-
地下水是自然循环过程中重要组成部分,也是生态环境系统的活跃因子[1 − 2]. 赋存于岩石中的地下水长期与周围环境进行物质、能量的交换,其化学成分特征可以反映地下水环境的历史演变规律,提供环境变化信息[3 − 6]. 众多学者对不同地区地下水水化学特征及成因开展了研究,形成以水文地球化学模拟、Piper三线图、Gibbs模型、离子比值分析等方法为主要组成部分的研究体系. 陈晨等[7]通过现场调查,运用离子比值分析方法对山东省泰莱盆地地下水类型分布特征及其控制因素进行分析,发现以牟汶河为中轴线,由边缘基岩裸露区向盆地内部离子呈上升趋势,离子主要来源于盆地南部碳酸盐岩和石膏等硫酸盐岩的共同溶解作用. 冯建国等[8]综合运用数理统计、相关性分析、Piper三线图以及离子比等方法,对山东省新泰市地下水进行了分析,发现新泰市地下水离子主要来源于硅酸盐岩和碳酸盐岩的风化溶解,同时受到人类生活、工业生产及农药化肥过量使用的影响. 通过开展地下水水化学组分特征分析,可以有效的分析地下水来源及成因,为地下水资源评价与合理保护提供重要的支持[9 − 10].
泉水是地下水的天然露头,也是不可多得的地下水资源. 泉水不仅代表着一个地区的地下水径流条件,也构成了大自然中一道靓丽的人文景观. 莱芜地区泉水众多,前人并未对莱芜地区泉水开展过系统研究,对泉水水化学特征及泉水成因研究较少. 莱芜撤市划区并入济南市后,首次对莱芜地区泉水开展了系统的泉水调查研究工作. 本文基于本次调查及泉水取样结果,运用地下水水化学特征研究分析方法,结合莱芜盆地水文地质条件,对泉水水化学特征及成因进行了分析,揭示了泉水水化学成分控制因素,从而为泉水资源开发利用及合理保护提供科学管理依据.
山东莱芜地区泉水水化学特征及形成机制
Hydrochemical characteristics and formation mechanism of spring water in Laiwu, Shandong Province
-
摘要: 基于山东莱芜地区2021年9月泉水普查取样水化学数据,运用数理统计、相关性分析、Piper三线图、Gibbs图及离子比值分析等方法,总结了泉水水化学特征,对其形成机制进行分析. 结果表明,泉水整体呈弱碱性,阳离子以Ca2+为主,阴离子以HCO3−为主,TDS在152.75—982.64 mg·L−1之间,平均值为423.15 mg·L−1,为低矿化度水;区内泉水水化学类型以HCO3-Ca型、HCO3·SO4-Ca型、HCO3-Ca·Mg型为主,局部呈点状差异分布;泉水中离子主要来源于水岩相互作用,碳酸盐岩和硅酸盐岩矿物溶解是主要离子来源. 同时,区内泉水受人类活动影响明显,NO3−主要来自于农业活动. 本研究可为莱芜地区泉水保护与合理规划利用提供依据.Abstract: Hydrochemical characteristics of spring are summarized and analyzed its formation mechanism using mathematical statistics, correlation analysis, Piper trigram, Gibbs chart and ion ratio analysis according to hydrochemistry results of spring water survey project that is conducted in study area in September 2021. The results show that spring is weakly alkaline, which dominant cation and dominant anion is Ca2+, HCO3− respectively. TDS of spring ranges from 152.75 mg·L−1to 982.64 mg·L−1 with average of 423.15 mg·L−1. Hydrochemical types of spring are mainly HCO3-Ca, HCO3·SO4-Ca, HCO3-Ca·Mg while other type distributes locally. Ion sources of spring is water-rock interaction primarily including dissolution of carbonates and silicates. In addition, spring is also affected by anthropogenic activities, especially nitrates from agricultural activities. This research results can provide scientific and technical guidance for spring protection and rational planning and utilization in Laiwu area.
-
Key words:
- spring /
- hydrochemical characteristics /
- formation mechanism /
- Laiwu area.
