-
地下水是地球宝贵的资源,是重要的生态环境因子和不可忽视的致灾因子[1 − 2],地下水水化学特征的变化往往会影响生态环境和人类社会的发展. 受多种因素的共同控制,地下水化学成分在空间和时间尺度上差异显著,主要有自然因素(降水、水岩相互作用等)[3]和人为因素(工农业污染等)[4],如何识别其主控因素,是地下水水化学形成研究的关键问题之一. Piper图、Gibbs图和离子比值法是研究地下水化学成分形成和演化的有效手段,近年来,同位素分析方法[5]、统计学方法[6]及水文地球化学模拟技术[7],将单一的地质和水文地质条件、水化学特征等因素结合起来,定性和定量揭示地下水的形成机制[8],也逐渐成为识别地下水来源及形成过程的关键方法[9].
中国南方岩溶地区分布广泛,面积约78万km2,发育了接近三千多个岩溶地下水系统[10 − 11],赋存了庞大的岩溶水资源,但受赋存环境、开采条件及水质情况的制约[12],区内仍严重缺水. 研究岩溶区地下水水化学特征及其形成机制,不仅有利于水环境保护和修复,而且对地下水的开发利用具有重要作用. 梅窖镇大石岭矿区位于中国南方岩溶地区中下部,岩溶地貌发育,蓄水能力弱,水资源可获取性差,可利用难度大,地下暗河和浅层地下水是居民主要的生活和饮用水源. 但近几年,区内浅层地下水水位急速下降、水质持续恶化,地下水化学特征及其形成机制等相关问题仍然未得到充分的研究和解决.
本文通过分析浅层地下水(埋深小于25 m)的基本理化参数和主要离子分布,利用数理统计、Piper图、Gibbs图、主成分分析法、正向演替模型和混合模型等方法,定性和定量地揭示了赣州梅窖镇岩溶区浅层地下水的水化学特征和水岩相互作用机制,为该区地下水资源的合理开发利用和管理提供科学依据.
赣州梅窖镇岩溶区浅层地下水水化学特征及形成机制
Study on the hydrochemical characteristics and formation mechanism of shallow groundwater in Karst Area, Meijiao Town, Ganzhou
-
摘要: 查明岩溶地区地下水的补给来源和水岩相互作用过程,对合理开发利用水资源、保护岩溶水资源和水生态具有重要意义. 本文综合利用数理统计、Gibbs图、正向演替模型-端元混合模型等方法,定性和定量分析了赣州梅窖镇岩溶区浅层地下水水化学特征及演化过程. 结果表明,研究区浅层地下水整体上呈弱碱性,TDS分布范围为27.61—360.75 mg·L−1,平均值为179.13 mg·L−1,水化学类型以HCO3-Ca型为主;地下水氢氧稳定同位素分布在当地大气降水线附近,指示大气降水是主要补给来源,蒸发作用不明显;地下水化学组成的主控因素是岩石风化和人类活动,其中Ca2+、Mg2+以及HCO3−主要来源于碳酸盐、硅酸盐和蒸发盐的溶解,Na+、K+主要源于硅酸盐溶解,Cl−、SO42−及NO3−反映了人类活动的影响. 通过正向演替-端元混合模型可知,岩石风化平均贡献为78.74%,大气输入和人类活动分别占12.50%和8.76%,而岩石风化中碳酸盐岩对地下水成分的贡献最大(67.64%),硅酸盐岩(7.33%)和蒸发盐岩(3.77%)的贡献较小. 碳酸盐岩风化以灰岩贡献为主,平均贡献率达60.33%,其次为白云岩,平均贡献率达29.76%.Abstract: Unravelling the recharge sources and water rock interaction processes of groundwater in karst area is of great significance for rational utilization of water resources and protection of karst water resources and water ecology. This paper used mathematical statistics, Gibbs diagram, and forward succession and end-member mixing models to qualitatively and quantitatively investigate the hydrochemical characteristics and evolution process of shallow groundwater in Karst Area, Meijiao Town, Ganzhou. The results showed that the shallow groundwater was weakly alkaline. The TDS value ranged between 27.61 mg·L−1 and 360.75 mg·L−1 with an average of 179.13 mg·L−1, and the hydrochemical type was mainly HCO3-Ca. Groundwater hydrogen and oxygen stable isotopes were distributed along the local meteoric water line, indicating that precipitation was the main source of recharge into the aquifers, with unsignificant impact of evaporation. Groundwater chemical compositions were mainly controlled by rock weathering and human activities. Ca2+, Mg2+ and HCO3− mainly originated from the dissolutions of carbonatite, silicate and evaporates. Na+ and K+ was mainly derived from the dissolutions of silicate. Distribution of Cl−, SO42− and