−1 [37] 大型溞(Daphnia magna) 6.44±0.42 24 h EC50 :430.2 mg·L−1(239.8—587.4) [28] 大型溞(Daphnia magna) 6.44±0.42 48 h EC50 :142.7 mg·L−1(85.7—210.9) [28] 卤虫(Artemia salina) 15±3.5 48 h LC50:30.8 mg·L−1(27.32—52.85) [38] 大型溞(Daphnia magna) 14 nm 21 d EC50:40.7 mg·L−1(33.6—49.3) [39] 大型溞(Daphnia magna) 20 nm 21 d EC50:36.9 mg·L−1(27.6—49.3) [39] 大型溞(Daphnia magna) 29 nm 21 d EC50:71.1 mg·L−1(61.0—82.8) [39] 同形溞(Daphnia similis) 8 48 h EC50:0.26 mg·L−1 [40] 蚤状溞(Daphnia pulex) 8 48 h EC50:91.79 mg·L−1 [40] 蚤状溞(Daphnia pulex) 8 72 h EC50 :0.94 mg·L−1 [40] 蚤状溞(Daphnia pulex) 8 96 h EC50 :0.78 mg·L−1 [40] 注:EC50/LC50括号中数字代表95%置信区间. Numbers in parentheses refers to 95% confidence intervals. 表 3 CeO2NPs对无脊椎动物毒性的主要影响因素
Table 3. Main influencing factors of CeO2NPs toxicity in invertebrates
受试生物
Tested organism影响因素
Influencing factor结果
Result参考文献
Reference大型溞
(Daphnia magna)粒径 毒性:14 nm>29 nm [39] 秀丽隐杆线虫
(Caenorhabditis elegans)粒径 毒性:15 nm>45 nm [59] 静水椎实螺
(Lymnaea stagnalis)粒径 生物利用率:3.8 nm>185 nm [23] 摇蚊
(Chironomus riparius)粒径、涂层 毒性:NP2(无包覆2—5 nm)>NP3
(无包覆20—60 nm)>NP1(三柠檬酸铵包覆)[32] 斑马贻贝
(Dreissena polymorpha)涂层 毒性:Alginate(海藻酸)>Chit(壳聚糖) [69] 斑马贻贝
(Dreissena polymorpha)涂层 生物累积量:柠檬酸>裸露 [21] 紫贻贝
(Mytilus galloprovincialis)涂层 毒性:Alginate(海藻酸)>Chit(壳聚糖) [19] 紫贻贝
(Mytilus galloprovincialis)表面电荷 毒性:负电荷>正电荷 [70] 秀丽隐杆线虫
(Caenorhabditis elegans)表面电荷 毒性:正电荷>中性、负电荷 [35] 赤子爱胜蚓
(Eisenia fetida)暴露介质 毒性:人工土壤>矿区土壤 [71] 赤子爱胜蚓
(Eisenia fetida)暴露介质 Ce累积:农业土壤>生物炭改良土壤 [16] 赤子爱胜蚓
(Eisenia fetida)暴露介质 氧化损伤:砂质土>粘土 [15] 河蚬
(Corbicula fluminea)盐度 基因表达:低盐度(1.5 psu)>高盐度(15 psu) [67] 卡尼鄂拉蜜蜂
(Apis mellifera carnica)温度 生物酶活性:夏季>冬季 [68] 紫贻贝
(Mytilus galloprovincialis)暴露途径 清除率:饮食暴露>直接暴露 [72] 夹杂带丝蚓
(Lumbriculus variegatus)暴露途径 累积:摄食>经皮吸收 [30] -
[1] KONSOLAKIS M, LYKAKI M. Recent advances on the rational design of non-precious metal oxide catalysts exemplified by CuOx/CeO2 binary system: Implications of size, shape and electronic effects on intrinsic reactivity and metal-support interactions[J]. Catalysts, 2020, 10(2): 160. doi: 10.3390/catal10020160 [2] SARKAR A, MAHENDRAN T S, MEENAKSHISUNDARAM A, et al. Role of cerium oxide nanoparticles in improving oxidative stress and developmental delays in Drosophila melanogaster as an in-vivo model for bisphenol a toxicity[J]. Chemosphere, 2021, 284: 131363. doi: 10.1016/j.chemosphere.2021.131363 [3] SUNDARARAJAN V, DAN P, KUMAR A, et al. Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles[J]. Applied Surface Science, 2019, 490: 70-80. doi: 10.1016/j.apsusc.2019.06.017 [4] YOU G X, XU Y, WANG P F, et al. Deciphering the effects of CeO2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125300. doi: 10.1016/j.jhazmat.2021.125300 [5] CHEN B H, STEPHEN INBARAJ B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles[J]. Critical Reviews in Biotechnology, 2018, 38(7): 1003-1024. doi: 10.1080/07388551.2018.1426555 [6] GIESE B, KLAESSIG F, PARK B, et al. Risks, release and concentrations of engineered nanomaterial in the environment[J]. Scientific Reports, 2018, 8(1): 1565. doi: 10.1038/s41598-018-19275-4 [7] 王晓科, 石清清, 邓代莉, 等. 基于土壤模式生物的纳米材料毒理研究进展[J]. 生态毒理学报, 2018, 13(3): 31-41. doi: 10.7524/AJE.1673-5897.20171207001 WANG X K, SHI Q Q, DENG D L, et al. Review on toxicology of nanomaterials based on soil model organisms[J]. Asian Journal of Ecotoxicology, 2018, 13(3): 31-41 (in Chinese). doi: 10.7524/AJE.1673-5897.20171207001
