[1] |
KONSOLAKIS M, LYKAKI M. Recent advances on the rational design of non-precious metal oxide catalysts exemplified by CuOx/CeO2 binary system: Implications of size, shape and electronic effects on intrinsic reactivity and metal-support interactions[J]. Catalysts, 2020, 10(2): 160. doi: 10.3390/catal10020160
|
[2] |
SARKAR A, MAHENDRAN T S, MEENAKSHISUNDARAM A, et al. Role of cerium oxide nanoparticles in improving oxidative stress and developmental delays in Drosophila melanogaster as an in-vivo model for bisphenol a toxicity[J]. Chemosphere, 2021, 284: 131363. doi: 10.1016/j.chemosphere.2021.131363
|
[3] |
SUNDARARAJAN V, DAN P, KUMAR A, et al. Drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles[J]. Applied Surface Science, 2019, 490: 70-80. doi: 10.1016/j.apsusc.2019.06.017
|
[4] |
YOU G X, XU Y, WANG P F, et al. Deciphering the effects of CeO2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: Physicochemical transformation-induced toxicity and detoxification mechanisms[J]. Journal of Hazardous Materials, 2021, 413: 125300. doi: 10.1016/j.jhazmat.2021.125300
|
[5] |
CHEN B H, STEPHEN INBARAJ B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles[J]. Critical Reviews in Biotechnology, 2018, 38(7): 1003-1024. doi: 10.1080/07388551.2018.1426555
|
[6] |
GIESE B, KLAESSIG F, PARK B, et al. Risks, release and concentrations of engineered nanomaterial in the environment[J]. Scientific Reports, 2018, 8(1): 1565. doi: 10.1038/s41598-018-19275-4
|
[7] |
王晓科, 石清清, 邓代莉, 等. 基于土壤模式生物的纳米材料毒理研究进展[J]. 生态毒理学报, 2018, 13(3): 31-41. doi: 10.7524/AJE.1673-5897.20171207001
WANG X K, SHI Q Q, DENG D L, et al. Review on toxicology of nanomaterials based on soil model organisms[J]. Asian Journal of Ecotoxicology, 2018, 13(3): 31-41 (in Chinese). doi: 10.7524/AJE.1673-5897.20171207001
|
[8] |
TOURINHO P S, van GESTEL C A M, LOFTS S, et al. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates[J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1679-1692. doi: 10.1002/etc.1880
|
[9] |
ADEEL M, SHAKOOR N, SHAFIQ M, et al. A critical review of the environmental impacts of manufactured nano-objects on earthworm species[J]. Environmental Pollution, 2021, 290: 118041. doi: 10.1016/j.envpol.2021.118041
|
[10] |
BAKER A J. Bioaccumulation, biological effects and trophic transfer of metal (oxide) nanoparticles in marine invertebrates[D]. Exeter, South West England, UK: University of Exeter, 2017.
|
[11] |
MORTAZAVI MILANI Z, CHARBGOO F, DARROUDI M. Impact of physicochemical properties of cerium oxide nanoparticles on their toxicity effects[J]. Ceramics International, 2017, 43(17): 14572-14581. doi: 10.1016/j.ceramint.2017.08.177
|
[12] |
MUKHERJEE K, ACHARYA K. Toxicological effect of metal oxide nanoparticles on soil and aquatic habitats[J]. Archives of Environmental Contamination and Toxicology, 2018, 75(2): 175-186. doi: 10.1007/s00244-018-0519-9
|
[13] |
张萌, 罗雅琪, 段天欣, 等. 土壤中纳米颗粒的生物效应研究进展[J]. 环境化学, 2022, 41(11): 3613-3628. doi: 10.7524/j.issn.0254-6108.2021071904
ZHANG M, LUO Y Q, DUAN T X, et al. Research progress on biological effects of nanoparticles in soil[J]. Environmental Chemistry, 2022, 41(11): 3613-3628 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021071904
|
[14] |