NO3− was attributed to the effect of human activities. Results of forward succession-end-member mixing modeling indicated that the average contribution of rock weathering to groundwater constituents was 78.74%, and this of atmospheric input and human activities was 12.50% and 8.76%, respectively. In rock weathering, carbonate rock contributed the most (67.64%) to groundwater composition, followed by silicate rock (7.33%) and evaporites (3.77%). Carbonate weathering is dominated by limestone which had an average contribution rate of 60.33% to groundwater composition, followed by dolomite, with an average contribution rate of 29.76%.
-
Key words:
- Karst Area /
- shallow groundwater /
- hydrochemistry /
- hydrogen and oxygen isotopes /
- formation mechanism.
-
表 1 赣州梅窖镇大石岭矿区水体主要离子构成
Table 1. Ion compositions of the water body in the Dashiling Mining Area of Meijiao Town, Ganzhou
水类型
Water type指标
Indexρ/(mg·L−1) pH 电导率/(µs·cm −1)
Electrical conductivityCa2+ Mg2+ K+ Na+ Cl− SO42− NO3− HCO3− TDS 浅层
地下水最大值 71.12 15.64 18.82 16.40 20.71 20.45 27.08 244.00 360.75 8.71 535 最小值 4.20 0.13 0.33 0.16 ND. 0.09 ND. 10.00 27.61 5.72 30 平均值 31.48 4.02 2.65 4.31 4.38 4.62 8.06 113.21 179.13 7.21 240.72 标准差 19.65 3.63 3.91 4.23 4.60 5.07 6.94 65.74 89.49 0.75 120.98 地表水 最大值 55.77 13.29 8.19 3.37 18.77 20.94 33.66 195.20 280.97 8.53 381 最小值 15.93 1.07 0.75 0.84 ND. 2.77 ND. 61.00 84.19 7.18 44.9 平均值 40.71 8.20 2.84 1.89 4.81 6.78 6.45 136.34 201.59 7.82 271.28 标准差 14.16 3.25 2.55 0.65 5.06 5.13 9.83 37.46 53.74 0.40 104.65 表 2 研究区地下水水样旋转成分矩阵
Table 2. Rotational composition matrix of groundwater samples in the study area
指标
Indexf1 f2 f3 Ca2+浓度 0.849 0.304 0.237 Mg2+浓度 0.856 -0.060 -0.108 K+浓度 0.063 -0.004 0.901 Na+浓度 0.171 0.349 0.715 Cl−浓度 0.152 0.680 0.475 SO42−浓度 0.321 0.608 0.164 NO3−浓度 -0.044 0.909 -0.012 HCO3−浓度 0.864 0.176 0.304 特征值 2.361 1.907 1.736 贡献率/% 29.512 23.837 21.702 累积贡献率/% 29.512 53.349 75.051 表 3 地下水水化学参数间的线性相关矩阵
Table 3. Linear correlation matrix among groundwater hydrochemical parameters
指标
IndexCa2+ Mg2+ K+ Na+ Cl− SO42− NO3− HCO3− pH TDS Ca2+ 1 0.529** 0.206 0.518** 0.362* 0.476** 0.189 0.912** 0.425** 0.950** Mg2+ 1 -0.048 0.035 0.018 0.200 -0.108 0.545** 0.285 0.545** K+ 1 0.493** 0.631** 0.257 0.116 0.214 0.139 0.298* Na+ 1 0.455** 0.527** 0.274 0.464** 0.280 0.555** Cl− 1 0.370* 0.356* 0.352* -0.042 0.439** SO42− 1 0.215 0.394** 0.154 0.495** NO3− 1 0.081 -0.221 0.140 HCO3− 1 0.492** 0.985** pH 1 0.471** TDS 1 注:*表示P<0.05, **表示P<0.01 表 4 灰岩、白云岩和硅酸盐岩对地下水化学组成来源贡献率
Table 4. Contribution rate of limestone, dolomite and silicate rock to chemical composition of groundwater
类型
Type指标
Index不同来源平均贡献率/%