-
表 1 泉水水化学特征
Table 1. Chemical characteristics of spring
泉水类型
Spring type特征值
Eigenvalue水化学/(mg·L−1)
HydrochemistypH TDS/(mg·L−1) H2SiO3/(mg·L−1) Na+ K+ Ca2+ Mg2+ Cl− SO42− HCO3− NO3− 岩溶泉水
(n=67)最大值 44.9 13.6 204 60.5 61.48 517 444.52 107 8.27 982.64 36.89 最小值 0.667 0.079 53.7 3.55 8.39 37.4 107.3 0.5 7.1 303.72 1.08 平均值 8.47 1.55 117.33 18.72 18.85 86.77 294.17 35.33 7.79 446.45 15.70 标准差 8.32 2.51 24.19 10.64 12.10 62.40 52.97 23.45 0.27 120.65 5.91 变异系数 0.98 1.62 0.21 0.57 0.64 0.72 0.18 0.66 0.03 0.27 0.38 裂隙泉水
(n=33)最大值 36.8 7.72 196 38.1 88.3 216 332.53 120 8.1 857.54 51.49 最小值 0.952 0.24 26.9 3.22 9.4 29.8 33.72 4.49 6.6 152.75 11.83 平均值 16.43 1.98 80.94 14.57 26.88 81.27 163.32 50.60 7.49 375.84 27.54 标准差 8.25 1.93 43.06 8.41 19.78 36.02 101.17 33.52 0.36 156.55 10.43 变异系数 0.50 0.97 0.53 0.58 0.74 0.44 0.62 0.66 0.05 0.42 0.38 全部泉水
(n=100)最大值 44.9 13.6 204 60.5 88.3 517 444.52 120 8.27 982.64 51.49 最小值 0.667 0.079 26.9 3.22 8.39 29.8 33.72 0.5 6.6 152.75 1.08 平均值 11.10 1.69 105.32 17.35 21.50 84.95 250.99 40.37 7.69 423.15 19.61 标准差 9.07 2.33 35.85 10.11 15.44 54.97 94.88 27.96 0.33 136.89 9.47 变异系数 0.82 1.38 0.34 0.58 0.72 0.65 0.38 0.69 0.04 0.32 0.48 表 2 泉水主要化学组分相关关系矩阵
Table 2. Correlation coefficients between major ionsin spring
岩溶泉水
Karst springTDS Ca2+ Mg2+ K+ Na+ Cl− SO42− HCO3− NO3− TDS 1 Ca2+ 0.849** 1 Mg2+ 0.764** 0.398** 1 K+ 0.200 0.069 0.117 1 Na+ 0.606** 0.308* 0.483** 0.390** 1 Cl− 0.650** 0.458** 0.463** 0.213 0.879** 1 SO42− 0.837** 0.644** 0.675** 0.055 0.373** 0.367** 1 HCO3− 0.426** 0.521** 0.422** −0.033 0.063 0.151 0.053 1 NO3− 0.566** 0.467** 0.310* 0.432** 0.619** 0.647** 0.204 0.099 1 裂隙泉水
Fissure springTDS Ca2+ Mg2+ K+ Na+ Cl− SO42− HCO3− NO3− TDS 1 Ca2+ 0.952** 1 Mg2+ 0.875** 0.818** 1 K+ 0.097 0.060 0.004 1 Na+ 0.426* 0.183 0.233 0.120 1 Cl− 0.654** 0.501** 0.589** −0.019 0.624** 1 SO42− 0.911** 0.842** 0.821** 0.014 0.422 0.613** 1 HCO3− 0.757** 0.879** 0.719** 0.118 −0.072 0.190 0.600** 1 NO3− 0.605** 0.421 0.460** 0.122 0.595** 0.546** 0.502** 0.054 1 *表示在0.05水平上显著相关;**表示在0.01水平上显著相关.
*Indicates a significant correlation at the 0.05 level.**Indicates a significant correlation at the 0.01 level. -
[1] 张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17(5): 738-747. ZHANG Y H, WU Y Q, WEN X H, et al. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 2006, 17(5): 738-747 (in Chinese).
[2] 胡玥, 刘传琨, 卢粤晗, 等. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166. doi: 10.11867/j.issn.1001-8166.2014.10.1158 HU Y, LIU C K, LU Y H, et al. Application of environmental isotopes in understanding hydrological processes of the Heihe River Basin[J]. Advances in Earth Science, 2014, 29(10): 1158-1166 (in Chinese). doi: 10.11867/j.issn.1001-8166.2014.10.1158
[3] 高宗军, 田红, 张春荣. 水环境评价概述[J]. 山东科技大学学报(自然科学版), 2007, 26(1): 20-22,48. GAO Z J, TIAN H, ZHANG C R. Outline of water environment evaluation[J]. Journal of Shandong University of Science and Technology (Natural Science), 2007, 26(1): 20-22,48 (in Chinese).