胡奕, 王艳龙, 林道辉. 纳米颗粒对大型蚤毒性效应的研究进展[J]. 科学通报, 2017, 62(24): 2734-2748. doi: 10.1360/N972017-00476
HU Y, WANG Y L, LIN D H. A review of the toxicity of nanoparticles to Daphnia magna[J]. Chinese Science Bulletin, 2017, 62(24): 2734-2748 (in Chinese). doi: 10.1360/N972017-00476
|
[15] |
CHEN D, XU W X, CAO S L, et al. Divergent responses of earthworms (Eisenia fetida) in sandy loam and clay soils to cerium dioxide nanoparticles[J]. Environmental Science and Pollution Research, 2023, 30(2): 5231-5241. doi: 10.1007/s11356-022-22448-4
|
[16] |
SERVIN A D, CASTILLO-MICHEL H, HERNANDEZ-VIEZCAS J A, et al. Bioaccumulation of CeO2 nanoparticles by earthworms in biochar-amended soil: A synchrotron microspectroscopy study[J]. Journal of Agricultural and Food Chemistry, 2018, 66(26): 6609-6618. doi: 10.1021/acs.jafc.7b04612
|
[17] |
CARBONE S, HERTEL-AAS T, JONER E J, et al. Bioavailability of CeO2 and SnO2 nanoparticles evaluated by dietary uptake in the earthworm Eisenia fetida and sequential extraction of soil and feed[J]. Chemosphere, 2016, 162: 16-22. doi: 10.1016/j.chemosphere.2016.07.044
|
[18] |
ANTISARI L V, CARBONE S, GATTI A, et al. Toxicological effects of engineered nanoparticles on earthworms (Lumbricus rubellus) in short exposure[J]. EQA-International Journal of Environmental Quality, 2012, 8: 51-60.
|
[19] |
NIGRO L, FREITAS R, MAGGIONI D, et al. Coating with polysaccharides influences the surface charge of cerium oxide nanoparticles and their effects to Mytilus galloprovincialis[J]. NanoImpact, 2021, 24: 100362. doi: 10.1016/j.impact.2021.100362
|
[20] |
MONTES M O, HANNA S K, LENIHAN H S, et al. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder[J]. Journal of Hazardous Materials, 2012, 225/226: 139-145. doi: 10.1016/j.jhazmat.2012.05.009
|
[21] |
GARAUD M, AUFFAN M, DEVIN S, et al. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha[J]. Nanotoxicology, 2016, 10(7): 935-944. doi: 10.3109/17435390.2016.1146363
|
[22] |
GARAUD M, TRAPP J, DEVIN S, et al. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli[J]. Aquatic Toxicology, 2015, 158: 63-74. doi: 10.1016/j.aquatox.2014.11.004
|
[23] |
GEITNER N K, COOPER J L, AVELLAN A, et al. Size-based differential transport, uptake, and mass distribution of ceria (CeO2) nanoparticles in wetland mesocosms[J]. Environmental Science & Technology, 2018, 52(17): 9768-9776.
|
[24] |
LAHIVE E, JURKSCHAT K, SHAW B J, et al. Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: Subtle effects[J]. Environmental Chemistry, 2014, 11(3): 268. doi: 10.1071/EN14028
|
[25] |
HAWTHORNE J, deLa TORRE ROCHE R, XING B S, et al. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain[J]. Environmental Science & Technology, 2014, 48(22): 13102-13109.
|
[26] |
MAJUMDAR S, TRUJILLO-REYES J, HERNANDEZ-VIEZCAS J A, et al. Cerium biomagnification in a terrestrial food chain: Influence of particle size and growth stage[J]. Environmental Science & Technology, 2016, 50(13): 6782-6792.
|
[27] |
BOUR A, MOUCHET F, CADARSI S, et al. CeO2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: A microcosm study[J]. Environmental Science and Pollution Research, 2017, 24(20): 17081-17089. doi: 10.1007/s11356-017-9346-1
|
[28] |
王婧坤, 马宇辉, 赵鑫, 等. 纳米二氧化铈对蛋白核小球藻和大型溞的毒性及其在大型溞体内的形态转化[J]. 生态毒理学报, 2016, 11(1): 362-368.
