-
羰基化合物, 即醛类和酮类化合物, 广泛存在于日常生活环境中, 对人体健康有重要影响. 研究发现, 空气中的羰基化合物不仅对人体的嗅觉产生影响, 还会刺激人体免疫系统, 长时间接触羰基化合物可能会出现不良健康影响. 另外羰基化合物还会引起染色体分裂而造成遗传物质损害或断裂, 如姐妹染色体交换及染色体变异等, 使羰基化合物具有致癌性和致突变性[1-4]. 人们在室内生活工作的时间超过80%, 室内成为越来越多的人最直接和最经常接触的环境[5]. 室内空气中大多数装饰和装修材料包括建筑材料[6]、新家具(尤其是由胶合板制成的家具[7]、木地板[8])、家居用品(如胶水、油漆和涂料[9])、香烟烟雾[10]、室内烹饪[3]以及一些生活用品(如消毒剂、化妆品和空气清新剂)等都会向室内空气环境直接释放羰基化合物[11-13]. 越来越密闭的建筑结构往往又会使室内产生的化学污染物不断积累[14]. 还有些羰基化合物作为一些污染物与臭氧反应的次级产物出现在室内空气环境中[15]. 比如, 臭氧与头发和衣服上残留的人体皮肤油反应也可作为室内空气中羰基化合物的来源[16-17]. 此外, 城区的车辆尾气和工业厂房的燃料燃烧也会产生羰基化合物, 然后通过空气渗透和自然通风进入室内环境中[18-19].
许多国内学者对室内羰基化合物的污染特征、来源情况以及健康影响开展相关研究工作. 黄晓影[20]研究发现, 包头市城区住宅羰基化合物采暖季污染更严重, 其中甲醛和乙醛浓度均与换气次数呈负相关, 较高的相对湿度是甲醛、乙醛和丙醛暴露的危险因素. Pu 等[21]研究发现, 北京城区住宅12种羰基化合物中甲醛污染最严重, 乙醛、丙酮和己醛次之, 其中甲醛受沙发材料、吸烟情况、家庭位置影响, 乙醛受吸烟情况和厨房结构影响, 丙酮受厨房结构和盆栽植物影响, 己醛受盆栽植物影响. Huang 等[22]研究发现, 室内甲醛暴露可能会增加儿童患普通感冒的风险. 由于环境中气态羰基化合物的分析方法比较繁琐以及相对较高的分析费用, 多数文献针对少数几种羰基化合物展开研究, 很少关注气味污染严重的高分子量醛(己醛、庚醛、辛醛、壬醛和癸醛)以及能够诱导细胞损伤和产生晚期糖基化终产物的乙二醛和甲基乙二醛等其它羰基化合物的污染情况及其对人体健康的影响, 这不足以充分了解我国城市住宅室内外空气中羰基化合物的污染特征及健康效应. 本研究旨在通过供暖季与非供暖季在城市居民住宅开展室内外同步观测, 分析季节变化对不同羰基污染物的影响,并评估室内羰基污染物对人群的健康风险及其对嗅觉的污染情况, 以期为进一步研究住宅室内痕量羰基污染物特征及其影响提供一定的科学依据.
住宅室内空气羰基化合物的污染特征及健康影响
Pollution characteristics and health effects of carbonyl compounds in residential indoors
-
摘要: 为研究住宅室内空气中羰基化合物污染水平及健康影响,于2016年采集西安市城区住宅5户家庭室内空气中20种羰基化合物,利用高效液相色谱仪进行检测和分析. 结果表明,室内羰基化合物浓度((144.3±56.2) μg·m−3)显著高于室外((63.0±21.8) μg·m−3). 甲醛、乙醛和丙酮是室内外环境中相对贡献比较丰富的化合物,占总羰基化合物浓度的47.0%—73.0%. 通风换气次数对室内环境中羰基化合物污染影响显著. 室内羰基化合物浓度变化呈现显著的“周末效应”,具体表现为供暖季多数羰基化合物周末高于工作日,非供暖季工作日高于周末. 健康风险评估表明各住宅儿童每日吸入甲醛和乙醛的剂量均超过儿童终生致癌风险阈值1—2个数量级,因此面临显著的潜在癌症风险. 室内气味污染则主要来自于气味阈值较低的高分子量羰基化合物,包括己醛、庚醛、辛醛、壬醛和癸醛. 其中辛醛贡献最大,其气味活性值均大于100. 本研究结果为城市住宅室内痕量羰基污染物特征及健康影响提供了基础数据和科学依据.Abstract: Twenty carbonyl compounds of the indoor air from five households in Xi'an were analyzed by high performance liquid chromatography coupled with DAD, to investigate the pollution level and health effect of indoor air. Higher concentration of carbonyl compounds were founded in indoor air ((144.3±56.2) μg·m-3) than outdoor ((63.0±21.8) μg·m-3). Formaldehyde, acetaldehyde and acetone were the most abundant carbonyl compounds in indoor and outdoor air, accounting for 47.0%—73.0% to the total carbonyl compounds. The air exchange rate had a major effect on indoor carbonyl compounds pollution. The “weekend effect” was significant with higher carbonyl compounds concentration on weekends than weekdays in heating season. In contrast, higher carbonyl compounds concentration was founded on weekdays than weekends in non-heating seasons. Health risk assessment showed that the daily inhaled doses of formaldehyde and acetaldehyde for children exceed the lifetime cancer risk threshold by 1—2 orders of magnitude, indicating significant potential cancer risk. Odor pollution were mainly from high molecular weight carbonyl compounds with lower odor threshold, including hexanal, heptanal, octanal, nonanal and decanal.
