[1] GODIN J, LIU W Z, REN S, et al. Advances in recovery and utilization of carbon dioxide: A brief review [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105644. doi: 10.1016/j.jece.2021.105644
[2] GUPTA S M, TRIPATHI M. A review of TiO2 nanoparticles [J]. Chinese Science Bulletin, 2011, 56(16): 1639-1657. doi: 10.1007/s11434-011-4476-1
[3] JO W K, KIM Y G, TONDA S. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation [J]. Journal of Hazardous Materials, 2018, 357: 19-29. doi: 10.1016/j.jhazmat.2018.05.038
[4] LI B, ZHAO Y F, ZHANG S T, et al. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials [J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10233-10239.
[5] KHODAM F, REZVANI Z, AMANI-GHADIM A R. Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 1286-1294. doi: 10.1016/j.jiec.2014.06.002
[6] GE L. Novel Pd/BiVO4 composite photocatalysts for efficient degradation of methyl orange under visible light irradiation [J]. Materials Chemistry and Physics, 2008, 107(2/3): 465-470.
[7] XIA S J, ZHOU X B, SHI W, et al. Photocatalytic property and mechanism studies on acid red 14 by MxOy/ZnTi-layered double hydroxides (M = Fe, Sn, Ce) [J]. Journal of Molecular Catalysis A:Chemical, 2014, 392: 270-277. doi: 10.1016/j.molcata.2014.05.028
[8] DU J M, WANG H M, YANG M K, et al. Highly efficient hydrogen evolution catalysis based on MoS2/CdS/TiO2 porous composites [J]. International Journal of Hydrogen Energy, 2018, 43(19): 9307-9315. doi: 10.1016/j.ijhydene.2018.03.208
[9] ZOU Z M, YANG X Y, ZHANG P, et al. Trace carbon-hybridized ZnS/ZnO hollow nanospheres with multi-enhanced visible-light photocatalytic performance [J]. Journal of Alloys and Compounds, 2019, 775: 481-489. doi: 10.1016/j.jallcom.2018.10.116
[10] REN J T, YUAN K, WU K, et al. A robust CdS/In2O3 hierarchical heterostructure derived from a metal-organic framework for efficient visible-light photocatalytic hydrogen production [J]. Inorganic Chemistry Frontiers, 2019, 6(2): 366-375. doi: 10.1039/C8QI01202D
[11] YANG X, XU J, WONG T, et al. Synthesis of In2O3-In2S3 core-shell nanorods with inverted type-I structure for photocatalytic H2 generation [J]. Physical Chemistry Chemical Physics, 2013, 15(30): 12688-12693. doi: 10.1039/c3cp51722e
[12] WANG X N, JIANG Z L, CHEN H W, et al. Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures [J]. Journal of Alloys and Compounds, 2022, 896: 163030. doi: 10.1016/j.jallcom.2021.163030
[13] ZOU J H, WANG Z T, GUO W, et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups [J]. Applied Catalysis B:Environmental, 2020, 260: 118185. doi: 10.1016/j.apcatb.2019.118185
[14] CIOCARLAN R G, WANG H, CUYPERS B, et al. ZnTi layered double hydroxides as photocatalysts for salicylic acid degradation under visible light irradiation [J]. Applied Clay Science, 2020, 197: 105757. doi: 10.1016/j.clay.2020.105757
[15] SUN D D, CHI D C, YANG Z K, et al. Mesoporous g-C3N4/Zn-Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts [J]. International Journal of Hydrogen Energy, 2019, 44(31): 16348-16358. doi: 10.1016/j.ijhydene.2019.04.275