[1] 张锋, 李自珍, 惠苍. 中国湿地物种多样性与生境面积关系及其生态学机理的模拟研究[J]. 西北植物学报, 2004, 24(3): 392-396. ZHANG F, LI Z Z, HUI C. Species-area relationship of Chinese wetlands and its theoretical simulation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(3): 392-396 (in Chinese).
[2] FILSTRUP C T, KING K B S, MCCULLOUGH I M. Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes[J]. Ecology Letters, 2019, 22(12): 2120-2129. doi: 10.1111/ele.13407
[3] 罗桂林, 田林锋. 基于WQI法的宁夏湖泊藻类爆发过程水环境质量变化及溯源探究[J]. 环境化学, 2021, 40((7): ): 2073-2082. doi: 10.7524/j.issn.0254-6108.2020100301 LUO G L, TIAN L F. Study on water environmental quality change and source tracing of algae bloom in lakes of Ningxia based on WQI method[J]. Environmental Chemistry, 2021, 40((7): ): 2073-2082 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020100301
[4] QIN B Q, ZHANG Y L, DENG J M, et al. Polluted lake restoration to promote sustainability in the Yangtze River Basin, China[J]. National Science Review, 2022, 9(1): nwab207. doi: 10.1093/nsr/nwab207
[5] 郑焕春, 周青. 微生物在富营养化水体生物修复中的作用[J]. 中国生态农业学报, 2009, 17(1): 197-202. doi: 10.3724/SP.J.1011.2009.00197 ZHENG H C, ZHOU Q. Function of microorganism in bioremediation of eutrophic water[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 197-202 (in Chinese). doi: 10.3724/SP.J.1011.2009.00197
[6] 于小彦, 张平究, 张经纬, 等. 城市河流沉积物微生物量分布和群落结构特征[J]. 环境科学学报, 2020, 40(2): 585-596. YU X Y, ZHANG P J, ZHANG J W, et al. Characteristics of distribution patterns of microbial biomass and community structures in the sediments from urban river[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 585-596 (in Chinese).
[7] 范廷玉, 赵一凡, 王兴明, 等. 芜湖城市内河水体微生物群落结构特征及其影响因素[J]. 环境化学, 2022, 41(4): 1380-1391. doi: 10.7524/j.issn.0254-6108.2021090201 FAN T Y, ZHAO Y F, WANG X M, et al. Microbial community structure and its influencing factors in urban river water in Wuhu[J]. Environmental Chemistry, 2022, 41(4): 1380-1391 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021090201
[8] 王慧婷, 孙靖宇, 王洪敏. 水生生物在水质监测中的应用研究[J]. 环境与发展, 2018, 30(4): 185-186. WANG H T, SUN J Y, WANG H M. Application of aquatic organisms in water quality monitoring[J]. Environment and Development, 2018, 30(4): 185-186 (in Chinese).
[9] MO Y Y, PENG F, GAO X F, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9(1): 128. doi: 10.1186/s40168-021-01079-w
[10] 覃岚倩, 白少元, 张琴, 等. 人工湿地对抗生素复合污染的净化效果及微生物群落响应[J]. 生态学杂志, 2021, 40(2): 525-533. QIN L Q, BAI S Y, ZHANG Q, et al. Purification effect of constructed wetland on antibiotic compound pollution and the microbial community response[J]. Chinese Journal of Ecology, 2021, 40(2): 525-533 (in Chinese).