WANG J K, MA Y H, ZHAO X, et al. Toxicity of CeO2 nanoparticles to Chlorella pyrenoidosa and Daphnia magna, and its transformation inside the Daphnia magna[J]. Asian Journal of Ecotoxicology, 2016, 11(1): 362-368 (in Chinese).
|
[29] |
CANESI L, FABBRI R, GALLO G, et al. Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2)[J]. Aquatic Toxicology, 2010, 100(2): 168-177. doi: 10.1016/j.aquatox.2010.04.009
|
[30] |
CROSS R K, TYLER C R, GALLOWAY T S. The fate of cerium oxide nanoparticles in sediments and their routes of uptake in a freshwater worm[J]. Nanotoxicology, 2019, 13(7): 894-908. doi: 10.1080/17435390.2019.1593540
|
[31] |
SELCK H, HANDY R D, FERNANDES T F, et al. Nanomaterials in the aquatic environment: A European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead[J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1055-1067. doi: 10.1002/etc.3385
|
[32] |
BOUR A, MOUCHET F, CADARSI S, et al. Impact of CeO2 nanoparticles on the functions of freshwater ecosystems: A microcosm study[J]. Environmental Science: Nano, 2016, 3(4): 830-838. doi: 10.1039/C6EN00116E
|
[33] |
JACINTO-MALDONADO M, MEZA-FIGUEROA D, PEDROZA-MONTERO M, et al. Mites as a potential path for Ce-Ti exposure of amphibians[J]. Frontiers in Environmental Science, 2022, 10: 870645. doi: 10.3389/fenvs.2022.870645
|
[34] |
GÜNEŞ M, YALÇıN B, ALI M M, et al. Genotoxic assessment of cerium and magnesium nanoparticles and their ionic forms in Eisenia hortensis coelomocytes by alkaline comet assay[J]. Microscopy Research and Technique, 2022, 85(9): 3095-3103. doi: 10.1002/jemt.24168
|
[35] |
COLLIN B, OOSTVEEN E, TSYUSKO O V, et al. Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans[J]. Environmental Science & Technology, 2014, 48(2): 1280-1289.
|
[36] |
GARCÍA A, ESPINOSA R, DELGADO L, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests[J]. Desalination, 2011, 269(1/2/3): 136-141.
|
[37] |
ERDINçMER N, SPONZA D T. Evaluation of the effects of nano-metal oxide (Nano-SiO2, Nano-HfO2, Nano-CeO2, Nano-Ta2O5) on Microtox, Algae and Daphnia magna[J]: Asian Basic and Applied Research Journal, 2020: 37-42.
|
[38] |
DAVID E M D S, ROYAM M M, SEKAR S K R, et al. Toxicity, uptake, and accumulation of nano and bulk cerium oxide particles in Artemia salina[J]. Environmental Science and Pollution Research, 2017, 24(31): 24187-24200. doi: 10.1007/s11356-017-9975-4
|
[39] |
van HOECKE K, QUIK J T K, MANKIEWICZ-BOCZEK J, et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests[J]. Environmental Science & Technology, 2009, 43(12): 4537-4546.
