-
铬金属是我国《重金属污染综合防治“十二五”规划》重点防控的重金属之一,在自然界中铬主要以三价铬Cr(Ⅲ)和六价铬Cr(Ⅵ)的形式存在. 三价铬Cr(Ⅲ)稳定、低毒,是动植物必需的微量元素之一,但是六价铬Cr(Ⅵ)具有致癌性和致畸性,可以通过食物链蓄积放大,引起人体多器官功能衰竭、坏死[1 − 3]. 根据研究报道,铬污染在世界十大最具毒性的污染问题中排名第三,根据我国《生活饮用水卫生标准》,饮用水中Cr(Ⅵ)的最大可接受限值为0.05 mg L−1 [4]. 目前常用的修复水中铬污染的方法主要有离子交换、过滤、电化学沉淀、活性炭吸附、生物修复、膜分离等,这些传统的去除方法效果差,成本较高、复杂,修复周期长[5 − 6],而纳米零价铁(nZVI)因其独特的物理化学性质、无毒和经济性,被认为是能够有效进行Cr(Ⅵ)治理和修复的材料[7 − 8]. 纳米零价铁是一种粒径在1—100 nm的颗粒,具有比表面积大、吸附性和还原性强等特点,可用于环境中的Cr(Ⅵ)污染的治理和修复[9 − 11].
nZVI作为一种广被研究和使用的环境纳米材料,早期研究集中在其性能及应用方面,主要进行溶液反应动力学、去除负荷、简单固相表征等研究,而对nZVI使用过程中的转化和最终归趋等科学问题尚未解决[12 − 13]. 研究纳米零价铁颗粒在水环境中的结构性质演变将有助了解nZVI去除重金属中的效能和环境归趋[14]. 基于此,本课题组前期研究了纳米零价铁在Cr(Ⅵ)水相中的结构性能演变,发现初始的溶液pH、Cr(Ⅵ)浓度、反应时间等均对其结构性能演变产生影响[15]. 研究复杂环境条件下nZVI在Cr(Ⅵ)水相中的晶相结构演变,同时探究其对其它污染物去除效能的影响,对于预测去除重金属之后的反应产物在环境中的赋存状态、最终迁移归趋等具有重要的意义.
本文主要研究了nZVI与不同浓度Cr(Ⅵ)(0—100 mg∙L−1)在不同环境条件下的反应特性,探究初始pH(2、3、4、5、7、9、11)、无机阴离子(Cl−、CO32−、SO42−、NO3−)、重金属离子(Co2+、Cd2+、Ni2+、Cu2+)共存条件下的Cr(Ⅵ)对nZVI晶相转化的影响. 采用电感耦合等离子体发射光谱仪(ICP-OES)跟踪反应中重金属离子浓度变化,X射线衍射仪(XRD)研究纳米零价铁在复杂环境条件中的晶相结构变化,扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电镜的晶格衍射条纹、选区花样衍射对反应产物结构形貌、物相进行表征. 该研究为nZVI及其产物在环境中的迁移、转化、归趋等提供实验数据和理论支撑.
共存离子对纳米铁在Cr(Ⅵ)溶液中晶相转化的影响
Effect of coexisting ions on crystal phase transformation of nanoscale zero-valent iron in chromium-containing solutions
-
摘要: 纳米零价铁(nZVI)与水中六价铬[Cr(Ⅵ)]进行反应时,其本身的结构也发生变化,从而影响其效能和性质. 本文主要探究Cr(Ⅵ)溶液中共存重金属离子(Co2+、Cd2+、Ni2+、Cu2+)和阴离子(Cl−、CO32−、NO3−、SO42−)对nZVI晶相转化的影响. 研究发现,共存的重金属离子均能够促进nZVI氧化,促进nZVI转化为纤铁矿(γ-FeOOH)和针铁矿(α-FeOOH). 共存的阴离子对nZVI的晶相影响与铬和阴离子浓度有关. 当Cr为10 mg∙L−1时,4种阴离子均抑制nZVI的氧化作用;当Cr为20 mg∙L−1时,NO3−、SO42−促进nZVI氧化,CO32−抑制nZVI氧化,低浓度Cl−(20 mg∙L−1)促进nZVI晶相转化,高浓度Cl−(200 mg∙L−1)抑制Fe(0)转化为γ-FeOOH和γ-Fe2O3、Fe3O4的混合物;当Cr≥50 mg∙L−1时,nZVI氧化受到抑制,此时4种阴离子没有明显作用. 该研究对于探讨复杂环境条件下nZVI结构与去除效能之间的关系具有重要意义.Abstract: When nanoscale zero-valent iron (nZVI) reacts with hexavalent chromium [Cr(Ⅵ)] in water, its own structure also changes, which affects its efficacy and properties. In this paper, the effect of coexistence of heavy metal ions (Co2+, Cd2+, Ni2+, Cu2+) and anions (Cl−, CO32−, NO3−, SO42−) in Cr(Ⅵ) solution on the crystal phase transformation of nZVI was mainly investigated. Results showed that the coexistence of heavy metal ions can promote the oxidation of nZVI and promote the compositions of nZVI to lepidocrocite (γ-FeOOH) and goethite (α-FeOOH). The effect of coexisting anions on the crystal phase of nZVI is related to concentration of chromium and anions. When Cr was 10 mg∙L−1, the four anions all inhibited the oxidation of nZVI; when Cr was 20 mg∙L−1, NO3−, SO42− promoted the oxidation of nZVI, CO32− inhibited the oxidation of nZVI, low concentration of Cl−(20 mg∙L−1) promotes the crystal phase transformation of nZVI, high concentration of Cl−(200 mg∙L−1) inhibits the transformation of Fe(0) into the mixture of γ-FeOOH and maghemite/ magnetite(γ-Fe2O3/Fe3O4). When Cr(VI)≥50 mg∙L−1, the oxidation of nZVI is inhibited, and the four anions have no obvious effect at this time. This study had important significance for studying the relationship between the structure and removal efficiency of nZVI under complex environmental systems.
