-
含氧多环芳烃(oxygenated polycyclic aromatic hydrocarbons,OPAHs)是指在多环芳烃(PAHs)的苯环上含有一个或多个羰基氧,或是含有羟基基团的一类化合物;它主要由化石或生物质燃料不完全燃烧产生,也可由环境中的多环芳烃因光氧化反应、化学氧化反应或生物转换等多种方式产生。由于其较为稳定难以降解,具有比亲代PAHs更强的毒性[1 − 2]和致突变性[3],有一部分含氧多环芳烃单体还被认为是直接的诱变剂和致癌物[4].目前国内外对于含氧多环芳烃的研究,主要集中于该类化合物的总量分析、源解析或者毒性分析等相关领域[5],各种研究文献对OPAHs的检测数据相对较少[1],故为能快速补充数据库毒性数据,采用定量结构-毒性关系(quantitative structure-toxicity relationship,QSTR)相关研究为简便而又高效的理论研究方法. 金玲敏等[6]对此进行了富有成效的尝试,利用计算得到多种描述符,建构了预测OPAHs对斑马鱼胚胎急性毒性的模型。但该法首先需要计算多种描述符,过程复杂,且创新稍有不足;其次预测的结果误差偏大,平均误差达到0.371. 为此本研究创新提出新的计算简单的结构参数,采用神经网络法建模,能提高预测准确度。该法对含氧多环芳烃急性毒性的QSTR研究未见有相关报道.
神经网络法是一种基于数据驱动的误差逆向传播算法,对复杂的非线性系统,具有很强的自适应和自学习能力[7],能模拟生命过程中的神经网络行为,对数据进行智能信息化处理,故该法在化学、环境、机械等众多学科中得到广泛应用[8 − 10]. 利用神经网络法进行QSTR研究[11],对环境污染物在环境中的危险性评价具有独特的作用. 在前期[12 − 13]研究工作的基础上,根据文献[6]所列32个含氧多环芳烃分子,分析这些OPAHs分子的结构与其对斑马鱼胚胎的毒性之间的相关关系,寻找毒性数据的大小与结构之间的内在规律,从而新定义了一种可表征原子电性结构与空间结构特性的原子特征值δi,并根据多环芳烃苯环上不同位置连接羟基时,毒性大小也不一样的变化特性,对基团原子特征值δi进行校正后,建构了一种新的定位键指数L. 利用建构的新指数,与利用软件计算并优化筛选的电性拓扑态指数、及电性距离矢量3类指数有机结合,建立了一种可用于预测含氧多环芳烃对斑马鱼胚胎的急性毒性的神经网络模型,所得结果令人满意. 本研究工作成果对建立含氧多环芳烃的毒性数据库、对环境污染物的快速分析检测,具有重要的理论价值和实际意义.
定位键指数用于含氧多环芳烃对斑马鱼胚胎的急性毒性预测
Localization bond index was used for acute toxicity of oxygenated polycyclic aromatic hydrocarbons to zebrafish embryos
-
摘要: 含氧多环芳烃化合物是一种在多环芳烃苯环上,含有一个或数个羰基氧原子的持久性污染物,它具有比亲代多环芳烃更强的毒性、致癌、致畸和致突变性,因此探究高效的研究方法来建立毒性数据库非常重要. 为研究含氧多环芳烃对斑马鱼胚胎的急性毒性与其分子结构之间的定量结构-毒性关系,根据含氧多环芳烃分子中原子空间拓扑结构,提出了一种新的结构指数–定位键指数L,并分别计算了32个含氧多环芳烃化合物分子的电性拓扑态指数Em、电性距离矢量Mn,分析优化筛选了电性拓扑态指数其中的E16、电性距离矢量其中的M14、M21 和M32作为结构描述符,将它们与定位键指数L有机结合,与含氧多环芳烃化合物对斑马鱼胚胎的生物毒性进行回归分析,以5种结构参数为输入变量点价值,神经网络结构采用5-3-1,建构了一种预测含氧多环芳烃急性毒性lgEC50的神经网络模型,该预测模型的总相关系数RT值达到较高的0.9826,对毒性的预测值与实验值两者之间的平均误差仅为0.112;结果表明,含氧多环芳烃的急性毒性与定位键指数、电性拓扑态指数、电性距离矢量等结构参数有良好的非线性关系. 研究可为含氧多环芳烃的环境污染及生态风险评估提供理论指导.Abstract: Oxygenated polycyclic aromatic hydrocarbons (OPAHs) were persistent organic pollutants, containing one or more base oxygens on the benzene ring of PAHs. OPAHs were more toxic, carcinogenic, teratogenic, and mutagenic than parental PAHs. Therefore, it was very important to explore efficient research methods to establish toxicity database. In order to investigate the quantitative structure-toxicity relationship (QSTR) between the acute toxicity of OPAHs to zebrafish embryos and their molecular structures, a novel structural index, the localization bond index L, was derived based on the spatial topology of atoms in OPAHs molecules. Moreover, the electrical topological state indices Em, electrical distance vectors Mn were calculated for 32 molecules of OPAHs compound, and the