Contribution rate of different sources/%石灰岩
Limestone白云岩
Dolomite硅酸盐岩
Carbonate rocks碳酸盐岩 平均值 60.33 29.76 9.91 最大值 100.00 100.00 39.60 最小值 ND. ND ND. 标准差 1.56 1.58 0.10 -
[1] LIU M J, XIAO C L, LIANG X J, et al. Response of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: A case study of Shuangliao City, Northeast China[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113473. doi: 10.1016/j.ecoenv.2022.113473 [2] 童辉, 高宗军, 高法生, 等. 沂河流域地下水水化学特征及水质评价[J]. 环境化学, 2021, 40(11): 3443-3454. doi: 10.7524/j.issn.0254-6108.2020122802 TONG H, GAO Z J, GAO F S, et al. Hydrochemical characteristics and water quality evaluation of groundwater in the west of Yi River Basin[J]. Environmental Chemistry, 2021, 40(11): 3443-3454 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122802
[3] BUZZACOTT P, SKRZYPEK G. Thermal anomaly and water origin in Weebubbie Cave, Nullarbor Karst Plain, Australia[J]. Journal of Hydrology: Regional Studies, 2021, 34: 100793. doi: 10.1016/j.ejrh.2021.100793 [4] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价[J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003 LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area[J]. Environmental Chemistry, 2019, 38(9): 2055-2066 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003
[5] 宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征[J]. 环境化学, 2020, 39(7): 1809-1820. doi: 10.7524/j.issn.0254-6108.2019050402 SONG M Y, LI Z Q, WANG F T, et al. Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Jimunai River Basin, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1809-1820 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019050402
[6] 孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析[J]. 环境化学, 2019, 38(11): 2601-2609. doi: 10.7524/j.issn.0254-6108.2018121002 SUN Y, ZHOU J L, WEI X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry, 2019, 38(11): 2601-2609 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018121002
[7] 高宗军, 刘久潭, 李颖智, 等. 拉萨河谷地区孔隙地下水水化学特征及水文地球化学模拟[J]. 山东科技大学学报(自然科学版), 2020, 39(1): 1-10. GAO Z J, LIU J T, LI Y Z, et al. Hydrochemical characteristics and hydrogeochemical simulation of pore groundwater in Lhasa valley area[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(1): 1-10 (in Chinese).
[8] 孙丰英. 淮南煤田岩溶地下水化学特征及形成机制研究[D]. 淮南: 安徽理工大学, 2021. SUN F Y. Study on hydrochemical characteristics and formation mechanism of Karst groundwater in Huainan Coalfield[D]. Huainan: Anhui University of Science & Technology, 2021 (in Chinese).
[9] 朱锡芬. 乌兰布和沙漠地下水补给来源及演化规律[D]. 兰州: 兰州大学, 2011. ZHU X F. Study on recharge and evolution of groundwater in ulan buh desert[D]. Lanzhou: Lanzhou University, 2011 (in Chinese).