[8] TOURINHO P S, van GESTEL C A M, LOFTS S, et al. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates[J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1679-1692. doi: 10.1002/etc.1880 [9] ADEEL M, SHAKOOR N, SHAFIQ M, et al. A critical review of the environmental impacts of manufactured nano-objects on earthworm species[J]. Environmental Pollution, 2021, 290: 118041. doi: 10.1016/j.envpol.2021.118041 [10] BAKER A J. Bioaccumulation, biological effects and trophic transfer of metal (oxide) nanoparticles in marine invertebrates[D]. Exeter, South West England, UK: University of Exeter, 2017. [11] MORTAZAVI MILANI Z, CHARBGOO F, DARROUDI M. Impact of physicochemical properties of cerium oxide nanoparticles on their toxicity effects[J]. Ceramics International, 2017, 43(17): 14572-14581. doi: 10.1016/j.ceramint.2017.08.177 [12] MUKHERJEE K, ACHARYA K. Toxicological effect of metal oxide nanoparticles on soil and aquatic habitats[J]. Archives of Environmental Contamination and Toxicology, 2018, 75(2): 175-186. doi: 10.1007/s00244-018-0519-9 [13] 张萌, 罗雅琪, 段天欣, 等. 土壤中纳米颗粒的生物效应研究进展[J]. 环境化学, 2022, 41(11): 3613-3628. doi: 10.7524/j.issn.0254-6108.2021071904 ZHANG M, LUO Y Q, DUAN T X, et al. Research progress on biological effects of nanoparticles in soil[J]. Environmental Chemistry, 2022, 41(11): 3613-3628 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021071904
[14] 胡奕, 王艳龙, 林道辉. 纳米颗粒对大型蚤毒性效应的研究进展[J]. 科学通报, 2017, 62(24): 2734-2748. doi: 10.1360/N972017-00476 HU Y, WANG Y L, LIN D H. A review of the toxicity of nanoparticles to Daphnia magna[J]. Chinese Science Bulletin, 2017, 62(24): 2734-2748 (in Chinese). doi: 10.1360/N972017-00476
[15] CHEN D, XU W X, CAO S L, et al. Divergent responses of earthworms (Eisenia fetida) in sandy loam and clay soils to cerium dioxide nanoparticles[J]. Environmental Science and Pollution Research, 2023, 30(2): 5231-5241. doi: 10.1007/s11356-022-22448-4 [16] SERVIN A D, CASTILLO-MICHEL H, HERNANDEZ-VIEZCAS J A, et al. Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: A synchrotron microspectroscopy study[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6609-6618. doi: 10.1021/acs.jafc.7b04612 [17] CARBONE S, HERTEL-AAS T, JONER E J, et al. Bioavailability of CeO2 and SnO2 nanoparticles evaluated by dietary uptake in the earthworm Eisenia fetida and sequential extraction of soil and feed[J]. Chemosphere, 2016, 162: 16-22. doi: 10.1016/j.chemosphere.2016.07.044 [18] ANTISARI L V, CARBONE S, GATTI A, et al. Toxicological effects of engineered nanoparticles on earthworms (Lumbricus rubellus) in short exposure[J]. EQA-International Journal of Environmental Quality, 2012, 8: 51-60. [19] NIGRO L, FREITAS R, MAGGIONI D, et al. Coating with polysaccharides influences the surface charge of cerium oxide nanoparticles and their effects to Mytilus galloprovincialis[J]. NanoImpact, 2021, 24: 100362. doi: 10.1016/j.impact.2021.100362 [20] MONTES M O, HANNA S K, LENIHAN H S, et al. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder[J]. Journal of Hazardous Materials, 2012, 225/226: 139-145. doi: 10.1016/j.jhazmat.2012.05.009 [21] GARAUD M, AUFFAN M, DEVIN S, et al. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha[J]. Nanotoxicology, 2016, 10(7): 935-944. doi: 10.3109/17435390.2016.1146363 [22] GARAUD M, TRAPP J, DEVIN S, et al. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli[J]. Aquatic Toxicology, 2015, 158: 63-74. doi: 10.1016/j.aquatox.2014.11.004 [23] GEITNER N K, COOPER J L, AVELLAN A, et al. Size-based differential transport, uptake, and mass distribution of ceria (CeO2) nanoparticles in wetland mesocosms[J]. Environmental Science & Technology, 2018, 52(17): 9768-9776. [24] LAHIVE E, JURKSCHAT K, SHAW B J, et al. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: Subtle effects[J]. Environmental Chemistry, 2014, 11(3): 268. doi: 10.1071/EN14028 [25] HAWTHORNE J, deLa TORRE ROCHE R, XING B S, et al. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain[J]. Environmental Science & Technology, 2014, 48(22): 13102-13109. [26] MAJUMDAR S, TRUJILLO-REYES J, HERNANDEZ-VIEZCAS J A, et al. Cerium biomagnification in a terrestrial food chain: Influence of particle size and growth stage[J]. Environmental Science & Technology, 2016, 50(13): 6782-6792. [27] BOUR A, MOUCHET F, CADARSI S, et al. CeO2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: A microcosm study[J]. Environmental Science and Pollution Research, 2017, 24(20): 17081-17089. doi: 10.1007/s11356-017-9346-1 [28] 王婧坤, 马宇辉, 赵鑫, 等. 纳米二氧化铈对蛋白核小球藻和大型溞的毒性及其在大型溞体内的形态转化[J]. 生态毒理学报, 2016, 11(1): 362-368. WANG J K, MA Y H, ZHAO X, et al. Toxicity of CeO2 nanoparticles to Chlorella pyrenoidosa and Daphnia magna, and its transformation inside the Daphnia magna[J]. Asian Journal of Ecotoxicology, 2016, 11(1): 362-368 (in Chinese).
[29] CANESI L, FABBRI R, GALLO G, et al. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2)[J]. Aquatic Toxicology, 2010, 100(2): 168-177. doi: 10.1016/j.aquatox.2010.04.009 [30] CROSS R K, TYLER C R, GALLOWAY T S. The fate of cerium oxide nanoparticles in sediments and their routes of uptake in a freshwater worm[J]. Nanotoxicology, 2019, 13(7): 894-908. doi: 10.1080/17435390.2019.1593540 [31] SELCK H, HANDY R D, FERNANDES T F, et al. Nanomaterials in the aquatic environment: A European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead[J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1055-1067. doi: 10.1002/etc.3385 [32] BOUR A, MOUCHET F, CADARSI S, et al. Impact of CeO2 nanoparticles on the functions of freshwater ecosystems: A microcosm study[J]. Environmental Science: Nano, 2016, 3(4): 830-838. doi: 10.1039/C6EN00116E [33] JACINTO-MALDONADO M, MEZA-FIGUEROA D, PEDROZA-MONTERO M, et al. Mites as a potential path for Ce-Ti exposure of amphibians[J]. Frontiers in Environmental Science, 2022, 10: 870645. doi: 10.3389/fenvs.2022.870645 [34] GÜNEŞ M, YALÇıN B, ALI M M, et al. Genotoxic assessment of cerium and magnesium nanoparticles and their ionic forms in Eisenia hortensis coelomocytes by alkaline comet assay[J]. Microscopy Research and Technique, 2022, 85(9): 3095-3103. doi: 10.1002/jemt.24168 [35] COLLIN B, OOSTVEEN E, TSYUSKO O V, et al. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans[J]. Environmental Science & Technology, 2014, 48(2): 1280-1289. [36] GARCÍA A, ESPINOSA R, DELGADO L, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests[J]. Desalination, 2011, 269(1/2/3): 136-141. [37] ERDINçMER N, SPONZA D T. Evaluation of the effects of nano-metal oxide (Nano-SiO2, Nano-HfO2, Nano-CeO2, Nano-Ta2O5) on Microtox, Algae and Daphnia magna[J]: Asian Basic and Applied Research Journal, 2020: 37-42. [38] DAVID E M D S, ROYAM M M, SEKAR S K R, et al. Toxicity, uptake, and accumulation of nano and bulk cerium oxide particles in Artemia salina[J]. Environmental Science and Pollution Research, 2017, 24(31): 24187-24200. doi: 10.1007/s11356-017-9975-4 [39] van HOECKE K, QUIK J T K, MANKIEWICZ-BOCZEK J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests[J]. Environmental Science & Technology, 2009, 43(12): 4537-4546. [40] ARTELLS E, ISSARTEL J, AUFFAN M, et al. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species[J]. PLoS One, 2013, 8(8): e71260. doi: 10.1371/journal.pone.0071260 [41] KARIMI S, TROEUNG M, WANG R, et al. Acute and chronic toxicity to Daphnia magna of colloidal silica nanoparticles in a chemical mechanical planarization slurry after polishing a gallium arsenide wafer[J]. NanoImpact, 2019, 13: 56-65. doi: 10.1016/j.impact.2018.12.004 [42] FARIAS I A P, SANTOS C C L, XAVIER A L, et al. Synthesis, physicochemical characterization, antifungal activity and toxicological features of cerium oxide nanoparticles[J]. Arabian Journal of Chemistry, 2021, 14(1): 102888. doi: 10.1016/j.arabjc.2020.10.035 [43] TOURINHO P S, WAALEWIJN-KOOL P L, ZANTKUIJL I, et al. CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida[J]. Ecotoxicology and Environmental Safety, 2015, 113: 201-206. doi: 10.1016/j.ecoenv.2014.12.006 [44] FAIMALI M, GAMBARDELLA C, COSTA E, et al. Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response[J]. Marine Environmental Research, 2017, 128: 36-45. doi: 10.1016/j.marenvres.2016.05.006 [45] GAMBARDELLA C, MESARIČ T, MILIVOJEVIĆ T, et al. Effects of selected metal oxide nanoparticles on Artemia salina larvae: Evaluation of mortality and behavioural and biochemical responses[J]. Environmental Monitoring and Assessment, 2014, 186(7): 4249-4259. doi: 10.1007/s10661-014-3695-8 [46] BOUR A, MOUCHET F, VERNEUIL L, et al. Toxicity of CeO2 nanoparticles at different trophic levels–Effects on diatoms, chironomids and amphibians[J]. Chemosphere, 2015, 120: 230-236. doi: 10.1016/j.chemosphere.2014.07.012 [47] ZIDAR P, KOS M, ILIČ E, et al. Avoidance behaviour of isopods (Porcellio scaber) exposed to food or soil contaminated with Ag- and CeO2- nanoparticles[J]. Applied Soil Ecology, 2019, 141: 69-78. doi: 10.1016/j.apsoil.2019.05.011 [48] MALEV O, TREBŠE P, PIECHA M, et al. Effects of CeO2 nanoparticles on terrestrial isopod Porcellio scaber: Comparison of CeO2 biological potential with other nanoparticles[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(2): 303-311. doi: 10.1007/s00244-017-0363-3 [49] ROSSBACH L M, BREDE D A, NUYTS G, et al. Synchrotron XRF analysis identifies cerium accumulation colocalized with pharyngeal deformities in CeO2 NP-exposed Caenorhabditis elegans[J]. Environmental Science & Technology, 2022, 56(8): 5081-5089. [50] ARNOLD M C, BADIREDDY A R, WIESNER M R, et al. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans[J]. Archives of Environmental Contamination and Toxicology, 2013, 65(2): 224-233. doi: 10.1007/s00244-013-9905-5 [51] STOWERS C, KING M, ROSSI L, et al. Initial sterilization of soil affected interactions of cerium oxide nanoparticles and soybean seedlings (Glycine max (L. ) merr. ) in a greenhouse study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10307-10314. [52] GAISER B K, BISWAS A, ROSENKRANZ P, et al. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna[J]. Journal of Environmental Monitoring, 2011, 13((5): ): 1227-1235. doi: 10.1039/c1em10060b [53] AUFFAN M, BERTIN D, CHAURAND P, et al. Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex[J]. Water Research, 2013, 47(12): 3921-3930. doi: 10.1016/j.watres.2012.11.063 [54] MAYALL C, DOLAR A, JEMEC KOKALJ A, et al. Stressor-dependant changes in immune parameters in the terrestrial isopod crustacean, Porcellio scaber: A focus on nanomaterials[J]. Nanomaterials, 2021, 11((4): ): 934. doi: 10.3390/nano11040934 [55] BALLARIN L, KARAHAN A, SALVETTI A, et al. Stem cells and innate immunity in aquatic invertebrates: Bridging two seemingly disparate disciplines for new discoveries in biology[J]. Frontiers in Immunology, 2021, 12: 688106. doi: 10.3389/fimmu.2021.688106 [56] AYHAN M M, KATALAY S, GÜNAL A Ç. How pollution effects the immune systems of invertebrate organisms (Mytilus galloprovincialis Lamark, 1819)[J]. Marine Pollution Bulletin, 2021, 172: 112750. doi: 10.1016/j.marpolbul.2021.112750 [57] AUGUSTE M, BALBI T, MONTAGNA M, et al. In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 2019, 219: 95-102. [58] CASTRO B M M, SANTOS-RASERA J R, ALVES D S, et al. Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Environmental Pollution, 2021, 279: 116905. doi: 10.1016/j.envpol.2021.116905 [59] ROH J Y, PARK Y K, PARK K, et al. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints[J]. Environmental Toxicology and Pharmacology, 2010, 29(2): 167-172. doi: 10.1016/j.etap.2009.12.003 [60] ORAL R, BUSTAMANTE P, WARNAU M, et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos[J]. Chemosphere, 2010, 81(2): 194-198. doi: 10.1016/j.chemosphere.2010.06.057 [61] NAIR P M G, PARK S Y, LEE S W, et al. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius[J]. Aquatic Toxicology, 2011, 101(1): 31-37. doi: 10.1016/j.aquatox.2010.08.013 [62] YALÇıN B, GÜNEŞ M, KURŞUN A Y, et al. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila[J]. Nanotoxicology, 2022, 16(3): 393-407. doi: 10.1080/17435390.2022.2098072 [63] SAVIĆ-ZDRAVKOVIĆ D, MILOŠEVIĆ D, ULUER E, et al. A multiparametric approach to cerium oxide nanoparticle toxicity assessment in non-biting midges[J]. Environmental Toxicology and Chemistry, 2020, 39(1): 131-140. doi: 10.1002/etc.4605 [64] KOEHLÉ-DIVO V, COSSU-LEGUILLE C, PAIN-DEVIN S, et al. Genotoxicity and physiological effects of CeO2 NPs on a freshwater bivalve (Corbicula fluminea)[J]. Aquatic Toxicology, 2018, 198: 141-148. doi: 10.1016/j.aquatox.2018.02.020 [65] PENG C, ZHANG W, GAO H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments[J]. Nanomaterials (Basel, Switzerland), 2017, 7(1): 21. doi: 10.3390/nano7010021 [66] ZHANG H F, HE X, ZHANG Z Y, et al. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations[J]. Environmental Science & Technology, 2011, 45(8): 3725-3730. [67] KOEHLÉ-DIVO V, PAIN-DEVIN S, BERTRAND C, et al. Corbicula fluminea gene expression modulated by CeO2 nanomaterials and salinity[J]. Environmental Science and Pollution Research, 2019, 26(15): 15174-15186. doi: 10.1007/s11356-019-04927-3 [68] KOS M, JEMEC KOKALJ A, GLAVAN G, et al. Cerium(iv) oxide nanoparticles induce sublethal changes in honeybees after chronic exposure[J]. Environmental Science: Nano, 2017, 4(12): 2297-2310. doi: 10.1039/C7EN00596B [69] DELLA TORRE C, MAGGIONI D, NIGRO L, et al. Alginate coating modifies the biological effects of cerium oxide nanoparticles to the freshwater bivalve Dreissena polymorpha[J]. The Science of the Total Environment, 2021, 773: 145612. doi: 10.1016/j.scitotenv.2021.145612 [70] SENDRA M, VOLLAND M, BALBI T, et al. Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of Zeta potential, shape and biocorona formation[J]. Aquatic Toxicology, 2018, 200: 13-20. doi: 10.1016/j.aquatox.2018.04.011 [71] TANG W T, WANG G Y, ZHANG S R, et al. Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils[J]. Environmental Pollution, 2022, 296: 118766. doi: 10.1016/j.envpol.2021.118766 [72] CONWAY J R, HANNA S K, LENIHAN H S, et al. Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel[J]. Environmental Science & Technology, 2014, 48(3): 1517-1524. [73] YOKEL R A, HUSSAIN S, GARANTZIOTIS S, et al. The Yin: An adverse health perspective of nanoceria: Uptake, distribution, accumulation, and mechanisms of its toxicity[J]. Environmental Science. Nano, 2014, 1(5): 406-428. doi: 10.1039/C4EN00039K [74] AHMAD GATOO M, NASEEM S, ARFAT M Y, et al. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations[J]. BioMed Research International, 2014, 2014: 498420. [75] FRÖHLICH E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles[J]. International Journal of Nanomedicine, 2012, 7: 5577-5591. [76] ARNDT D A, OOSTVEEN E K, TRIPLETT J, et al. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017, 201: 1-10. [77] ASATI A, SANTRA S, KAITTANIS C, et al. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles[J]. ACS Nano, 2010, 4(9): 5321-5331. doi: 10.1021/nn100816s [78] VILLA S, MAGGIONI D, HAMZA H, et al. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna[J]. Environmental Pollution, 2020, 257: 113597. doi: 10.1016/j.envpol.2019.113597 [79] DEVOILLE L, REVEL M, BATANA C, et al. Combined influence of oxygenation and salinity on aggregation kinetics of the silver reference nanomaterial NM-300K[J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1007-1013. doi: 10.1002/etc.4052 [80] NEDERSTIGT T A P, PEIJNENBURG W J G M, BLEEKER E A J, et al. Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight[J]. Regulatory Toxicology and Pharmacology, 2022, 131: 105156. doi: 10.1016/j.yrtph.2022.105156 [81] van KOETSEM F, WOLDETSADIK G S, FOLENS K, et al. Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability[J]. Chemosphere, 2018, 200: 471-480. doi: 10.1016/j.chemosphere.2018.02.133 [82] BOTTERO J Y, AUFFAN M, BORSCHNEK D, et al. Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches[J]. Comptes Rendus Geoscience, 2015, 347(1): 35-42. doi: 10.1016/j.crte.2014.10.004 [83] MISHRA M, PANDA M. Reactive oxygen species: The root cause of nanoparticle-induced toxicity in Drosophila melanogaster[J]. Free Radical Research, 2021, 55(8): 919-935. doi: 10.1080/10715762.2021.1914335 [84] KUMAR A S, SUNDARARAJAN V, G VENKATASUBBU D, et al. To comprehend the influence of annealing temperature on cerium oxide nanoparticles and its subsequent toxic effects using Drosophila melanogaster model[J]. Materials Today: Proceedings, 2022, 65: 207-214. doi: 10.1016/j.matpr.2022.06.117 [85] SHOKO E, SMITH M F, McKENZIE R H. Charge distribution near bulk oxygen vacancies in cerium oxides[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 2010, 22(22): 223201. [86] LI W X, HE E K, ZHANG P H, et al. Multiomics analyses uncover nanoceria triggered oxidative injury and nutrient imbalance in earthworm Eisenia fetida[J]. Journal of Hazardous Materials, 2022, 437: 129354. doi: 10.1016/j.jhazmat.2022.129354 [87] SINGH S, KUMAR A, KARAKOTI A, et al. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles[J]. Molecular BioSystems, 2010, 6(10): 1813-1820. doi: 10.1039/c0mb00014k [88] NOVENTA S, HACKER C, ROWE D, et al. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: An in vivo study with oyster embryos[J]. Nanotoxicology, 2018, 12(1): 63-78. doi: 10.1080/17435390.2017.1418920 [89] DOGRA Y, ARKILL K P, ELGY C, et al. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator[J]. Nanotoxicology, 2016, 10(4): 480-487. doi: 10.3109/17435390.2015.1088587 [90] PLAKHOVA T V, ROMANCHUK A Y, YAKUNIN S N, et al. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22615-22626. doi: 10.1021/acs.jpcc.6b05650 [91] HORIE M, NISHIO K, KATO H, et al. Cellular responses induced by cerium oxide nanoparticles: Induction of intracellular calcium level and oxidative stress on culture cells[J]. The Journal of Biochemistry, 2011, 150(4): 461-471. doi: 10.1093/jb/mvr081