-
随着工业水平的不断进步,人类社会的发展对能源的需求量越来越高,但是化石燃料仍为主要的能源来源[1]. 到2040年,全球能源需求量将增长30%左右,表明CO2排放量将继续增长. 因此,有效利用CO2并开发新能源是本世纪面临的艰巨挑战. 通过直接利用可持续的太阳能,将CO2和H2O光催化还原为有用的太阳能燃料,是解决碳排放和能源短缺的一种极具前景的策略.
水滑石 (LDH) 具有高比表面积、结构可调性、酸碱可调性、记忆效应、热稳定性、无毒、价格低廉、光稳定性等优点,受到研究者的广泛关注. 研究表明,LDH的表面羟基还可以与价带空穴反应生成羟基自由基 (HO•),这可作为关键的中间物种参与氧化过程[2-3]. 此外,含Ti的LDH具有丰富的Ti–O表面缺陷,这些缺陷可作为光生载流子的有效捕获位点,促进了电子和空穴的分离[4-6],进而提高Ti基水滑石 (Ti-LDH) 的光催化性能. 近几年来,ZnTi-LDH在光催化领域展现出令人瞩目的潜能,被广泛应用于光催化领域. 例如,Xia等[7]合成了具有良好晶体结构的Fe3O4/ZnTi-LDH、CeO2/ZnTi-LDH和SnO2/ZnTi-LDH等3种复合材料,并将它们用于光催化降解酸性红14 (AR14),展现出较高的高催化活性. 但是,ZnTi-LDH可见光活性偏低,仍需对其做进一步的改性.
硫化处理是一种简单常用的改性方法,可对半导体的带隙宽度和电子和空穴的分离效率进行调控,有效的改善半导体的光催化性能. 例如,Du等[8]通过水热法合成了MoS2-CdS-TiO2催化剂用于光催化水分解. Zou等[9]采用湿法硫化制备了C/ZnS/ZnO空心球,用于光催化四环素的降解. 与C/ZnO相比,硫化后的C/ZnS/ZnO空心球光生电子和空穴的分离效率和可见光吸收性能显著提升. Ren等[10]以In金属有机框架作为前驱体制备了CdS/In2O3复合材料,其中CdS和In2O3纳米分子之间紧密相连形成异质结结构,促进了光生载流子的分离,进而提高其光催化水分解制氢效率. Yang等[11]采用水热法制备了核壳结构的In2S3/In2O3纳米材料,通过在In2O3进行硫化,可有效缩短其禁带宽度并提高其可见光利用率,进而有效提高其光催化水分解效率. 此外,硫化时间对催化剂的光催化活性也有较大的影响,当硫化30 min时,C/ZnS/ZnO样品在可见光下具有最佳的光降解活性. 但截至到目前为止,对LDH进行硫化处理后用于光催化H2O还原CO2的研究还未见报道.
为此,本文首先通过水热法制备了ZnTi-LDH,然后利用Na2S溶液对其进行硫化处理,并借助XRD、SEM、TEM、UV-Vis以及电化学工作站等对其晶体结构、形貌、光电性能等进行表征,探究硫化时间对光催化CO2还原性能的影响.
ZnS/TiO2催化剂光催化CO2的还原性能
The Study on photocatalytic CO2 reduction performance of ZnS/TiO2
-
摘要: 利用光催化技术将CO2转化为有用化学品或太阳能燃料是解决能源和环境问题的有效方法之一. 通过水热法制备了ZnTi-LDH,并通过0.1 mol·L−1 Na2S溶液对其进行硫化处理,制备了不同硫化时间的ZnS/TiO2光催化剂. 采用XRD、TEM、UV-vis DRS、化学工作站等方法,详细分析了硫化时间对光催化剂的组成、结构、光吸收性能和电化学质以及光催化H2O还原CO2性能的影响. 与ZnTi-LDH相比,硫化处理得到的ZnS/TiO2光催化CO2还原性能均有明显提高,其中ZnS/TiO2/S-1 h的样品具有最高的光催化活性,其CO和H2的产率分别为25.35 μmol·(g·h)−1和15.54 μmol·(g·h)−1,是未硫化样品的4倍和1.5倍. 硫化后样品光催化性能的改善可归因于,硫化样品较好的可见光吸收性能、较高的电子空穴分离效率以及其光电子还原能力的提高.Abstract: Converting CO2 to chemicals and solar fuels is an effective way to solve the energy shortage and environmental problems. In this work, ZnTi-LDH was prepared by hydrothermal method and sulfidized with different time by using 0.1 mol·L−1 Na2S solution, which was tested in photocatalytic CO2 reduction. The XRD, TEM, UV-vis DRS and chemical station were employed to investigate the effects of sulfidation time on the composition, structure, light absorption, electrochemical properties and photocatalytic activity for CO2 reduction. Compared with ZnTi-LDH, the photocatalytic CO2 reduction performance of ZnS/TiO2 obtained by the sulfidation treatment was significantly improved, and ZnS/TiO2/S-1h exhibited the highest photocatalytic activity with CO and H2 production rates of 25.35 μmol·(g·h)−1 and 15.54 μmol·(g·h)−1, respectively, which were 4 and 1.5 time higher than those of ZnTi-LDH. The enhancement of photocatalytic activity for sulfidized ZnTi-LDH was attributed to the better absorption capacity for visible light, the higher separation efficiency of photogenerated electrons an holes and the increase of reduction ability of photogenerated electrons.
-
Key words:
- photocatalytic CO2 reduction /
- ZnS/TiO2 /
- sulfidation treatment.