[10] 夏日元, 卢海平, 曹建文, 等. 南方岩溶区地下水资源特征与水资源保障对策[J]. 中国地质, 2022, 49(4): 1139-1153. doi: 10.12029/gc20220408 XIA R Y, LU H P, CAO J W, et al. Characteristics of groundwater resources of Karst areas in the Southern China and water resources guarantee countermeasures[J]. Geology in China, 2022, 49(4): 1139-1153 (in Chinese). doi: 10.12029/gc20220408
[11] 刘长礼, 王秀艳, 吕敦玉, 等. 中国南方岩溶地下水面源污染风险评价及防控对策[J]. 地球学报, 2017, 38(6): 910-918. doi: 10.3975/cagsb.2017.06.06 LIU C L, WANG X Y, LÜ D Y, et al. Risk assessment and control countermeasures of Southern China’s Karst groundwater areal source pollution[J]. Acta Geoscientica Sinica, 2017, 38(6): 910-918 (in Chinese). doi: 10.3975/cagsb.2017.06.06
[12] LECOMTE K L, PASQUINI A I, DEPETRIS P J. Mineral Weathering in a Semiarid Mountain River: Its assessment through PHREEQC inverse modeling[J]. Aquatic Geochemistry, 2005, 11(2): 173-194. doi: 10.1007/s10498-004-3523-9 [13] 贺灵, 曾道明, 魏华玲, 等. 赣南脐橙种植区典型果园土壤重金属元素评价[J]. 湖北农业科学, 2014, 53(2): 292-297. doi: 10.3969/j.issn.0439-8114.2014.02.013 HE L, ZENG D M, WEI H L, et al. Evaluating heavy metals of navel orange orchard soil in Gannan area[J]. Hubei Agricultural Sciences, 2014, 53(2): 292-297 (in Chinese). doi: 10.3969/j.issn.0439-8114.2014.02.013
[14] 易雨辰, 刘海香. 赣州市兴国县蕉溪村饮用水现状及解决建议[J]. 城市地理, 2017(20): 241. doi: 10.3969/j.issn.1674-2508.2017.20.192 YI Y C, LIU H X. Present situation of drinking water in Jiaoxi Village, Xingguo County, Ganzhou city and its solution suggestions[J]. Global City Geography, 2017(20): 241 (in Chinese). doi: 10.3969/j.issn.1674-2508.2017.20.192
[15] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545. doi: 10.13227/j.hjkx.201704051 ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the niyang river basin[J]. Environmental Science, 2017, 38(11): 4537-4545 (in Chinese). doi: 10.13227/j.hjkx.201704051
[16] NAGARAJU A, BALAJI E, SUN L H, et al. Processes controlling groundwater chemistry from mulakalacheruvu area, chittoor district, Andhra pradesh, south India: A statistical approach based on hydrochemistry[J]. Journal of the Geological Society of India, 2018, 91(4): 425-430. doi: 10.1007/s12594-018-0875-0 [17] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [18] 李学先. 酸性矿山废水影响下喀斯特流域水文地球化学特征及演化规律研究[D]. 贵阳: 贵州大学, 2018. LI X X. Study on hydrogeochemical characteristics and evolution rules of Karst Basin under the effects of acid mine waste water[D]. Guiyang: Guizhou University, 2018 (in Chinese).
[19] XIAO J, JIN Z D, ZHANG F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China[J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018 [20] 郑涛, 焦团理, 胡波, 等. 涡河流域中部地区地下水化学特征及其成因分析[J]. 环境科学, 2021, 42(2): 766-775. ZHENG T, JIAO T L, HU B, et al. Hydrochemical characteristics and origin of groundwater in the central guohe river basin[J]. Environmental Science, 2021, 42(2): 766-775 (in Chinese).