-
Key words:
- Indoor air /
- carbonyl compounds /
- pollution characteristics /
- influencing factors /
- health effects.
-
表 1 各采样住户家庭信息
Table 1. Household information of each sampled household
采样点
Site房屋年龄/a
Age of
house面积/m2
Area装修后放置
时间/month
Storage time
after decoration地板材质
Floor
material壁纸
Wall-paper取暖燃料
Fuel for
heating烹饪燃料
Fuel for
cooking每天烹饪次数
Cooking
frequency通风方式
Ventilation吸烟
SmokingQJ-1 5 100 6—12 客厅+卧室
复合木地板是 天然气 天然气 > 3 半开 否 > 1 h QJ-2 5 100 6—12 客厅+卧室
瓷砖否 天然气 液化
石油气> 3 半开 否 > 1 h QJ-3 5 102 6—12 客厅+卧室
复合木地板否 天然气 天然气 1 半开 否 电 < 1 h QJ-4 5 100 3—6 客厅+卧室
复合竹地板是 天然气 天然气 3 半开 否 < 1 h QJ-5 5 148 3—6 客厅瓷砖
卧室复合木地板否 天然气 天然气 3 全开 否 < 1 h 表 2 供暖季室内外环境中羰基化合物浓度
Table 2. Concentrations of carbonyl compounds in indoor and outdoor environments in heating season
羰基化合物
Carbonyl compounds方法检测限/(µg·mL−1)
Method detection limit平均值±标准偏差 (AVG±SD)/( μg·m−3) QJ-1 QJ-2 QJ-3 QJ-4 QJ-5 QJ-O 甲醛(C1) 0.002 86.7 ± 10.8 23.2 ± 5.1 40.7 ± 2.8 30.9 ± 6.4 46.3 ± 6.9 9.7 ± 1.3 乙醛(C2) 0.004 38.4 ± 6.1 24.1 ± 5.7 48.5 ± 8.9 25.1 ± 5.0 31.9 ± 7.9 12.2 ± 2.6 丙酮(A3K) 0.006 46.5 ± 11.9 35.5 ± 13.9 47.8 ± 5.9 32.2 ± 10.3 31.2 ± 4.5 14.9 ± 4.4 丙醛(C3) 0.004 4.9 ± 0.7 3.5 ± 1.0 4.6 ± 0.5 3.1 ± 0.8 4.3 ± 0.2 2.3 ± 0.4 2-丁酮(MEK) 0.005 3.5 ± 0.6 3.2 ± 0.9 5.3 ± 1.0 3.3 ± 1.1 4.5 ± 0.3 3.1 ± 0.6 丁醛(i,n-C4) 0.003 2.9 ± 0.4 2.4 ± 0.7 3.0 ± 0.3 2.4 ± 0.6 2.5 ± 0.1 1.4 ± 0.3 苯甲醛(Benz) 0.007 1.9 ± 0.2 1.8 ± 0.4 2.9 ± 0.3 2.2 ± 0.7 1.9 ± 0.2 1.0 ± 0.2 异戊醛(i-C5) 0.004 3.4 ± 0.6 2.7 ± 0.7 3.0 ± 0.3 2.6 ± 0.6 3.6 ± 0.3 1.7 ± 0.4 正戊醛(n-C5) 0.005 2.4 ± 0.4 4.5 ± 1.4 3.0 ± 0.3 2.2 ± 0.7 2.1 ± 0.3 0.6 ± 0.2 邻甲苯甲醛(o-tol) 0.006 0.5 ± 0.1 0.6 ± 0.3 0.4 ± 0.1 0.5 ± 0.4 0.7 ± 0.2 0.1 ± 0.1 间甲苯甲醛(m-tol) 0.004 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.1 对甲苯甲醛(p-tol) 0.003 0.3 ± 0.1 0.6 ± 0.2 0.5 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.2 ± 0.0 2,5-二甲基苯甲醛(2,5-DB) 0.003 0.6 ± 0.1 0.7 ± 0.2 0.6 ± 0.2 0.6 ± 0.1 