-
-
[1] SHAO D D, CHEN C L, WANG X K. Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II)[J]. Chemical Engineering Journal, 2012, 185/186: 144-150. doi: 10.1016/j.cej.2012.01.063 [2] ZHANG L, FU F L, TANG B. Adsorption and redox conversion behaviors of Cr(Ⅵ) on goethite/carbon microspheres and akaganeite/carbon microspheres composites[J]. Chemical Engineering Journal, 2019, 356: 151-160. doi: 10.1016/j.cej.2018.08.224 [3] YIN Z B, XU S, LIU S, et al. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium[J]. Bioresource Technology, 2020, 300: 122680. doi: 10.1016/j.biortech.2019.122680 [4] XU H, GAO M X, HU X, et al. A novel preparation of S-nZVI and its high efficient removal of Cr(Ⅵ) in aqueous solution[J]. Journal of Hazardous Materials, 2021, 416: 125924. doi: 10.1016/j.jhazmat.2021.125924 [5] 杨艺琳, 周孜迈, 邓文娜, 等. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301 YANG Y L, ZHOU Z M, DENG W N, et al. Removal of arsenic(Ⅴ) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3): 598-607 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
[6] 廖聪坚, 赵晓蕾, 刘凯, 等. 电活性微生物激活生物质炭/零价铁协同钝化Cr(Ⅵ)及机制[J]. 环境科学, 2021, 42(9): 4520-4526. doi: 10.13227/j.hjkx.202010021 LIAO C J, ZHAO X L, LIU K, et al. Reactivation of passivated biochar/nanoscale zero-valent iron by an electroactive microorganism for cooperative hexavalent chromium removal and mechanisms[J]. Environmental Science, 2021, 42(9): 4520-4526 (in Chinese). doi: 10.13227/j.hjkx.202010021
[7] ZHANG W X. Nanoscale iron particles for environmental remediation: An overview[J]. Journal of Nanoparticle Research, 2003, 5(3): 323-332. [8] LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611 [9] 赵雅光, 万俊锋, 刘奉滨, 等. 零价铁(ZVI)治理水体砷污染研究进展[J]. 环境化学, 2013, 32(10): 1943-1949. doi: 10.7524/j.issn.0254-6108.2013.10.018 ZHAO Y G, WAN J F, LIU F B, et al. Application of zero-valent iron(ZVI)technology for arsenic removal from aqueous environment[J]. Environmental Chemistry, 2013, 32(10): 1943-1949 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.10.018
[10] CAO Z, LI H, LOWRY G V, et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions[J]. Environmental Science & Technology, 2021, 55(4): 2628-2638. [11] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 250/251: 272-291. doi: 10.1016/j.jhazmat.2013.01.048 [12] DONG H R, GUAN X H, LO I M C. Fate of As(V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction[J]. Water Research, 2012, 46(13): 4071-4080. doi: 10.1016/j.watres.2012.05.015 [13] PHENRAT T, LIU Y Q, TILTON R D, et al. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: Conceptual model and mechanisms[J]. Environmental Science & Technology, 2009, 43(5): 1507-1514. [14] LIU J, LI R F, YAO Y H, et al. Fate and mechanistic insights into the transformation of aged nanoscale zerovalent iron (nZVIA) reacted with Cr(Ⅵ): Impact of aging time in oxic water[J]. ACS Earth and Space Chemistry, 2019, 3(7): 1288-1295. doi: 10.1021/acsearthspacechem.9b00095 [15] 刘爱荣, 戴雨薇, 夏泽阳, 等. 纳米零价铁在含Cr(Ⅵ)水相中的结构性能演变研究[J]. 环境科学学报, 2022, 42(9): 92-101. LIU A R, DAI Y W, XIA Z Y, et al. Evolution of nanoscale zero valent iron on structure and properties in Cr(Ⅵ)-containing aqueous phase[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 92-101 (in Chinese).