|
[40] |
ARTELLS E, ISSARTEL J, AUFFAN M, et al. Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species[J]. PLoS One, 2013, 8(8): e71260. doi: 10.1371/journal.pone.0071260
|
[41] |
KARIMI S, TROEUNG M, WANG R, et al. Acute and chronic toxicity to Daphnia magna of colloidal silica nanoparticles in a chemical mechanical planarization slurry after polishing a gallium arsenide wafer[J]. NanoImpact, 2019, 13: 56-65. doi: 10.1016/j.impact.2018.12.004
|
[42] |
FARIAS I A P, SANTOS C C L, XAVIER A L, et al. Synthesis, physicochemical characterization, antifungal activity and toxicological features of cerium oxide nanoparticles[J]. Arabian Journal of Chemistry, 2021, 14(1): 102888. doi: 10.1016/j.arabjc.2020.10.035
|
[43] |
TOURINHO P S, WAALEWIJN-KOOL P L, ZANTKUIJL I, et al. CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida[J]. Ecotoxicology and Environmental Safety, 2015, 113: 201-206. doi: 10.1016/j.ecoenv.2014.12.006
|
[44] |
FAIMALI M, GAMBARDELLA C, COSTA E, et al. Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response[J]. Marine Environmental Research, 2017, 128: 36-45. doi: 10.1016/j.marenvres.2016.05.006
|
[45] |
GAMBARDELLA C, MESARIČ T, MILIVOJEVIĆ T, et al. Effects of selected metal oxide nanoparticles on Artemia salina larvae: Evaluation of mortality and behavioural and biochemical responses[J]. Environmental Monitoring and Assessment, 2014, 186(7): 4249-4259. doi: 10.1007/s10661-014-3695-8
|
[46] |
BOUR A, MOUCHET F, VERNEUIL L, et al. Toxicity of CeO2 nanoparticles at different trophic levels–Effects on diatoms, chironomids and amphibians[J]. Chemosphere, 2015, 120: 230-236. doi: 10.1016/j.chemosphere.2014.07.012
|
[47] |
ZIDAR P, KOS M, ILIČ E, et al. Avoidance behaviour of isopods (Porcellio scaber) exposed to food or soil contaminated with Ag- and CeO2- nanoparticles[J]. Applied Soil Ecology, 2019, 141: 69-78. doi: 10.1016/j.apsoil.2019.05.011
|
[48] |
MALEV O, TREBŠE P, PIECHA M, et al. Effects of CeO2 nanoparticles on terrestrial isopod Porcellio scaber: Comparison of CeO2 biological potential with other nanoparticles[J]. Archives of Environmental Contamination and Toxicology, 2017, 72(2): 303-311. doi: 10.1007/s00244-017-0363-3
|
[49] |
ROSSBACH L M, BREDE D A, NUYTS G, et al. Synchrotron XRF analysis identifies cerium accumulation colocalized with pharyngeal deformities in CeO2 NP-exposed Caenorhabditis elegans[J]. Environmental Science & Technology, 2022, 56(8): 5081-5089.
|
[50] |
ARNOLD M C, BADIREDDY A R, WIESNER M R, et al. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans[J]. Archives of Environmental Contamination and Toxicology, 2013, 65(2): 224-233. doi: 10.1007/s00244-013-9905-5
|
[51] |
STOWERS C, KING M, ROSSI L, et al. Initial sterilization of soil affected interactions of cerium oxide nanoparticles and soybean seedlings (Glycine max (L. ) merr. ) in a greenhouse study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10307-10314.
|
[52] |
GAISER B K, BISWAS A, ROSENKRANZ P, et al. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna[J]. Journal of Environmental Monitoring, 2011, 13((5): ): 1227-1235. doi: 10.1039/c1em10060b
|
[53] |
AUFFAN M, BERTIN D, CHAURAND P, et al. Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex[J]. Water Research, 2013, 47(12): 3921-3930. doi: 10.1016/j.watres.2012.11.063
|
[54] |
MAYALL C, DOLAR A, JEMEC KOKALJ A, et al. Stressor-dependant changes in immune parameters in the terrestrial isopod crustacean, Porcellio scaber: A focus on nanomaterials[J]. Nanomaterials, 2021, 11((4): ): 934. doi: 10.3390/nano11040934
|
[55] |
BALLARIN L, KARAHAN A, SALVETTI A, et al. Stem cells and innate immunity in aquatic invertebrates: Bridging two seemingly disparate disciplines for new discoveries in biology[J]. Frontiers in Immunology, 2021, 12: 688106. doi: 10.3389/fimmu.2021.688106
|
[56] |
AYHAN M M, KATALAY S, GÜNAL A Ç. How pollution effects the immune systems of invertebrate organisms (Mytilus galloprovincialis Lamark, 1819)[J]. Marine Pollution Bulletin, 2021, 172: 112750. doi: 10.1016/j.marpolbul.2021.112750
|
[57] |
AUGUSTE M, BALBI T, MONTAGNA M, et al. In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 2019, 219: 95-102.