0.5 ± 0.2 0.5 ± 0.2 己醛(C6) 0.007 11.8 ± 2.5 30.0 ± 7.7 14.9 ± 1.6 10.8 ± 4.6 12.6 ± 2.5 0.9 ± 0.2 庚醛(C7) 0.011 4.7 ± 1.0 4.5 ± 1.2 4.6 ± 0.1 3.6 ± 0.7 3.9 ± 0.8 0.8 ± 0.3 辛醛(C8) 0.016 5.6 ± 1.0 5.9 ± 1.5 5.5 ± 0.5 5.8 ± 1.7 5.8 ± 1.5 0.9 ± 0.3 壬醛(C9) 0.017 16.4 ± 2.8 18.6 ± 5.1 15.0 ± 1.1 14.7 ± 3.2 18.9 ± 5.9 2.1 ± 0.5 癸醛(C10) 0.001 2.9 ± 0.5 3.5 ± 2.2 2.8 ± 0.8 5.4 ± 0.8 3.3 ± 0.9 0.6 ± 0.2 乙二醛(Gly) 0.001 0.4 ± 0.1 0.7 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.8 ± 0.4 甲基乙二醛(mGly) 0.001 0.6 ± 0.2 0.9 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 1.1 ± 0.2 1.0 ± 0.2 总和(SUM) 235.1±33.9 167.3 ± 38.7 204.7 ± 11.6 147.2 ± 33.1 176.3 ± 25.7 55.3 ± 9.4 表 3 非供暖季室内外环境中羰基化合物浓度
Table 3. Concentrations of carbonyl compounds in indoor and outdoor environments in non-heating season
羰基化合物
Carbonyl compounds平均值±标准偏差 (AVG±SD)/(μg·m−3) QJ-1 QJ-2 QJ-3 QJ-4 QJ-5 QJ-O 甲醛(C1) 49.9 ± 11.1 19.9 ± 2.3 22.4 ± 3.1 32.2 ± 7.9 17.6 ± 2.1 16.3 ± 8.2 乙醛(C2) 12.9 ± 2.8 8.7 ± 1.5 9.7 ± 2.9 12.1 ± 4.1 7.6 ± 1.9 10.1 ± 5.4 丙酮(A3K) 17.8 ± 4.1 18.3 ± 3.9 17.0 ± 6.7 16.8 ± 6.2 13.1 ± 3.6 14.1 ± 5.7 丙醛(C3) 2.1 ± 0.7 1.3 ± 0.0 1.4 ± 0.4 2.1 ± 0.6 0.9 ± 0.2 1.0 ± 0.2 2-丁酮(MEK) 2.8 ± 0.7 2.4 ± 0.4 2.5 ± 0.5 3.7 ± 2.1 4.0 ± 2.7 3.9 ± 1.4 丁醛(i,n-C4) 1.3 ± 0.2 1.1 ± 0.1 1.4 ± 0.1 1.5 ± 0.5 3.1 ± 4.1 2.5 ± 2.3 苯甲醛(Benz) 2.3 ± 0.6 2.1 ± 0.8 1.9 ± 0.8 2.7 ± 1.1 1.2 ± 0.2 1.5 ± 1.0 异戊醛(i-C5) 1.7 ± 0.4 1.2 ± 0.3 0.9 ± 0.1 2.3 ± 1.8 1.0 ± 0.2 1.2 ± 0.3 正戊醛(n-C5) 0.9 ± 0.3 1.1 ± 0.3 0.8 ± 0.3 1.0 ± 0.5 0.4 ± 0.2 0.5 ± 0.1 邻甲苯甲醛(o-tol) bda bd bd bd bd bd 间甲苯甲醛(m-tol) 1.1 ± 0.4 1.1 ± 0.5 1.1 ± 0.6 0.9 ± 0.2 1.0 ± 0.5 0.8 ± 0.5 对甲苯甲醛(p-tol) 0.4 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 0.2 ± 0.0 0.3 ± 0.2 0.4 ± 0.2 2,5-二甲基苯甲醛(2,5-DB) 1.2 ± 0.7 0.7 ± 0.2 0.8 ± 0.4 0.9 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 己醛(C6) 6.1 ± 1.9 8.1 ± 2.4 5.1 ± 2.4 5.0 ± 1.7 1.4 ± 0.2 0.9 ± 0.2 庚醛(C7) 3.5 ± 1.6 