[4] 孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析[J]. 环境化学, 2019, 38(11): 2601-2609. doi: 10.7524/j.issn.0254-6108.2018121002 SUN Y, ZHOU J L, WEI X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry, 2019, 38(11): 2601-2609 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018121002
[5] 袁利, 蒋少杰, 汪定圣, 等. 宿州市城区地下水化学特征及成因机制研究[J]. 地质论评, 2022, 68(4): 1555-1566. YUAN L, JIANG S J, WANG D S, et al. Study on hydrochemical characteristics and formation of groundwater in urban district of Suzhou[J]. Geological Review, 2022, 68(4): 1555-1566 (in Chinese).
[6] 韩朝辉, 王郅睿, 田辉, 等. 汉中盆地地下水水化学特征及其成因研究[J]. 西北地质, 2023, 56(4): 263-273. HAN C H, WANG Z R, TIAN H, et al. Hydrochemical characteristics and genesis of groundwater in the Hanzhong Basin[J]. Northwestern Geology, 2023, 56(4): 263-273 (in Chinese).
[7] 陈晨, 高宗军, 李伟, 等. 泰莱盆地地下水化学特征及其控制因素[J]. 环境化学, 2019, 38(6): 1339-1347. doi: 10.7524/j.issn.0254-6108.2018090504 CHEN C, GAO Z J, LI W, et al. Characteristics and possible factors of hydrochemistry in the groundwater in Tailai Basin[J]. Environmental Chemistry, 2019, 38(6): 1339-1347 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018090504
[8] 冯建国, 鲁统民, 高宗军, 等. 新泰市地下水水化学特征及成因探讨[J]. 山东科技大学学报(自然科学版), 2020, 39(1): 11-20. FENG J G, LU T M, GAO Z J, et al. Hydrochemical characteristics and causes of groundwater in Xintai city[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(1): 11-20 (in Chinese).
[9] 杨楠, 苏春利, 曾邯斌, 等. 基于水化学和氢氧同位素的兴隆县地下水演化过程研究[J]. 水文地质工程地质, 2020, 47(6): 154-162. YANG N, SU C L, ZENG H B, et al. Evolutional processes of groundwater in Xinglong County based on hydrochemistry and hydrogen and oxygen isotopes[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 154-162 (in Chinese).
[10] 童辉, 高宗军, 高法生, 等. 沂河流域地下水水化学特征及水质评价[J]. 环境化学, 2021, 40(11): 3443-3454. doi: 10.7524/j.issn.0254-6108.2020122802 TONG H, GAO Z J, GAO F S, et al. Hydrochemical characteristics and water quality evaluation of groundwater in the west of Yi River Basin[J]. Environmental Chemistry, 2021, 40(11): 3443-3454 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122802
[11] 高峰, 王振涛, 靳丰山, 等. 山东省莱芜盆地岩溶塌陷风险性评价[J]. 中国人口·资源与环境, 2016, 26(增刊2): 359-362. GAO F, WANG Z T, JIN F S, et al. Risk assessment of karst collapse in the Laiwu of Shandong Province[J]. China Population, Resources and Environment, 2016, 26(Sup 2): 359-362 (in Chinese).
[12] 李波, 王金晓, 吴璇, 等. 山东莱芜盆地东部水文地质条件及富水块段特征[J]. 中国岩溶, 2020, 39(5): 637-649. doi: 10.11932/karst2020y34 LI B, WANG J X, WU X, et al. Hydrogeological conditions and characteristics of water-rich sections in the eastern Laiwu Basin, Shandong Province[J]. Carsologica Sinica, 2020, 39(5): 637-649 (in Chinese). doi: 10.11932/karst2020y34
[13] 段壮, 高明波, 高继雷, 等. 山东莱芜张家洼铁矿床金云母40Ar/39Ar定年及其对成矿构造背景的启示[J]. 地质学报, 2022, 96(4): 1279-1296. doi: 10.3969/j.issn.0001-5717.2022.04.010 DUAN Z, GAO M B, GAO J L, et al. Phlogopite 40Ar/39Ar dating of the Zhangjiawa iron deposit, Laiwu district, Shandong Province: Implications for regional iron skarn mineralization of North China Craton[J]. Acta Geologica Sinica, 2022, 96(4): 1279-1296 (in Chinese). doi: 10.3969/j.issn.0001-5717.2022.04.010
[14] 王超, 张立川, 王应强, 等. 莱芜地区地下水污染研究[J]. 地下水, 2021, 43(6): 21-24,229. WANG C, ZHANG L C, WANG Y Q, et al. Study on groundwater pollution in Laiwu Region[J]. Ground Water, 2021, 43(6): 21-24,229 (in Chinese).