electrical topological state index E16, the electrical distance vectors M14, M21 and M32 were selected as structural descriptors. The electrical topological state index and electrical distance vectors were combined with localization bond index L, and they were introduced to the regression analysis of the acute toxicity of OPAHs to zebrafish embryos. Using the five molecular structural indices as enter the variable point value, and the neural network structure was performed using 5-3-1, a neural network model which predicted the acute toxicity lgEC50 of OPAHs was constructed. The total correlation coefficient RT was 0.9826, and the average error between the experimental and the predicted values of acute toxicity was only 0.112. The results showed that the acute toxicity of OPAHs had a good nonlinear relationship with the structural parameters of the localization bond index, the electrical topological state index, and the electrical distance vectors. The study provided theoretical guidance for environmental pollution and ecological risk assessment of OPAHs.
-
表 1 含氧多环芳烃的分子结构参数及其毒性
Table 1. Molecular structural parameters and the toxicity of oxygenated polycyclic aromatic hydrocarbons
序号
No.含氧多环芳烃
Oxygenated polycyclic aromatic hydrocarbonsL E16 M14 M21 M32 lgEC50 实验值
Exp.预测值
Pre.误差
Err.1 氧杂蒽酮
Xanthone71.637 12.028 37.064 7.201 7.730 2.000 1.996 −0.004 2 1,2-苯并苊醌
Aceanthrenequinone83.638 24.113 32.946 9.077 12.462 1.950 2.114 0.164 3 1,2-二羟基蒽醌
1,2-dihydroxyanthraquinone97.699 24.375 21.206 16.522 17.428 2.270 2.381 0.111 4 4,5-亚菲基酮
4,5-phenanthrylene ketone71.712 12.192 33.992 6.508 9.100 1.480 1.480 0 5 9-芴酮
9-fluorenone59.783 11.888 35.483 6.792 7.631 2.400 2.060 −0.340 6 2,7-二羟基萘
2,7-dihydroxynaphthalene64.804 0 20.364 12.852 1.469 2.300 2.064 −0.236 7 1,6-二羟基萘
1,6-dihydroxynaphthalene63.834 0 22.492 12.015 2.858 1.780 2.065 0.285 8 2-羟基-9-芴酮
2-hydroxy-9-fluorenone72.992 11.929 26.253 12.353 8.584 1.500 1.499 −0.002 9 5,12-萘并萘醌
5,12-naphthacenequinone89.567 25.090 39.987 14.650 15.275 1.720 1.722 0.002 10 2,3-二羟基萘
2,3-dihydroxynaphthalene62.891 0 22.650 9.486 2.842 1.780 1.780 0 11 1,5-二羟基萘
1,5-dihydroxynaphthalene63.419 0 24.921 10.750 4.336 1.870 2.065 0.195 12 1,8-二羟基蒽醌
1,8-dihydroxyanthraquinone100.685 24.406 21.315 17.793 17.634 2.300 2.381 0.081 13 萘嵌苯酮
Perinaphthenone59.712 11.585 33.513 8.071 5.133 1.080 1.163 0.083 14 11h-苯并[a]芴-11-酮
11h-benzo[a]fluorene-11-one77.712 12.502 45.710 7.142 9.537 1.700 2.063 0.363 15 2-羟基蒽醌
2-hydroxyanthraquinone84.919 24.273 23.761 18.391 13.913 1.110 1.115 0.005 16 1,4-二羟基蒽醌
