-
湖泊是水生生态系统的重要组成部分,也是重要的生物多样性储存库[1]. 研究发现,湖泊在调节河川径流,繁衍水生生物和改善区域生态环境等方面发挥着重要作用[2 − 4]. 事实上,湖泊的许多生态功能都是由水生生物(包括植物和鱼类)、沉积物及其微生物协助完成的. 微生物影响水中有机质分解和养分循环,促进植物生长[5]. 水体和沉积物中的微生物群落对污水中的氮磷硫的去除有着直接影响[6]. 同时,微生物对水体污染物响应敏感,在水体质量和污染检测中常作为指示指标[7 − 8]. 随着湖泊富营养化和水体污染问题的日益严重,污染物对水体和沉积物微生物群落影响及其生态功能危害受到学者的广泛关注[9 − 11].
砷是环境中广泛存在的天然有毒类金属元素. 进入工业时代以来,由于金属冶炼、化石燃烧等工业活动,以及农业中使用含砷农药,大量含砷化合物排放到环境中,最终造成湖泊水体中砷污染问题[12]. 进入水体中的砷不断累积,并引起水体和沉积物微生物群落结构和生态功能的紊乱,从而威胁湖泊水体健康[13 − 14]. 同时,砷由水体进入动植物体内,通过食物链富集传递进入人体,对人类健康构成危害[15]. 目前,湖泊等水体砷污染问题已经得到了全球范围内的大量报道[16 − 17]. 鱼类是湖泊系统中的重要生物资源,鱼类活动能够影响湖泊生物群落结构、营养物质的构成等[18 − 19]. 然而,关于鱼类扰动对湖泊水体和沉积物中微生物的影响却极少报道. 因此,认识砷污染和鱼类活动对湖泊水体和沉积物微生物的影响,对全面理解湖泊生态系统中砷的毒性效应和生态风险具有重要意义.
鉴于此,本研究通过室内模拟湖泊生态系统,通过高通量测序技术探究鱼类活动和砷污染下湖泊水体和沉积物细菌群落的响应机制. 这将有助于提升人们对湖泊水体和沉积物细菌群落的认识,也有助于了解鱼类活动和污染物共同作用下对水生生态系统的潜在影响.
鱼和砷对湖泊水体和沉积物细菌群落的影响
Effects of fish and arsenic on bacterial communities in lake water and sediment
-
摘要: 湖泊是水体生物多样性的一个重要存储库,湖泊砷污染问题在全球范围内被广泛关注,然而鱼扰动和砷污染的联合作用对水体和沉积物微生物影响研究却很少报道. 鉴于此,本研究通过室内模拟湖泊生态系统,并采用高通量测序技术以探究鱼类活动和砷污染下湖泊水体和沉积物细菌群落的响应机制. 研究结果表明,沉积物细菌多样性显著高于水体和鱼组织中细菌多样性. 鱼和砷均能引起水体和沉积物细菌群落的改变,鱼和砷的共同作用可使沉积物细菌多样性显著降低,同时可导致水体中黄杆菌属(Flavobacterium)和红杆菌属(Rhodobacter)的含量显著降低. 这些结果有利于深入了解湖泊水体和沉积物细菌群落,为开展污染物和生物扰动联合作用下的生态风险研究提供科学依据.Abstract: Lake ecosystems are thought as an important reservoir of aquatic biodiversity, lake arsenic contamination is a growing concern for global safety and health. However, the combined effect of arsenic and fish disturbance on microbial communities in water and sediments are rarely reported. Herein, a microcosm experiment was used to explore the alteration of bacterial communities of lake water and sediment under fish activity and/or arsenic using Illumina sequencing analysis. The results showed that bacterial diversity in sediments was significantly higher than that in water and fish. Both fish and arsenic could cause changes in bacterial communities in water and sediments. In addition, co-exposure to arsenic and fish decreased significantly the bacterial diversity in sediments, also reduce observably the relative abundance of Flavobacterium and Rhodobacter in water. Our findings broaden the current scientific knowledge of the microbial communities in lake and sediment ecosystems, and provide scientific basis for ecological risk study under the combined effects of pollutants and biological disturbance.
-
Key words:
- lake /
- sediment /
- fish disturbance /
- arsenic pollution /
- bacterial diversity.