-
图 3 SEM照片(a) ZnTi-LDH, (c) ZnS/TiO2 /S-1h; TEM 照片(b) ZnTi-LDH, (d) ZnS/TiO2 /S-1h, (e) ZnS/TiO2 /S-2h, (f) ZnS/TiO2 /S-3h; HRTEM 照片(g) ZnS/TiO2 /S-1h
Figure 3. SEM images of (a) ZnTi-LDH and (b) ZnS/TiO2/S-1h; TEM images of (c) ZnS/TiO2 and (d) ZnS/TiO2/S-1h, (e) ZnS/TiO2/S-2h, (f) ZnS/TiO2/S-3h; HRTEM image of (g) ZnS/TiO2/S-1h
表 1 原料试剂一览表
Table 1. The list of materials and reagents
试剂
Reagent规格
Specifications生产厂家
Manufacturer硝酸锌(Zn(NO3)2·6H2O) 分析纯 天津市大茂化学试剂厂 硫化钠(Na2S·9H2O) 分析纯 天津市风船化学试剂科技有限公司 尿素 分析纯 上海阿拉丁生化科技股份有限公司 四氯化钛(TiCl4) 分析纯 上海阿拉丁生化科技股份有限公司 二氧化碳(CO2) ≥99.999% 天津联博化工股份有限公司 氩气(Ar) ≥99.999% 天津东祥特种气体有限公司 表 2 未硫化和硫化处理的ZnTi-LDH的禁带宽度和导价带位置
Table 2. The band gap and the positions of the conduction band and valence band of ZnTi-LDH which was sulfated and unsulfated
催化剂
Catalysts禁带宽度/eV
Band gapEFB/(V vs. NHE) ECB/(V vs. NHE) EVB/(V vs. NHE) ZnTi-LDH 3.42 −0.25 −0.45 2.97 ZnS/TiO2/S-1h 3.38 −0.77 −0.97 2.41 ZnS/TiO2/S-2h 3.35 −0.71 −0.91 2.44 ZnS/TiO2/S-3h 3.32 −0.47 −0.67 2.65 -
[1] GODIN J, LIU W Z, REN S, et al. Advances in recovery and utilization of carbon dioxide: A brief review [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105644. doi: 10.1016/j.jece.2021.105644 [2] GUPTA S M, TRIPATHI M. A review of TiO2 nanoparticles [J]. Chinese Science Bulletin, 2011, 56(16): 1639-1657. doi: 10.1007/s11434-011-4476-1 [3] JO W K, KIM Y G, TONDA S. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation [J]. Journal of Hazardous Materials, 2018, 357: 19-29. doi: 10.1016/j.jhazmat.2018.05.038 [4] LI B, ZHAO Y F, ZHANG S T, et al. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials [J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10233-10239. [5] KHODAM F, REZVANI Z, AMANI-GHADIM A R. Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1286-1294. doi: 10.1016/j.jiec.2014.06.002 [6] GE L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation [J]. Materials Chemistry and Physics, 2008, 107(2/3): 465-470. [7] XIA S J, ZHOU X B, SHI W, et al. Photocatalytic property and mechanism studies on acid red 14 by MxOy/ZnTi-layered double hydroxides (M = Fe, Sn, Ce) [J]. Journal of Molecular Catalysis A:Chemical, 2014, 392: 270-277. doi: 10.1016/j.molcata.2014.05.028 [8] DU J M, WANG H M, YANG M K, et al. Highly efficient hydrogen evolution catalysis based on MoS2/CdS/TiO2 porous composites [J]. International Journal of Hydrogen Energy, 2018, 43(19): 9307-9315. doi: 10.1016/j.ijhydene.2018.03.208 [9] ZOU Z M, YANG X Y, ZHANG P, et al. Trace carbon-hybridized ZnS/ZnO hollow nanospheres with multi-enhanced visible-light photocatalytic performance [J]. Journal of Alloys and Compounds, 2019, 775: 481-489. doi: 10.1016/j.jallcom.2018.10.116 [10] REN J T, YUAN K, WU K, et al. A robust CdS/In2O3 hierarchical heterostructure derived from a metal-organic framework for efficient visible-light photocatalytic hydrogen production [J]. Inorganic Chemistry Frontiers, 2019, 6(2): 366-375. doi: 10.1039/C8QI01202D [11] YANG X, XU J, WONG T, et al. Synthesis of In2O3-In2S3 core-shell nanorods with inverted type-I structure for photocatalytic H2 generation [J]. Physical Chemistry Chemical Physics, 2013, 15(30): 12688-12693. doi: 10.1039/c3cp51722e [12] WANG X N, JIANG Z L, CHEN H W, et al. Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures [J]. Journal of Alloys and Compounds, 2022, 896: 163030. doi: 10.1016/j.jallcom.2021.163030 [13] ZOU J H, WANG Z T, GUO W, et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups [J]. Applied Catalysis B:Environmental, 2020, 260: 118185. doi: 10.1016/j.apcatb.2019.118185 [14] CIOCARLAN R G, WANG H, CUYPERS B, et al. ZnTi layered double hydroxides as photocatalysts for salicylic acid degradation under visible light irradiation [J]. Applied Clay Science, 2020, 197: 105757. doi: 10.1016/j.clay.2020.105757 [15] SUN D D, CHI D C, YANG Z K, et al. Mesoporous g-C3N4/Zn-Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts [J]. International Journal of Hydrogen Energy, 2019, 44(31): 16348-16358. doi: 10.1016/j.ijhydene.2019.04.275