|
[58] |
CASTRO B M M, SANTOS-RASERA J R, ALVES D S, et al. Ingestion and effects of cerium oxide nanoparticles on Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Environmental Pollution, 2021, 279: 116905. doi: 10.1016/j.envpol.2021.116905
|
[59] |
ROH J Y, PARK Y K, PARK K, et al. Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints[J]. Environmental Toxicology and Pharmacology, 2010, 29(2): 167-172. doi: 10.1016/j.etap.2009.12.003
|
[60] |
ORAL R, BUSTAMANTE P, WARNAU M, et al. Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos[J]. Chemosphere, 2010, 81(2): 194-198. doi: 10.1016/j.chemosphere.2010.06.057
|
[61] |
NAIR P M G, PARK S Y, LEE S W, et al. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius[J]. Aquatic Toxicology, 2011, 101(1): 31-37. doi: 10.1016/j.aquatox.2010.08.013
|
[62] |
YALÇıN B, GÜNEŞ M, KURŞUN A Y, et al. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila[J]. Nanotoxicology, 2022, 16(3): 393-407. doi: 10.1080/17435390.2022.2098072
|
[63] |
SAVIĆ-ZDRAVKOVIĆ D, MILOŠEVIĆ D, ULUER E, et al. A multiparametric approach to cerium oxide nanoparticle toxicity assessment in non-biting midges[J]. Environmental Toxicology and Chemistry, 2020, 39(1): 131-140. doi: 10.1002/etc.4605
|
[64] |
KOEHLÉ-DIVO V, COSSU-LEGUILLE C, PAIN-DEVIN S, et al. Genotoxicity and physiological effects of CeO2 NPs on a freshwater bivalve (Corbicula fluminea)[J]. Aquatic Toxicology, 2018, 198: 141-148. doi: 10.1016/j.aquatox.2018.02.020
|
[65] |
PENG C, ZHANG W, GAO H P, et al. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments[J]. Nanomaterials (Basel, Switzerland), 2017, 7(1): 21. doi: 10.3390/nano7010021
|
[66] |
ZHANG H F, HE X, ZHANG Z Y, et al. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations[J]. Environmental Science & Technology, 2011, 45(8): 3725-3730.
|
[67] |
KOEHLÉ-DIVO V, PAIN-DEVIN S, BERTRAND C, et al. Corbicula fluminea gene expression modulated by CeO2 nanomaterials and salinity[J]. Environmental Science and Pollution Research, 2019, 26(15): 15174-15186. doi: 10.1007/s11356-019-04927-3
|
[68] |
KOS M, JEMEC KOKALJ A, GLAVAN G, et al. Cerium(iv) oxide nanoparticles induce sublethal changes in honeybees after chronic exposure[J]. Environmental Science: Nano, 2017, 4(12): 2297-2310. doi: 10.1039/C7EN00596B
|
[69] |
DELLA TORRE C, MAGGIONI D, NIGRO L, et al. Alginate coating modifies the biological effects of cerium oxide nanoparticles to the freshwater bivalve Dreissena polymorpha[J]. The Science of the Total Environment, 2021, 773: 145612. doi: 10.1016/j.scitotenv.2021.145612
|
[70] |
SENDRA M, VOLLAND M, BALBI T, et al. Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of Zeta potential, shape and biocorona formation[J]. Aquatic Toxicology, 2018, 200: 13-20. doi: 10.1016/j.aquatox.2018.04.011
|
[71] |
TANG W T, WANG G Y, ZHANG S R, et al. Physiochemical responses of earthworms (Eisenia fetida) under exposure to lanthanum and cerium alone or in combination in artificial and contaminated soils[J]. Environmental Pollution, 2022, 296: 118766. doi: 10.1016/j.envpol.2021.118766
|
[72] |
CONWAY J R, HANNA S K, LENIHAN H S, et al. Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel[J]. Environmental Science & Technology, 2014, 48(3): 1517-1524.
|
[73] |
YOKEL R A, HUSSAIN S, GARANTZIOTIS S, et al. The Yin: An adverse health perspective of nanoceria: Uptake, distribution, accumulation, and mechanisms of its toxicity[J]. Environmental Science. Nano, 2014, 1(5): 406-428. doi: 10.1039/C4EN00039K
|
[74] |
AHMAD GATOO M, NASEEM S, ARFAT M Y, et al. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations[J]. BioMed Research International, 2014, 2014: 498420.