1,4-dihydroxyanthraquinone98.769 24.406 21.216 17.632 17.682 2.700 2.381 −0.320 17 菲醌
Phenanthrene-quinone71.710 23.659 34.082 10.699 9.284 0.301 0.280 −0.021 18 1,2-萘醌
1,2-naphthoquinone53.710 22.136 22.278 10.674 4.491 0.301 0.281 −0.020 19 1,4-苯醌
1,4-benzoquinone35.710 20.566 9.066 13.534 1.213 0 −0.004 −0.004 20 1,4-蒽醌
1,4-anthraquinone71.567 23.271 27.685 14.982 8.531 0.301 0.267 −0.034 21 9-羟基苯并[a]芘
9-hydroxybenzo[a]pyrene100.278 0 60.746 7.923 1.593 0.301 0.229 −0.072 22 1,4-萘二醌
1,4-naphthoquinone53.710 22.384 20.406 13.670 6.891 −1.000 −0.997 0.003 23 12-羟基苯并[a]芘
12-hydroxybenzo[a]pyrene101.609 0 49.077 6.428 4.073 1.980 2.065 0.085 24 1,3-二羟基萘
1,3-dihydroxynaphthalene62.320 0 22.257 11.226 2.934 2.300 2.065 −0.235 25 2,6-二羟基萘
2,6-dihydroxynaphthalene64.333 0 20.318 13.012 1.480 1.840 2.065 0.225 26 苊醌
Acenaphthenequinone65.710 23.055 23.440 8.462 9.740 1.650 1.502 −0.148 27 1-羟基-9-芴酮
1-hydroxy-9-fluorenone72.492 11.949 29.331 10.239 10.408 1.740 1.743 0.003 28 苯并[c]菲[1,4]醌
Benzo[c]phenanthrene-1,4-dione89.567 24.221 40.254 15.517 11.054 1.150 1.151 0.001 29 7,12-苯并蒽醌
Benz[a]anthracene-7,12-dione89.638 25.260 42.633 14.230 16.262 0.845 0.807 −0.038 30 苯并蒽酮
1,9-benz-10-anthrone77.712 12.494 45.859 7.733 8.894 2.360 2.046 −0.314 31 芘-4,5-二酮
Pyrene-4,5-dione83.638 24.186 32.708 10.279 11.516 0.301 0.483 0.182 32 1,4-菲醌
Phenanthrene-1,4-dione71.638 23.442 30.193 14.625 9.422 0.176 0.176 0 表 2 lgEC50与参数的最佳变量子集回归结果
Table 2. Results of parameters and lgEC50 with best subsets regression
序号
No变量子集
Subset of variablesb r Radj2 R2 F S FIT 1 E16 1 0.3502 0.0934 0.1226 4.192 0.8499 0.1270 2 L,E16 2 0.5244 0.2250 0.2750 5.500 0.7858 0.3056 3 L,E16,M32 3 0.7907 0.5850 0.6252 15.567 0.5750 1.1392 4 E16,M15,M21,M32 4 0.8050 0.5959 0.6480 12.427 0.5674 1.0355 5 L,E16,M14,M21,M32 5 0.8273 0.6238 0.6845 11.280 0.5475 0.9896 6 L,E16,M14,M15,M21,M32 6 0.8274 0.6089 0.6846 9.043 0.5582 0.7980 注:表2中b表示变量数;r表示相关系数;Radj2表示调整的判定系数;R2表示决定系数;F表示Fischer检验值;S表示估计标准误差;FIT表示Kubinyi函数. 表 3 检验的相关系数
Table 3. Inspection of correlation coefficient r
剔除分子Remove molecule 相关系数
Correlation coefficient剔除分子
Remove molecule相关系数Correlation coefficient 剔除分子
Remove molecule相关系数Correlation coefficient 剔除分子
Remove molecule相关系数Correlation coefficient 剔除分子
Remove molecule相关系数 Correlation coefficient 1 0.8276 8 0.8293 15 0.8273 22 0.8328 29 0.8335 2 0.8317 9 0.8338 16 0.8181 23 0.8245 30 0.8407 3 0.8211 10 0.8296 17 0.8195 24 0.8231 31 0.8401 4 0.8384 11 0.8296 18 0.8194 25 0.8271 32 0.8164 5 0.8362 12 0.8205 19 0.8162 26 0.8307 6 0.8339 13 0.8266 20 0.8173 27 0.8332 7 0.8266 14 0.8266 21 0.8338 28 0.8468 表 4 神经网络模型的构成及结果