[16] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2154-2156. [17] MANNING B A, KISER J R, KWON H, et al. Spectroscopic investigation of Cr(Ⅲ)- and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environmental Science & Technology, 2007, 41(2): 586-592. [18] LIU A R, LIU J, HAN J H, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070 [19] LIU A R, LIU J, ZHANG W X. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water[J]. Chemosphere, 2015, 119: 1068-1074. doi: 10.1016/j.chemosphere.2014.09.026 [20] FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062 [21] ZHOU X B, JING G H, LV B H, et al. Highly efficient removal of chromium(Ⅵ) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system[J]. Chemosphere, 2016, 160: 332-341. doi: 10.1016/j.chemosphere.2016.06.103 [22] 于新, 豆小敏, 张艳素, 等. 反应条件对零价铁去除As(Ⅲ)动力学的影响[J]. 环境化学, 2011, 30(5): 1011-1018. YU X, DOU X M, ZHANG Y S, et al. Effect of reaction conditions on the removal kinetics of as(Ⅲ) by zero-valent iron[J]. Environmental Chemistry, 2011, 30(5): 1011-1018 (in Chinese).
[23] LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury (Ⅱ) and chromium (Ⅵ) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 245: 34-40. doi: 10.1016/j.cej.2014.02.011 [24] HAMDY A. Experimental study of the relationship between dissolved iron, turbidity, and removal of Cu(II) ion from aqueous solutions using zero-valent iron nanoparticles[J]. Arabian Journal for Science and Engineering, 2021, 46(6): 5543-5565. doi: 10.1007/s13369-020-05079-0 [25] QU G Z, ZENG D Y, CHU R J, et al. Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(Ⅵ) and Cu(Ⅱ) removal from aqueous solution through a permeable reactive column[J]. Environmental Science and Pollution Research, 2019, 26(5): 5176-5188. doi: 10.1007/s11356-018-3985-8 [26] LIU A R, LIU J, PAN B C, et al. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water[J]. RSC Adv, 2014, 4(101): 57377-57382. doi: 10.1039/C4RA08988J [27] EFECAN N, SHAHWAN T, EROĞLU A E, et al. Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI)[J]. Desalination, 2009, 249(3): 1048-1054. doi: 10.1016/j.desal.2009.06.054 [28] LI X Q, ZHANG W X. Sequestration of metal cations with zerovalent iron Nanoparticles-A study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. Journal of Physical Chemistry C, 2007, 111(19): 6939-6946. doi: 10.1021/jp0702189 [29] CALDERON B, FULLANA A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation[J]. Water Research, 2015, 83: 1-9. doi: 10.1016/j.watres.2015.06.004 [30] KIM H S, AHN J Y, KIM C, et al. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid[J]. Chemosphere, 2014, 113: 93-100. doi: 10.1016/j.chemosphere.2014.04.047 [31] YU J, LIU W X, ZENG A B, et al. Effect of SO on 1, 1, 1-trichloroethane degradation by Fe(0) in aqueous solution[J]. Ground Water, 2013, 51(2): 286-292. [32] GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034 [33] SUN Y K, LI J X, HUANG T L, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review[J]. Water Research, 2016, 100: 277-295. doi: 10.1016/j.watres.2016.05.031 [34] HUANG X Y, LING L, ZHANG W X. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer[J]. Journal of Environmental Sciences, 2018, 67: 4-13. doi: 10.1016/j.jes.2018.01.029 [35] JOHNSON T L, FISH W, GORBY Y A, et al. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface[J]. Journal of Contaminant Hydrology, 1998, 29(4): 379-398. doi: 10.1016/S0169-7722(97)00063-6 [36] HERNANDEZ R, ZAPPI M, KUO C H. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment[J]. Environmental Science & Technology, 2004, 38(19): 5157-5163. [37] HWANG Y, KIM D, SHIN H S. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse[J]. Environmental Technology, 2015, 36(9): 1178-1187. doi: 10.1080/09593330.2014.982723 [38] 杨文君, 郭迎庆, 杜尔登. 地下水中常见离子对纳米零价铁除Se(Ⅳ)动力学的影响[J]. 环境科学, 2014, 35(5): 1793-1797. doi: 10.13227/j.hjkx.2014.05.022 YANG W J, GUO Y Q, DU E D. Dynamic effects of commonly Co-existing anions on the removal of selenite from groundwater by nanoscale zero-valent iron[J]. Environmental Science, 2014, 35(5): 1793-1797 (in Chinese). doi: 10.13227/j.hjkx.2014.05.022