[15] 马明, 高继雷, 高明波, 等. 鲁西莱芜地区地球物理特征及富铁矿床勘查模型建立[J]. 华北地震科学, 2020, 38(2): 13-20. MA M, GAO J L, GAO M B, et al. Geophysical characteristics of Laiwu Area in western Shandong Province and establishment of exploration model for iron rich deposits[J]. North China Earthquake Sciences, 2020, 38(2): 13-20 (in Chinese).
[16] 刘书锋. 山东莱芜地区中生代侵入杂岩特征与成矿关系[J]. 地质学刊, 2020, 44(增刊1): 34-47. LIU S F. Characteristics of the Mesozoic intrusive complexes and their relation to metallogeny in Laiwu Area, Shandong Province[J]. Journal of Geology, 2020, 44(Sup 1): 34-47 (in Chinese).
[17] 李波, 王金晓, 赵无忌, 等. 莱芜盆地牟汶河流域水体同位素特征与分析[J]. 山东国土资源, 2019, 35(7): 58-63. doi: 10.12128/j.issn.1672-6979.2019.07.009 LI B, WANG J X, ZHAO W J, et al. Analysis on isotopic characteristics of water body of Muwen river basin in Laiwu Basin[J]. Shandong Land and Resources, 2019, 35(7): 58-63 (in Chinese). doi: 10.12128/j.issn.1672-6979.2019.07.009
[18] 刘元晴, 周乐, 李伟, 等. 山东莱芜盆地西北缘古近系半固结含水岩组的特征及其成因[J]. 地球学报, 2018, 39(6): 737-748. LIU Y Q, ZHOU L, LI W, et al. The characteristics and genetic analysis of the Paleogene semi-consolidated water-bearing formation on the northwestern margin of Laiwu Basin, Shandong Province[J]. Acta Geoscientica Sinica, 2018, 39(6): 737-748 (in Chinese).
[19] 马振民, 刘立才, 陈鸿汉, 等. 山东泰安岩溶水系统地下水化学环境演化[J]. 现代地质, 2002, 16(4): 423-428. MA Z M, LIU L C, CHEN H H, et al. Hydrochemical environmental evolution of Karst water system in Tai’an, Shandong Province[J]. Geoscience, 2002, 16(4): 423-428 (in Chinese).
[20] 孙逊, 王克红, 孙启堂, 等. 鲁中南山区岩溶裂隙水富水带类型及分布特征[J]. 工程勘察, 2010, 38(2): 52-56. SUN X, WANG K H, SUN Q T, et al. Types and distribution of Karst fissure water in central and southern Shangdong Province[J]. Geotechnical Investigation & Surveying, 2010, 38(2): 52-56 (in Chinese).
[21] 聂振龙, 陈宗宇, 程旭学, 等. 黑河干流浅层地下水与地表水相互转化的水化学特征[J]. 吉林大学学报(地球科学版), 2005, 35(1): 48-53. NIE Z L, CHEN Z Y, CHENG X X, et al. The chemical information of the interaction of unconfined groundwater and surface water along the Heihe River, northwestern China[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(1): 48-53 (in Chinese).
[22] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 2013, 35(4): 104-112. WANG J Z, WU J L, ZENG H A, et al. Characteristics of water isotope and hydrochemistry in Hetao Plain of Inner Mongolia[J]. Journal of Earth Sciences and Environment, 2013, 35(4): 104-112 (in Chinese).
[23] 田原, 余成群, 雒昆利, 等. 西藏地区天然水的水化学性质和元素特征[J]. 地理学报, 2014, 69(7): 969-982. TIAN Y, YU C Q, LUO K L, et al. Water chemical properties and the element characteristics of natural water in Tibet, China[J]. Acta Geographica Sinica, 2014, 69(7): 969-982 (in Chinese).