|
[75] |
FRÖHLICH E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles[J]. International Journal of Nanomedicine, 2012, 7: 5577-5591.
|
[76] |
ARNDT D A, OOSTVEEN E K, TRIPLETT J, et al. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017, 201: 1-10.
|
[77] |
ASATI A, SANTRA S, KAITTANIS C, et al. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles[J]. ACS Nano, 2010, 4(9): 5321-5331. doi: 10.1021/nn100816s
|
[78] |
VILLA S, MAGGIONI D, HAMZA H, et al. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna[J]. Environmental Pollution, 2020, 257: 113597. doi: 10.1016/j.envpol.2019.113597
|
[79] |
DEVOILLE L, REVEL M, BATANA C, et al. Combined influence of oxygenation and salinity on aggregation kinetics of the silver reference nanomaterial NM-300K[J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1007-1013. doi: 10.1002/etc.4052
|
[80] |
NEDERSTIGT T A P, PEIJNENBURG W J G M, BLEEKER E A J, et al. Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO2 and nCeO2 exposure in the presence of artificial daylight[J]. Regulatory Toxicology and Pharmacology, 2022, 131: 105156. doi: 10.1016/j.yrtph.2022.105156
|
[81] |
van KOETSEM F, WOLDETSADIK G S, FOLENS K, et al. Partitioning of Ag and CeO2 nanoparticles versus Ag and Ce ions in soil suspensions and effect of natural organic matter on CeO2 nanoparticles stability[J]. Chemosphere, 2018, 200: 471-480. doi: 10.1016/j.chemosphere.2018.02.133
|
[82] |
BOTTERO J Y, AUFFAN M, BORSCHNEK D, et al. Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches[J]. Comptes Rendus Geoscience, 2015, 347(1): 35-42. doi: 10.1016/j.crte.2014.10.004
|
[83] |
MISHRA M, PANDA M. Reactive oxygen species: The root cause of nanoparticle-induced toxicity in Drosophila melanogaster[J]. Free Radical Research, 2021, 55(8): 919-935. doi: 10.1080/10715762.2021.1914335
|
[84] |
KUMAR A S, SUNDARARAJAN V, G VENKATASUBBU D, et al. To comprehend the influence of annealing temperature on cerium oxide nanoparticles and its subsequent toxic effects using Drosophila melanogaster model[J]. Materials Today: Proceedings, 2022, 65: 207-214. doi: 10.1016/j.matpr.2022.06.117
|
[85] |
SHOKO E, SMITH M F, McKENZIE R H. Charge distribution near bulk oxygen vacancies in cerium oxides[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 2010, 22(22): 223201.
|
[86] |
LI W X, HE E K, ZHANG P H, et al. Multiomics analyses uncover nanoceria triggered oxidative injury and nutrient imbalance in earthworm Eisenia fetida[J]. Journal of Hazardous Materials, 2022, 437: 129354. doi: 10.1016/j.jhazmat.2022.129354
|
[87] |
SINGH S, KUMAR A, KARAKOTI A, et al. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles[J]. Molecular BioSystems, 2010, 6(10): 1813-1820. doi: 10.1039/c0mb00014k
|
[88] |
NOVENTA S, HACKER C, ROWE D, et al. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: An in vivo study with oyster embryos[J]. Nanotoxicology, 2018, 12(1): 63-78. doi: 10.1080/17435390.2017.1418920
|
[89] |
DOGRA Y, ARKILL K P, ELGY C, et al. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator[J]. Nanotoxicology, 2016, 10(4): 480-487. doi: 10.3109/17435390.2015.1088587
|
[90] |
PLAKHOVA T V, ROMANCHUK A Y, YAKUNIN S N, et al. Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling[J]. The Journal of Physical Chemistry C, 2016, 120(39): 22615-22626. doi: 10.1021/acs.jpcc.6b05650
|
[91] |
HORIE M, NISHIO K, KATO H, et al. Cellular responses induced by cerium oxide nanoparticles: Induction of intracellular calcium level and oxidative stress on culture cells[J]. The Journal of Biochemistry, 2011, 150(4): 461-471. doi: 10.1093/jb/mvr081
|