-
表 1 本实验体系的基本理化性质
Table 1. The basic physicochemical properties in this experimental system
体系
Systems指标
IndexC C-F As As-F 沉积物 pH
N/%
C/%
As/ (mg·kg−1)7.85 ± 0.0 a 7.87 ± 0.0 a 7.78 ± 0.0 a 7.86 ± 0.0 a 0.12 ± 0.1 a 0.13 ± 0.0 a 0.13 ± 0.01 a 0.13 ± 0.0 a 1.58 ± 0.0 a 1.56 ± 0.0 a 1.59 ± 0.0 a 1.60 ± 0.1 a 12.5 ± 0.2 b 12.6 ± 0.1 b 18.0 ± 0.2 a 17.5 ± 0.5 a 水体 pH
As/(μg·kg−1)9.19 ± 0.0 b 10.1 ± 0.0 a 9.31 ± 0.1 b 10.2 ± 0.1 a 2.16 ± 0.1 b 2.27 ± 0.1 b 31.1 ± 1.2 a 29.6 ± 0.5 a 鱼 As/(mg·kg−1) — 0.19 ± 0.02 b — 0.34 ± 0.02 a 注:C表示空白对照组;C-F表示添加鱼的无污染组;As表示添加砷的无鱼处理组;As-F表示添加砷和鱼的处理组. 所有数据均以“均值 ± 标准差”表示,不同字母(ab)表示数据在四个处理间在0.05水平上存在显著差异. “—”表示无数据.
Note: C represents the control treatment; C-F represents the control group with fish added; As represents the fish-free treatment with arsenic added; As-F represents the treatment with arsenic and fish added. All data are presented as “mean ± standard deviation”, and different letters (ab) indicate significant differences at the 0.05 level among the four treatments. “—” indicates no data. -
[1] 张锋, 李自珍, 惠苍. 中国湿地物种多样性与生境面积关系及其生态学机理的模拟研究[J]. 西北植物学报, 2004, 24(3): 392-396. ZHANG F, LI Z Z, HUI C. Species-area relationship of Chinese wetlands and its theoretical simulation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(3): 392-396 (in Chinese).
[2] FILSTRUP C T, KING K B S, MCCULLOUGH I M. Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes[J]. Ecology Letters, 2019, 22(12): 2120-2129. doi: 10.1111/ele.13407 [3] 罗桂林, 田林锋. 基于WQI法的宁夏湖泊藻类爆发过程水环境质量变化及溯源探究[J]. 环境化学, 2021, 40((7): ): 2073-2082. doi: 10.7524/j.issn.0254-6108.2020100301 LUO G L, TIAN L F. Study on water environmental quality change and source tracing of algae bloom in lakes of Ningxia based on WQI method[J]. Environmental Chemistry, 2021, 40((7): ): 2073-2082 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020100301
[4] QIN B Q, ZHANG Y L, DENG J M, et al. Polluted lake restoration to promote sustainability in the Yangtze River Basin, China[J]. National Science Review, 2022, 9(1): nwab207. doi: 10.1093/nsr/nwab207 [5] 郑焕春, 周青. 微生物在富营养化水体生物修复中的作用[J]. 中国生态农业学报, 2009, 17(1): 197-202. doi: 10.3724/SP.J.1011.2009.00197 ZHENG H C, ZHOU Q. Function of microorganism in bioremediation of eutrophic water[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 197-202 (in Chinese). doi: 10.3724/SP.J.1011.2009.00197
[6] 于小彦, 张平究, 张经纬, 等. 城市河流沉积物微生物量分布和群落结构特征[J]. 环境科学学报, 2020, 40(2): 585-596. YU X Y, ZHANG P J, ZHANG J W, et al. Characteristics of distribution patterns of microbial biomass and community structures in the sediments from urban river[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 585-596 (in Chinese).
[7] 范廷玉, 赵一凡, 王兴明, 等. 芜湖城市内河水体微生物群落结构特征及其影响因素[J]. 环境化学, 2022, 41(4): 1380-1391. doi: 10.7524/j.issn.0254-6108.2021090201 FAN T Y, ZHAO Y F, WANG X M, et al. Microbial community structure and its influencing factors in urban river water in Wuhu[J]. Environmental Chemistry, 2022, 41(4): 1380-1391 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021090201
[8] 王慧婷, 孙靖宇, 王洪敏. 水生生物在水质监测中的应用研究[J]. 环境与发展, 2018, 30(4): 185-186. WANG H T, SUN J Y, WANG H M. Application of aquatic organisms in water quality monitoring[J]. Environment and Development, 2018, 30(4): 185-186 (in Chinese).