Table 4. Composition and Results of the neural network model
神经网络模型
Neural network model总
Total训练集
Training set测试集
Test set验证集
Validation set网络结构
Network structure5-3-1 — — — — 每组分子
Each group molecules— — 第2,4,5个 第1个 第3个 相关系数
Correlation coefficient— 0.9826 0.9828 0.9812 0.9987 表 5 神经网络模型的权重和偏置
Table 5. Weights and bias of neural network model
层间变化
Inter layer variation权重
Weight偏置
Skewing从输入层到隐蔽层
Input to hidden5.4333 1.8446 3.1702 7.1633 −18.8820 0.7736 −1.9282 −5.3205 −5.3938 −7.5461 16.0280 −0.1719 −0.6525 −0.9611 −3.7414 9.3688 5.4315 −1.6258 从隐蔽层到输出层
Hidden to output−1.2688 −1.0919 −1.1762 −0.2436 -
[1] 张玉洁, 云洋. 环境中的氧化多环芳烃综述[J]. 环境化学, 2021, 40(1): 150-163. doi: 10.7524/j.issn.0254-6108.2020022802 ZHANG Y J, YUN Y. Oxygenated polycyclic aromatic hydrocarbons in the environment: A review[J]. Environmental Chemistry, 2021, 40(1): 150-163 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020022802
[2] 高玉宗, 姬亚芹, 杨益, 等. 天津市大气中多环芳烃衍生物污染特征和来源[J]. 中国环境科学, 2023, 43(3): 1026-1034. GAO Y Z, JI Y Q, YANG Y, et al. Pollution characteristics and sources of polycyclic aromatic hydrocarbon derivatives in the atmosphere of Tianjin[J]. China Environmental Science, 2023, 43(3): 1026-1034 (in Chinese).
[3] ACHTEN C, ANDERSSON J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds, 2015, 35(2/3/4): 177-186. [4] 李宏宇, 李沛祺, 黄娟, 等. 兰州市大气OPAHs污染特征及潜在来源分析[J]. 中国环境科学, 2022, 42(8): 3561-3571. LI H Y, LI P Q, HUANG J, et al. Pollution characteristics and potential pollution source regions of atmospheric OPAHs in Lanzhou[J]. China Environmental Science, 2022, 42(8): 3561-3571 (in Chinese).
[5] 古鹏, 汤佳豪, 赵庆庆, 等. 土壤中9-芴酮和9, 10-蒽醌的分析方法及赋存形态[J]. 农业环境科学学报, 2023, 42(5): 1091-1099. GU P, TANG J H, ZHAO Q Q, et al. Analytical method and speciation characteristics of 9-fluorenone and 9, 10-anthraquinone in soil[J]. Journal of Agro-Environment Science, 2023, 42(5): 1091-1099 (in Chinese).
[6] 金玲敏, 徐童, 乔显亮. OPAHs对斑马鱼胚胎的急性毒性预测[J]. 生态毒理学报, 2021, 16(6): 53-59. JIN L M, XU T, QIAO X L. Prediction of acute toxicity by OPAHs to zebrafish embryos[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 53-59 (in Chinese).
[7] 张肖江, 周春桂, 王志军, 等. 基于BP神经网络PID的水下无人航行器舵机驱动智能控制系统[J]. 探测与控制学报, 2023, 45(2): 109-114. ZHANG X J, ZHOU C G, WANG Z J, et al. Underwater UAV steering gear driven intelligent control system based on BP neural network PID[J]. Journal of Detection & Control, 2023, 45(2): 109-114 (in Chinese).
