[1] |
SHAO D D, CHEN C L, WANG X K. Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb(II)[J]. Chemical Engineering Journal, 2012, 185/186: 144-150. doi: 10.1016/j.cej.2012.01.063
|
[2] |
ZHANG L, FU F L, TANG B. Adsorption and redox conversion behaviors of Cr(Ⅵ) on goethite/carbon microspheres and akaganeite/carbon microspheres composites[J]. Chemical Engineering Journal, 2019, 356: 151-160. doi: 10.1016/j.cej.2018.08.224
|
[3] |
YIN Z B, XU S, LIU S, et al. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium[J]. Bioresource Technology, 2020, 300: 122680. doi: 10.1016/j.biortech.2019.122680
|
[4] |
XU H, GAO M X, HU X, et al. A novel preparation of S-nZVI and its high efficient removal of Cr(Ⅵ) in aqueous solution[J]. Journal of Hazardous Materials, 2021, 416: 125924. doi: 10.1016/j.jhazmat.2021.125924
|
[5] |
杨艺琳, 周孜迈, 邓文娜, 等. 浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J]. 环境化学, 2017, 36(3): 598-607. doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
YANG Y L, ZHOU Z M, DENG W N, et al. Removal of arsenic(Ⅴ) from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3): 598-607 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017.03.2016051301
|
[6] |
廖聪坚, 赵晓蕾, 刘凯, 等. 电活性微生物激活生物质炭/零价铁协同钝化Cr(Ⅵ)及机制[J]. 环境科学, 2021, 42(9): 4520-4526. doi: 10.13227/j.hjkx.202010021
LIAO C J, ZHAO X L, LIU K, et al. Reactivation of passivated biochar/nanoscale zero-valent iron by an electroactive microorganism for cooperative hexavalent chromium removal and mechanisms[J]. Environmental Science, 2021, 42(9): 4520-4526 (in Chinese). doi: 10.13227/j.hjkx.202010021
|
[7] |
ZHANG W X. Nanoscale iron particles for environmental remediation: An overview[J]. Journal of Nanoparticle Research, 2003, 5(3): 323-332.
|
[8] |
LI X Q, ELLIOTT D W, ZHANG W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects[J]. Critical Reviews in Solid State and Materials Sciences, 2006, 31(4): 111-122. doi: 10.1080/10408430601057611
|
[9] |
赵雅光, 万俊锋, 刘奉滨, 等. 零价铁(ZVI)治理水体砷污染研究进展[J]. 环境化学, 2013, 32(10): 1943-1949. doi: 10.7524/j.issn.0254-6108.2013.10.018
ZHAO Y G, WAN J F, LIU F B, et al. Application of zero-valent iron(ZVI)technology for arsenic removal from aqueous environment[J]. Environmental Chemistry, 2013, 32(10): 1943-1949 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.10.018
|
[10] |
CAO Z, LI H, LOWRY G V, et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions[J]. Environmental Science & Technology, 2021, 55(4): 2628-2638.
|
[11] |
DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 250/251: 272-291. doi: 10.1016/j.jhazmat.2013.01.048
|
[12] |
DONG H R, GUAN X H, LO I M C. Fate of As(V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction[J]. Water Research, 2012, 46(13): 4071-4080. doi: 10.1016/j.watres.2012.05.015
|
[13] |
PHENRAT T, LIU Y Q, TILTON R D, et al. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: Conceptual model and mechanisms[J]. Environmental Science & Technology, 2009, 43(5): 1507-1514.
|
[14] |
LIU J, LI R F, YAO Y H, et al. Fate and mechanistic insights into the transformation of aged nanoscale zerovalent iron (nZVIA) reacted with Cr(Ⅵ): Impact of aging time in oxic water[J]. ACS Earth and Space Chemistry, 2019, 3(7): 1288-1295. doi: 10.1021/acsearthspacechem.9b00095
|
[15] |
刘爱荣, 戴雨薇, 夏泽阳, 等. 纳米零价铁在含Cr(Ⅵ)水相中的结构性能演变研究[J]. 环境科学学报, 2022, 42(9): 92-101.
LIU A R, DAI Y W, XIA Z Y, et al. Evolution of nanoscale zero valent iron on structure and properties in Cr(Ⅵ)-containing aqueous phase[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 92-101 (in Chinese).
|
[16] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7): 2154-2156.
|
[17] |
MANNING B A, KISER J R, KWON H, et al. Spectroscopic investigation of Cr(Ⅲ)- and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environmental Science & Technology, 2007, 41(2): 586-592.
|
[18] |
LIU A R, LIU J, HAN J H, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070
|
[19] |
LIU A R, LIU J, ZHANG W X. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water[J]. Chemosphere, 2015, 119: 1068-1074. doi: 10.1016/j.chemosphere.2014.09.026
|
[20] |
FU F L, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. Journal of Hazardous Materials, 2014, 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062
|
[21] |
ZHOU X B, JING G H, LV B H, et al. Highly efficient removal of chromium(Ⅵ) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system[J]. Chemosphere, 2016, 160: 332-341. doi: 10.1016/j.chemosphere.2016.06.103
|
[22] |
于新, 豆小敏, 张艳素, 等. 反应条件对零价铁去除As(Ⅲ)动力学的影响[J]. 环境化学, 2011, 30(5): 1011-1018.