[21] 李艳利, 孙伟, 杨梓睿. 太子河流域中游地区河流硝酸盐来源及迁移转化过程[J]. 环境科学, 2017, 38(12): 5039-5046. doi: 10.13227/j.hjkx.201704238 LI Y L, SUN W, YANG Z R. Identification of nitrate sources and transformation processes in midstream areas: A case in the taizi river basin[J]. Environmental Science, 2017, 38(12): 5039-5046 (in Chinese). doi: 10.13227/j.hjkx.201704238
[22] LIU F, ZOU J W, LIU J R, et al. Factors controlling groundwater chemical evolution with the impact of reduced exploitation[J]. CATENA, 2022, 214: 106261. doi: 10.1016/j.catena.2022.106261 [23] JIA H, QU W G, REN W H, et al. Impacts of chemical weathering and human perturbations on dissolved loads of the Wei River, the Yellow River Catchment[J]. Journal of Hydrology, 2021, 603: 126950. doi: 10.1016/j.jhydrol.2021.126950 [24] LI S Y, LU X X, BUSH R T. Chemical weathering and CO2 consumption in the Lower Mekong River[J]. Science of the Total Environment, 2014, 472: 162-177. doi: 10.1016/j.scitotenv.2013.11.027 [25] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702 [26] 易冰, 刘景涛, 吕晓立, 等. 高寒干旱区地表水与地下水水化学特征及转换关系: 以大通河流域为例[J]. 环境科学, 2023, 44(2): 752-760. YI B, LIU J T, LÜ X L, et al. Hydrochemical and isotopic evidence for groundwater conversion of surface water in alpine arid areas: A case study of the Datong River Basin[J]. Environmental Science, 2023, 44(2): 752-760 (in Chinese).
[27] 李海明, 李梦娣, 肖瀚, 等. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178. doi: 10.13745/j.esf.sf.2022.1.39 LI H M, LI M D, XIAO H, et al. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain[J]. Earth Science Frontiers, 2022, 29(3): 167-178 (in Chinese). doi: 10.13745/j.esf.sf.2022.1.39
[28] 涂春霖, 马一奇, 令狐昌卫, 等. 滇东高原煤矿聚集区扎外河流域水化学特征及演化规律[J]. 科学技术与工程, 2021, 21(29): 12470-12480. doi: 10.3969/j.issn.1671-1815.2021.29.016 TU C L, MA Y Q, LINGHU C W, et al. Hydro-chemical characteristics and evolution of Zhawai River Basin in coal mining area of eastern Yunnan Plateau[J]. Science Technology and Engineering, 2021, 21(29): 12470-12480 (in Chinese). doi: 10.3969/j.issn.1671-1815.2021.29.016
[29] 肖勇, 莫培, 尹世洋, 等. 北京南郊平原地下水化学特征及成因分析[J]. 环境工程, 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013 XIAO Y, MO P, YIN S Y, et al. Hydrochemical characteristics and genesis of groundwater in southern suburb of Beijing plain[J]. Environmental Engineering, 2021, 39(8): 99-107 (in Chinese). doi: 10.13205/j.hjgc.202108013
[30] YANG P H, WANG Y Y, WU X Y, et al. Nitrate sources and biogeochemical processes in Karst underground rivers impacted by different anthropogenic input characteristics[J]. Environmental Pollution, 2020, 265: 114835. doi: 10.1016/j.envpol.2020.114835 [31] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水文地球化学特征[J]. 水文地质工程地质, 2016, 43(1): 12-21. doi: 10.16030/j.cnki.issn.1000-3665.2016.01.03 YUAN J F, DENG G S, XU F, et al. Hydrogeochemical characteristics of Karst groundwater in the northern part of the city of Bijie[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 12-21 (in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2016.01.03
[32] 郭小娇, 王慧玮, 石建省, 等. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报, 2022, 96(2): 656-672. doi: 10.3969/j.issn.0001-5717.2022.02.020 GUO X J, WANG H W, SHI J S, et al. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland, North China Plain[J]. Acta Geologica Sinica, 2022, 96(2): 656-672 (in Chinese). doi: 10.3969/j.issn.0001-5717.2022.02.020
[33] 刘德玉, 贾贵义, 张伟, 等. 甘肃敦煌地区疏勒河尾闾区地下水化学特征及成因分析[J]. 地质论评, 2022, 68(1): 181-194. doi: 10.16509/j.georeview.2021.12.135 LIU D Y, JIA G Y, ZHANG W, et al. Hydrochemical characteristics and genetic mechanism analysis of groundwater in the tail area of the Shule River, Dunhuang, Gansu[J]. Geological Review, 2022, 68(1): 181-194 (in Chinese). doi: 10.16509/j.georeview.2021.12.135
[34] 林云, 曹飞龙, 武亚遵, 等. 北方典型岩溶泉域地下水水文地球化学特征分析: 以鹤壁许家沟泉域为例[J]. 地球与环境, 2020, 48(3): 294-306. LIN Y, CAO F L, WU Y Z, et al. Hydrogeochemical characteristics of groundwater in typical Karst spring areas of North China-a case study in the xujiagou spring area, Hebi[J]. Earth and Environment, 2020, 48(3): 294-306 (in Chinese).