[8] YANG J, XU Y Y, WANG B, et al. Group Lasso based redundancy-controlled feature selection for fuzzy neural network[J]. Optoelectronics Letters, 2023, 19(5): 284-289. doi: 10.1007/s11801-023-2053-x [9] DING Y, ZHANG Z L, ZHAO X F, et al. Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification[J]. Defence Technology, 2023, 23: 164-176. doi: 10.1016/j.dt.2022.02.007 [10] 李晓晨, 白音包力皋, 李向东, 等. 基于IPSO-BP神经网络的高含沙水体对鱼类影响预测方法[J]. 水利学报, 2023, 54(3): 291-301. LI X C, BAIYINBAOLIGAO, LI X D, et al. Aprediction method for the impact of hyper-concentrated flow on fishes based on the IPSO-BP neural network[J]. Journal of Hydraulic Engineering, 2023, 54(3): 291-301 (in Chinese).
[11] 堵锡华, 陈艳, 宋明, 等. 神经网络用于卤代肉桂酸对羊角月牙藻毒性的预测研究[J]. 生态毒理学报, 2021, 16(3): 347-354. DU X H, CHEN Y, SONG M, et al. Predictive study on toxicity of halogenated cinnamic acid to selenastrum capricornutum by neural network method[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 347-354 (in Chinese).
[12] 堵锡华, 田林, 李靖, 等. 新的价键指数用于甲酰胺类似物活性的理论研究[J]. 分子科学学报, 2022, 38(3): 234-241. DU X H, TIAN L, LI J, et al. Theoretical study on activity of formamide analoguesby using new valence bond index[J]. Journal of Molecular Science, 2022, 38(3): 234-241 (in Chinese).
[13] 堵锡华, 吴琼, 李靖, 等. 有机污染物色度降解动力学常数的神经网络研究[J]. 徐州工程学院学报(自然科学版), 2022, 37(4): 30-35. DU X H, WU Q, LI J, et al. Neural network study on kinetic constants of chromatic degradation of organic pollutants[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2022, 37(4): 30-35 (in Chinese).
[14] 张婷, 梁逸曾, 赵晨曦, 等. 基于分子结构预测气相色谱程序升温保留指数[J]. 分析化学, 2006, 34(11): 1607-1610. ZHANG T, LIANG Y Z, ZHAO C X, et al. Prediction of temperature-programmed retention indices from molecule structures[J]. Chinese Journal of Analytical Chemistry, 2006, 34(11): 1607-1610 (in Chinese).
[15] 胡黔楠, 梁逸曾, 王亚丽, 等. 直观队列命名法的基本原理及其在矩阵与拓扑指数计算中的应用[J]. 计算机与应用化学, 2003, 20(4): 386-390. HU Q N, LIANG Y Z, WANG Y L, et al. The basic principles of heuristic queue notation and its applications in calculation of matrix and topological index for topological graphs[J]. Computers and Applied Chemistry, 2003, 20(4): 386-390 (in Chinese).
[16] SAÍZ-URRAL, PÉREZGONZÁLEZM, TEIJEIRAM. 2D-autocorrelation descriptors for predicting cytotoxicity of naphthoquinone ester derivatives against oral human epidermoid carcinoma[J]. Bioorganic & Medicinal Chemistry, 2007, 15(10): 3565-3571. [17] 刘海春, 卢帅, 冉挺, 等. 基于分子对接和QSAR方法预测B-RafⅡ型抑制剂活性[J]. 物理化学学报, 2015, 31(11): 2191-2206. LIU H C, LU S, RAN T, et al. Accurate activity predictions of B-Raftype Ⅱ inhibitors via molecular docking and QSAR methods[J]. Acta Physico-ChimicaSinica, 2015, 31(11): 2191-2206 (in Chinese).
[18] WANG Y F, ZHOU M L, SHEN C L, et al. Time delay recursive neural network-based direct adaptive control for a piezo-actuated stage[J]. Science China Technological Sciences, 2023, 66(5): 1397-1407. doi: 10.1007/s11431-022-2081-7 [19] ANDREA T A, KALAYEH H. Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors[J]. Journal of Medicinal Chemistry, 1991, 34(9): 2824-2836. doi: 10.1021/jm00113a022 [20] 许禄, 邵学广. 化学计量学方法[M]. 2版. 北京: 科学出版社, 2004: 441. XU L, SHAO X G. Methods of chemometrics[M]. 2nded. Beijing: Science Press, 2004: 441(in Chinese).