[9] MO Y Y, PENG F, GAO X F, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9(1): 128. doi: 10.1186/s40168-021-01079-w [10] 覃岚倩, 白少元, 张琴, 等. 人工湿地对抗生素复合污染的净化效果及微生物群落响应[J]. 生态学杂志, 2021, 40(2): 525-533. QIN L Q, BAI S Y, ZHANG Q, et al. Purification effect of constructed wetland on antibiotic compound pollution and the microbial community response[J]. Chinese Journal of Ecology, 2021, 40(2): 525-533 (in Chinese).
[11] 吴玲, 秦红益, 朱梦圆, 等. 太湖富营养化湖区秋季水体和沉积物中硝化微生物分布特征及控制因素[J]. 湖泊科学, 2017, 29(6): 1312-1323. doi: 10.18307/2017.0603 WU L, QIN H Y, ZHU M Y, et al. Distribution characteristics and controlling factors of nitrifying microorganisms in freshwater and sediment of eutrophic zones in Lake Taihu in autumn[J]. Journal of Lake Sciences, 2017, 29(6): 1312-1323 (in Chinese). doi: 10.18307/2017.0603
[12] 吴万富, 徐艳, 史德强, 等. 我国河流湖泊砷污染现状及除砷技术研究进展[J]. 环境科学与技术, 2015, 38(S1): 190-197. WU W F, XU Y, SHI D Q, et al. The arsenic pollution status of the rivers and lakes in China and the research progress on arsenic removal techniques[J]. Environmental Science & Technology, 2015, 38(Sup 1): 190-197 (in Chinese).
[13] 武广哲. 滆湖沉积物微生物多样性及其分布特性研究[D]. 上海: 华东理工大学, 2020. WU G Z. Study on microbial diversity and distribution characteristics of sediments in the Lake Gehu[D]. Shanghai: East China University of Science and Technology, 2020 (in Chinese).
[14] 张萍, 张菊, 邓焕广, 等. 南四湖菹草对上覆水和表层沉积物中汞和砷的富集特征[J]. 环境化学, 2022, 41(11): 3589-3598. doi: 10.7524/j.issn.0254-6108.2021071402 ZHANG P, ZHANG J, DENG H G, et al. Enrichment characteristics of mercury and arsenic by Potamogeton crispus in the overlying water and surface sediment of Nansi Lake[J]. Environmental Chemistry, 2022, 41(11): 3589-3598 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021071402
[15] 宋梦萍, 杨常亮, 张璟, 等. 食物相暴露条件下尼罗罗非鱼对砷的累积与转化[J]. 环境化学, 2022, 41(6): 1897-1904. doi: 10.7524/j.issn.0254-6108.2021113002 SONG M P, YANG C L, ZHANG J, et al. Accumulation and transformation of arsenic in Oreochromis niloticus under food phase exposure[J]. Environmental Chemistry, 2022, 41(6): 1897-1904 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021113002
[16] 包稚群, 丘克强. 关于我国砷污染现状与治理砷建议[J]. 云南冶金, 2019, 48(3): 60-64. BAO Z Q, QIU K Q. The current status and treatment suggestions of arsenic pollution in China[J]. Yunnan Metallurgy, 2019, 48(3): 60-64 (in Chinese).
[17] DENG F, ZHANG D W, YANG L T, et al. Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes[J]. Chemosphere, 2022, 291: 132948. doi: 10.1016/j.chemosphere.2021.132948 [18] DALU T, CUTHBERT R N, MOYO S, et al. Invasive carp alter trophic niches of consumers and basal resources in African Reservoirs[J]. Science of the Total Environment, 2022, 813: 152625. doi: 10.1016/j.scitotenv.2021.152625 [19] 温超男. 鱼类生物操纵对水质影响的巢湖围隔试验[D]. 合肥: 安徽农业大学, 2020. WEN C N. Mesocosm experiment on the influence of biomanipulation on water quality in Lake Chaohu[D]. Hefei: Anhui Agricultural University, 2020 (in Chinese).