[35] JIA H, QIAN H, ZHENG L, et al. Alterations to groundwater chemistry due to modern water transfer for irrigation over decades[J]. Science of the Total Environment, 2020, 717: 137170. doi: 10.1016/j.scitotenv.2020.137170 [36] MONDAL D, GUPTA S, REDDY D V, et al. Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India[J]. Journal of Geochemical Exploration, 2014, 145: 190-206. doi: 10.1016/j.gexplo.2014.06.005 [37] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 2020, 41(9): 4003-4010. ZHANG T, WANG M G, ZHANG Z Y, et al. Hydrochemical characteristics and possible controls of the surface water in ranwu lake basin[J]. Environmental Science, 2020, 41(9): 4003-4010 (in Chinese).
[38] 黄奇波, 覃小群, 刘朋雨, 等. 汾阳地区不同类型地下水SO42−、δ34S的特征及影响因素[J]. 第四纪研究, 2014, 34(2): 364-371. HUANG Q B, QIN X Q, LIU P Y, et al. The characteristics and influencing factors of so42−and sulfate isotope(δ34s)in different types of groundwater in Fenyang, Shanxi Province[J]. Quaternary Sciences, 2014, 34(2): 364-371 (in Chinese).
[39] 何明霞, 张兵, 夏文雪, 等. 天津七里海湿地水化学组成及主要离子来源分析[J]. 环境科学, 2021, 42(2): 776-785. HE M X, ZHANG B, XIA W X, et al. Hydrochemical characteristics and analysis of the qilihai wetland, Tianjin[J]. Environmental Science, 2021, 42(2): 776-785 (in Chinese).
[40] 傅雪梅, 孙源媛, 苏婧, 等. 基于水化学和氮氧双同位素的地下水硝酸盐源解析[J]. 中国环境科学, 2019, 39(9): 3951-3958. FU X M, SUN Y Y, SU J, et al. Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J]. China Environmental Science, 2019, 39(9): 3951-3958 (in Chinese).
[41] RAHMATI O, SAMANI A N, MAHMOODI N, et al. Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (case study: Ghorveh–dehgelan aquifer)[J]. Water Quality, Exposure and Health, 2015, 7(2): 143-151. doi: 10.1007/s12403-014-0135-5 [42] MAO H R, WANG G C, RAO Z, et al. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics[J]. Journal of Cleaner Production, 2021, 329: 129697. doi: 10.1016/j.jclepro.2021.129697 [43] CHETELAT B, LIU C Q, ZHAO Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin Rivers: Anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277. doi: 10.1016/j.gca.2008.06.013 [44] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30. [45] 唐金平, 张强, 胡漾, 等. 巴中北部岩溶山区地下水化学特征及演化分析[J]. 环境科学, 2019, 40(10): 4543-4552. doi: 10.13227/j.hjkx.201904068 TANG J P, ZHANG Q, HU Y, et al. Hydrochemical characteristics of Karst groundwater in the mountains of northern Bazhong city, China[J]. Environmental Science, 2019, 40(10): 4543-4552 (in Chinese). doi: 10.13227/j.hjkx.201904068
[46] 苏春利, 张雅, 马燕华, 等. 贵阳市岩溶地下水水化学演化机制: 水化学和锶同位素证据[J]. 地球科学, 2019, 44(9): 2829-2838. SU C L, ZHANG Y, MA Y H, et al. Hydrochemical evolution processes of Karst groundwater in Guiyang city: Evidences from hydrochemistry and 87Sr/86Sr ratios[J]. Earth Science, 2019, 44(9): 2829-2838 (in Chinese).