[24] REN C B, ZHANG Q Q. Groundwater chemical characteristics and controlling factors in a region of Northern China with intensive human activity[J]. International Journal of Environmental Research and Public Health, 2020, 17(23): 9126. doi: 10.3390/ijerph17239126 [25] ZHOU P P, WANG Z M, ZHANG J Y, et al. Study on the hydrochemical characteristics of groundwater along the Taklimakan Desert Highway[J]. Environmental Earth Sciences, 2016, 75(20): 1378. doi: 10.1007/s12665-016-6204-2 [26] 梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. LIANG X, ZHANG J W, LAN K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33 (in Chinese).
[27] 李贵恒, 冯建国, 鲁统民, 等. 泰莱盆地地下水水化学特征及水质评价[J]. 水电能源科学, 2019, 37(4): 52-55,121. LI G H, FENG J G, LU T M, et al. Hydrochemical characteristics and water quality assessment of groundwater in Tailai Basin[J]. Water Resources and Power, 2019, 37(4): 52-55,121 (in Chinese).
[28] 董维红, 孟莹, 王雨山, 等. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553. DONG W H, MENG Y, WANG Y S, et al. Hydrochemical characteristics and formation of the shallow groundwater in Fujin, Sanjiang Plain[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 542-553 (in Chinese).
[29] 高建飞, 丁悌平, 罗续荣, 等. 黄河水氢、氧同位素组成的空间变化特征及其环境意义[J]. 地质学报, 2011, 85(4): 596-602. GAO J F, DING T P, LUO X R, et al. δD and δ18O variations of water in the Yellow River and its environmental significance[J]. Acta Geologica Sinica, 2011, 85(4): 596-602 (in Chinese).
[30] 高宗军, 万志澎, 贺可强, 等. 大汶河流域中上游地区岩溶地下水水化学特征及其控制因素分析[J]. 地质科技通报, 2022(5): 264-272. GAO Z J, WAN Z P, HE K Q, et al. Hydrochemical characteristics and controlling factors of Karst groundwater in middle and upper reaches of Dawen River Basin[J]. Bulletin of Geological Science and Technology, 2022(5): 264-272 (in Chinese).
[31] 王攀, 靳孟贵, 路东臣. 河南省永城市浅层地下水化学特征及形成机制[J]. 地球科学, 2020, 45(6): 2232-2244. WANG P, JIN M G, LU D C. Hydrogeochemistry characteristics and formation mechanismof shallow groundwater in Yongcheng city, Henan province[J]. Earth Science, 2020, 45(6): 2232-2244 (in Chinese).
[32] 朱秉启, 杨小平. 塔克拉玛干沙漠天然水体的化学特征及其成因[J]. 科学通报, 2007, 52(13): 1561-1566. doi: 10.3321/j.issn:0023-074X.2007.13.013 ZHU B Q, YANG X P. Chemical characteristics and causes of natural water bodies in Taklimakan Desert[J]. Chinese Science Bulletin, 2007, 52(13): 1561-1566 (in Chinese). doi: 10.3321/j.issn:0023-074X.2007.13.013
[33] 吴璇, 宋一心, 王金晓, 等. 山东省柴汶河上游地区地下水化学特征分析[J]. 环境化学, 2021, 40(7): 2125-2134. doi: 10.7524/j.issn.0254-6108.2020022701 WU X, SONG Y X, WANG J X, et al. Groundwater hydrogeochemical characteristics in the up reaches of Chaiwen River, Shandong Province[J]. Environmental Chemistry, 2021, 40(7): 2125-2134 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020022701
[34] ZHU G F, SU Y H, HUANG C L, et al. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, Northwest China[J]. Environmental Earth Sciences, 2010, 60(1): 139-153. doi: 10.1007/s12665-009-0175-5 [35] 李舒, 杨佳雪, 李小倩, 等. 地下水化学组成的时空聚类分析与多级嵌套水流系统识别[J]. 地质科技通报, 2022, 41(1): 309-318. LI S, YANG J X, LI X Q, et al. Lumped cluster analysis for understanding spatial and temporal patterns of groundwater geochemistry and hierarchically nested flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 309-318 (in Chinese).
[36] FAN B L, ZHAO Z Q, TAO F X, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River Basin: A comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences, 2014, 96: 17-26. doi: 10.1016/j.jseaes.2014.09.005