[11] 吴玲, 秦红益, 朱梦圆, 等. 太湖富营养化湖区秋季水体和沉积物中硝化微生物分布特征及控制因素[J]. 湖泊科学, 2017, 29(6): 1312-1323. doi: 10.18307/2017.0603 WU L, QIN H Y, ZHU M Y, et al. Distribution characteristics and controlling factors of nitrifying microorganisms in freshwater and sediment of eutrophic zones in Lake Taihu in autumn[J]. Journal of Lake Sciences, 2017, 29(6): 1312-1323 (in Chinese). doi: 10.18307/2017.0603
[12] 吴万富, 徐艳, 史德强, 等. 我国河流湖泊砷污染现状及除砷技术研究进展[J]. 环境科学与技术, 2015, 38(S1): 190-197. WU W F, XU Y, SHI D Q, et al. The arsenic pollution status of the rivers and lakes in China and the research progress on arsenic removal techniques[J]. Environmental Science & Technology, 2015, 38(Sup 1): 190-197 (in Chinese).
[13] 武广哲. 滆湖沉积物微生物多样性及其分布特性研究[D]. 上海: 华东理工大学, 2020. WU G Z. Study on microbial diversity and distribution characteristics of sediments in the Lake Gehu[D]. Shanghai: East China University of Science and Technology, 2020 (in Chinese).
[14] 张萍, 张菊, 邓焕广, 等. 南四湖菹草对上覆水和表层沉积物中汞和砷的富集特征[J]. 环境化学, 2022, 41(11): 3589-3598. doi: 10.7524/j.issn.0254-6108.2021071402 ZHANG P, ZHANG J, DENG H G, et al. Enrichment characteristics of mercury and arsenic by Potamogeton crispus in the overlying water and surface sediment of Nansi Lake[J]. Environmental Chemistry, 2022, 41(11): 3589-3598 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021071402
[15] 宋梦萍, 杨常亮, 张璟, 等. 食物相暴露条件下尼罗罗非鱼对砷的累积与转化[J]. 环境化学, 2022, 41(6): 1897-1904. doi: 10.7524/j.issn.0254-6108.2021113002 SONG M P, YANG C L, ZHANG J, et al. Accumulation and transformation of arsenic in Oreochromis niloticus under food phase exposure[J]. Environmental Chemistry, 2022, 41(6): 1897-1904 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021113002
[16] 包稚群, 丘克强. 关于我国砷污染现状与治理砷建议[J]. 云南冶金, 2019, 48(3): 60-64. BAO Z Q, QIU K Q. The current status and treatment suggestions of arsenic pollution in China[J]. Yunnan Metallurgy, 2019, 48(3): 60-64 (in Chinese).
[17] DENG F, ZHANG D W, YANG L T, et al. Effects of antibiotics and heavy metals on denitrification in shallow eutrophic lakes[J]. Chemosphere, 2022, 291: 132948. doi: 10.1016/j.chemosphere.2021.132948
[18] DALU T, CUTHBERT R N, MOYO S, et al. Invasive carp alter trophic niches of consumers and basal resources in African Reservoirs[J]. Science of the Total Environment, 2022, 813: 152625. doi: 10.1016/j.scitotenv.2021.152625
[19] 温超男. 鱼类生物操纵对水质影响的巢湖围隔试验[D]. 合肥: 安徽农业大学, 2020. WEN C N. Mesocosm experiment on the influence of biomanipulation on water quality in Lake Chaohu[D]. Hefei: Anhui Agricultural University, 2020 (in Chinese).
[20] ZHU D, MA J, LI G, et al. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens[J]. The ISME Journal, 2022, 16(2): 521-532. doi: 10.1038/s41396-021-01103-9
[21] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336. doi: 10.1038/nmeth.f.303
[22] COLE J R, WANG Q, CARDENAS E, et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Research, 2009, 37(suppl_1): D141-D145.
[23] 高俊海, 马迎群, 秦延文, 等. 大伙房水库水体及沉积物砷总量及形态分布特征[J]. 环境科学学报, 2013, 33(9): 2573-2578. GAO J H, MA Y Q, QIN Y W, et al. Speciation and distribution characteristics of arsenic in overlying water, pore water and sediments of Dahuofang Reservoir[J]. Acta Scientiae Circumstantiae, 2013, 33(9): 2573-2578 (in Chinese).