[20] ZHU D, MA J, LI G, et al. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens[J]. The ISME Journal, 2022, 16(2): 521-532. doi: 10.1038/s41396-021-01103-9 [21] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303 [22] COLE J R, WANG Q, CARDENAS E, et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Research, 2009, 37(suppl_1): D141-D145. [23] 高俊海, 马迎群, 秦延文, 等. 大伙房水库水体及沉积物砷总量及形态分布特征[J]. 环境科学学报, 2013, 33(9): 2573-2578. GAO J H, MA Y Q, QIN Y W, et al. Speciation and distribution characteristics of arsenic in overlying water, pore water and sediments of Dahuofang Reservoir[J]. Acta Scientiae Circumstantiae, 2013, 33(9): 2573-2578 (in Chinese).
[24] YANG F, XIE S W, WEI C Y, et al. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China[J]. Science of the Total Environment, 2018, 626: 77-86. doi: 10.1016/j.scitotenv.2018.01.079 [25] 李欢, 张静丽, 张诗雨, 等. 四环素和砷对斑马鱼的联合毒性及机制[J]. 中国环境科学, 2021, 41(7): 3371-3380. doi: 10.3969/j.issn.1000-6923.2021.07.042 LI H, ZHANG J L, ZHANG S Y, et al. Combined toxicity and underlying mechanism of tetracycline and arsenic on zebrafish[J]. China Environmental Science, 2021, 41(7): 3371-3380 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.07.042
[26] WANG H T, LIANG Z Z, DING J, et al. Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity[J]. Journal of Hazardous Materials, 2021, 417: 126018. doi: 10.1016/j.jhazmat.2021.126018 [27] ZHU D, DELGADO-BAQUERIZO M, SU J Q, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems[J]. Environmental Science & Technology, 2021, 55(11): 7445-7455. [28] HE Q, WANG S, HOU W G, et al. Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs[J]. Science of the Total Environment, 2021, 772: 145465. doi: 10.1016/j.scitotenv.2021.145465 [29] ZHANG L Y, DELGADO-BAQUERIZO M, SHI Y, et al. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems[J]. Water Research, 2021, 198: 117139. doi: 10.1016/j.watres.2021.117139 [30] 冯雪. 草鱼和银鲫肠道产消化酶细菌的研究[D]. 武汉: 华中农业大学, 2008. FENG X. Study on digestive enzyme-producing bacteria in the intestinal tract of Ctenopharyngodon idellus and Carassius auratus gibelio[D]. Wuhan: Huazhong Agricultural University, 2008 (in Chinese).
[31] KIM P S, SHIN N R, LEE J B, et al. Host habitat is the major determinant of the gut microbiome of fish[J]. Microbiome, 2021, 9(1): 166. doi: 10.1186/s40168-021-01113-x [32] BALDO L, RIERA J L, SALZBURGER W, et al. Phylogeography and ecological niche shape the cichlid fish gut microbiota in central American and African Lakes[J]. Frontiers in Microbiology, 2019, 10: 2372. doi: 10.3389/fmicb.2019.02372 [33] ZHANG X Z, YOU Y, PENG F, et al. Interaction of microbiota between fish and the environment of an In-pond raceway system in a lake[J]. Microorganisms, 2022, 10(6): 1143. doi: 10.3390/microorganisms10061143 [34] JONES S E, JAGO C F. In situ assessment of modification of sediment properties by burrowing invertebrates[J]. Marine Biology, 1993, 115(1): 133-142. doi: 10.1007/BF00349395 [35] LEMMENS P, DECLERCK S A J, TUYTENS K, et al. Bottom-up effects on biomass versus top-down effects on identity: A multiple-lake fish community manipulation experiment[J]. Ecosystems, 2018, 21(1): 166-177. doi: 10.1007/s10021-017-0144-x [36] WANG L, CHEN J, SU H J, et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?[J]. Ecosystems, 2022, 25(2): 308-319. doi: 10.1007/s10021-021-00656-2 [37] LI P, JIANG Z, WANG Y H, et al. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater[J]. Water Research, 2017, 123: 268-276. doi: 10.1016/j.watres.2017.06.053 [38] 朱永官. 农业环境中的砷及其对人体的健康风险[M]. 北京: 科学出版社, 2013. ZHU Y G. Arsenic in the agricultural environment and its potential risk to humans[M]. Beijing: Science Press, 2013(in Chinese).
[39] LI H Q, SHEN Y J, WANG W L, et al. Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil[J]. Environmental Pollution (Barking, Essex: 1987), 2021, 287: 117339.