YU X, DOU X M, ZHANG Y S, et al. Effect of reaction conditions on the removal kinetics of as(Ⅲ) by zero-valent iron[J]. Environmental Chemistry, 2011, 30(5): 1011-1018 (in Chinese).
|
[23] |
LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury (Ⅱ) and chromium (Ⅵ) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 245: 34-40. doi: 10.1016/j.cej.2014.02.011
|
[24] |
HAMDY A. Experimental study of the relationship between dissolved iron, turbidity, and removal of Cu(II) ion from aqueous solutions using zero-valent iron nanoparticles[J]. Arabian Journal for Science and Engineering, 2021, 46(6): 5543-5565. doi: 10.1007/s13369-020-05079-0
|
[25] |
QU G Z, ZENG D Y, CHU R J, et al. Magnetic Fe3O4 assembled on nZVI supported on activated carbon fiber for Cr(Ⅵ) and Cu(Ⅱ) removal from aqueous solution through a permeable reactive column[J]. Environmental Science and Pollution Research, 2019, 26(5): 5176-5188. doi: 10.1007/s11356-018-3985-8
|
[26] |
LIU A R, LIU J, PAN B C, et al. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water[J]. RSC Adv, 2014, 4(101): 57377-57382. doi: 10.1039/C4RA08988J
|
[27] |
EFECAN N, SHAHWAN T, EROĞLU A E, et al. Characterization of the uptake of aqueous Ni2+ ions on nanoparticles of zero-valent iron (nZVI)[J]. Desalination, 2009, 249(3): 1048-1054. doi: 10.1016/j.desal.2009.06.054
|
[28] |
LI X Q, ZHANG W X. Sequestration of metal cations with zerovalent iron Nanoparticles-A study with high resolution X-ray photoelectron spectroscopy (HR-XPS)[J]. Journal of Physical Chemistry C, 2007, 111(19): 6939-6946. doi: 10.1021/jp0702189
|
[29] |
CALDERON B, FULLANA A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation[J]. Water Research, 2015, 83: 1-9. doi: 10.1016/j.watres.2015.06.004
|
[30] |
KIM H S, AHN J Y, KIM C, et al. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid[J]. Chemosphere, 2014, 113: 93-100. doi: 10.1016/j.chemosphere.2014.04.047
|
[31] |
YU J, LIU W X, ZENG A B, et al. Effect of SO on 1, 1, 1-trichloroethane degradation by Fe(0) in aqueous solution[J]. Ground Water, 2013, 51(2): 286-292.
|
[32] |
GUAN X H, SUN Y K, QIN H J, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014)[J]. Water Research, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
|
[33] |
SUN Y K, LI J X, HUANG T L, et al. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review[J]. Water Research, 2016, 100: 277-295. doi: 10.1016/j.watres.2016.05.031
|
[34] |
HUANG X Y, LING L, ZHANG W X. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer[J]. Journal of Environmental Sciences, 2018, 67: 4-13. doi: 10.1016/j.jes.2018.01.029
|
[35] |
JOHNSON T L, FISH W, GORBY Y A, et al. Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface[J]. Journal of Contaminant Hydrology, 1998, 29(4): 379-398. doi: 10.1016/S0169-7722(97)00063-6
|
[36] |
HERNANDEZ R, ZAPPI M, KUO C H. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment[J]. Environmental Science & Technology, 2004, 38(19): 5157-5163.
|
[37] |
HWANG Y, KIM D, SHIN H S. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse[J]. Environmental Technology, 2015, 36(9): 1178-1187. doi: 10.1080/09593330.2014.982723
|
[38] |
杨文君, 郭迎庆, 杜尔登. 地下水中常见离子对纳米零价铁除Se(Ⅳ)动力学的影响[J]. 环境科学, 2014, 35(5): 1793-1797. doi: 10.13227/j.hjkx.2014.05.022
YANG W J, GUO Y Q, DU E D. Dynamic effects of commonly Co-existing anions on the removal of selenite from groundwater by nanoscale zero-valent iron[J]. Environmental Science, 2014, 35(5): 1793-1797 (in Chinese). doi: 10.13227/j.hjkx.2014.05.022
|