[24] YANG F, XIE S W, WEI C Y, et al. Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China[J]. Science of the Total Environment, 2018, 626: 77-86. doi: 10.1016/j.scitotenv.2018.01.079
[25] 李欢, 张静丽, 张诗雨, 等. 四环素和砷对斑马鱼的联合毒性及机制[J]. 中国环境科学, 2021, 41(7): 3371-3380. doi: 10.3969/j.issn.1000-6923.2021.07.042 LI H, ZHANG J L, ZHANG S Y, et al. Combined toxicity and underlying mechanism of tetracycline and arsenic on zebrafish[J]. China Environmental Science, 2021, 41(7): 3371-3380 (in Chinese). doi: 10.3969/j.issn.1000-6923.2021.07.042
[26] WANG H T, LIANG Z Z, DING J, et al. Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity[J]. Journal of Hazardous Materials, 2021, 417: 126018. doi: 10.1016/j.jhazmat.2021.126018
[27] ZHU D, DELGADO-BAQUERIZO M, SU J Q, et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems[J]. Environmental Science & Technology, 2021, 55(11): 7445-7455.
[28] HE Q, WANG S, HOU W G, et al. Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs[J]. Science of the Total Environment, 2021, 772: 145465. doi: 10.1016/j.scitotenv.2021.145465
[29] ZHANG L Y, DELGADO-BAQUERIZO M, SHI Y, et al. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems[J]. Water Research, 2021, 198: 117139. doi: 10.1016/j.watres.2021.117139
[30] 冯雪. 草鱼和银鲫肠道产消化酶细菌的研究[D]. 武汉: 华中农业大学, 2008. FENG X. Study on digestive enzyme-producing bacteria in the intestinal tract of Ctenopharyngodon idellus and Carassius auratus gibelio[D]. Wuhan: Huazhong Agricultural University, 2008 (in Chinese).
[31] KIM P S, SHIN N R, LEE J B, et al. Host habitat is the major determinant of the gut microbiome of fish[J]. Microbiome, 2021, 9(1): 166. doi: 10.1186/s40168-021-01113-x
[32] BALDO L, RIERA J L, SALZBURGER W, et al. Phylogeography and ecological niche shape the cichlid fish gut microbiota in central American and African Lakes[J]. Frontiers in Microbiology, 2019, 10: 2372. doi: 10.3389/fmicb.2019.02372
[33] ZHANG X Z, YOU Y, PENG F, et al. Interaction of microbiota between fish and the environment of an In-pond raceway system in a lake[J]. Microorganisms, 2022, 10(6): 1143. doi: 10.3390/microorganisms10061143
[34] JONES S E, JAGO C F. In situ assessment of modification of sediment properties by burrowing invertebrates[J]. Marine Biology, 1993, 115(1): 133-142. doi: 10.1007/BF00349395
[35] LEMMENS P, DECLERCK S A J, TUYTENS K, et al. Bottom-up effects on biomass versus top-down effects on identity: A multiple-lake fish community manipulation experiment[J]. Ecosystems, 2018, 21(1): 166-177. doi: 10.1007/s10021-017-0144-x
[36] WANG L, CHEN J, SU H J, et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?[J]. Ecosystems, 2022, 25(2): 308-319. doi: 10.1007/s10021-021-00656-2
[37] LI P, JIANG Z, WANG Y H, et al. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater[J]. Water Research, 2017, 123: 268-276. doi: 10.1016/j.watres.2017.06.053
[38] 朱永官. 农业环境中的砷及其对人体的健康风险[M]. 北京: 科学出版社, 2013. ZHU Y G. Arsenic in the agricultural environment and its potential risk to humans[M]. Beijing: Science Press, 2013(in Chinese).
[39] LI H Q, SHEN Y J, WANG W L, et al. Soil pH has a stronger effect than arsenic content on shaping plastisphere bacterial communities in soil[J]. Environmental Pollution (Barking, Essex: 1987), 2021, 287: 117339.