1.9 ± 0.5 1.6 ± 0.7 2.7 ± 1.1 0.9 ± 0.2 0.8 ± 0.3 辛醛(C8) 15.8 ± 5.0 19.3 ± 5.6 19.2 ± 10.4 13.6 ± 4.5 8.3 ± 2.1 4.4 ± 1.2 壬醛(C9) 8.8 ± 3.4 5.6 ± 1.1 4.2 ± 1.9 8.4 ± 3.0 4.0 ± 0.9 3.1 ± 1.5 癸醛(C10) 7.2 ± 2.8 4.6 ± 0.9 3.4 ± 1.6 7.0 ± 2.5 3.3 ± 0.7 2.5 ± 1.3 乙二醛(Gly) 0.3 ± 0.1 0.3 ± 0.2 0.4 ± 0.4 0.3 ± 0.2 0.5 ± 0.5 1.0 ± 0.9 甲基乙二醛(mGly) 1.7 ± 0.5 1.9 ± 0.7 1.9 ± 1.0 2.0 ± 0.6 2.0 ± 0.9 3.5 ± 2.2 总和 137.7 ± 35.0 100.0 ± 17.2 95.8 ± 29.5 115.4 ± 37.6 70.9 ± 10.8 68.9 ± 28.2 注: a bd 低于检测下限。represents below limit of detection. 表 4 供暖季与非供暖季住户通风换气次数
Table 4. The air exchange rate of households in heating season and non-heating season
采样点
Site供暖季
Heating season非供暖季
Non-Heating season范围/h−1
Range平均值±标准偏差/h−1
Mean±SD范围/h−1
Range平均值±标准偏差/h−1
Mean±SDQJ-1 0.1—0.7 0.3 ± 0.2 2.6—23.5 8.5 ± 8.6 QJ-2 0.4—0.8 0.6 ± 0.2 4.2—13.4 7.0 ± 3.8 QJ-3 0.2—0.6 0.4 ± 0.2 3.2—34.5 12.1 ± 15.0 QJ-4 0.2—0.5 0.4 ± 0.1 3.0—21.6 10.3 ± 8.8 QJ-5 0.1—0.6 0.3 ± 0.2 5.8—48.6 16.7 ± 18.0 表 5 各住户室内儿童每日吸入的甲醛和乙醛剂量及风险商
Table 5. Daily inhalation doses and risk quotients of formaldehyde and acetaldehyde by children in each household
甲醛
Formaldehyde乙醛
Acetaldehyde采样点
Site2岁以下
Birth to < 2 years2—6 岁
2 years to < 6 years2岁以下
Birth to < 2 years2—6 岁
2 years to < 6 years吸入剂量/(μg·d−1)
Daily inhalation
dose风险商
Risk
Quotients吸入剂量/(μg·d−1)
Daily inhalation
dose风险商
Risk
Quotients吸入剂量/(μg·d−1)
Daily inhalation
dose风险商
Risk
Quotients吸入剂量/(μg·d−1)
Daily inhalation
dose风险商
Risk
QuotientsQJ-1 313.9 609.0 457.5 145.4 117.9 101.6 171.9 24.3 QJ-2 99.2 192.4 144.5 45.9 75.4 65.1 109.9 15.5 QJ-3 140.2 272.1 204.4 64.9 121.1 104.4 176.5 24.9 QJ-4 145.0 281.3 211.3 67.1 85.5 73.7 124.6 17.6 QJ-5 137.4 266.6 200.3 63.6 82.9 71.5 120.9 17.1 表 6 各住宅室内污染物的气味活性值
Table 6. Odor activity values of indoor pollutants in various residences
羰基化合物
Carbonyl compounds气味阈值/(μg·m−3)
Odor threshold气味活性值
Odor activity valueQJ-1 QJ-2 QJ-3 QJ-4 QJ-5 甲醛 670.3 0.10 0.03 0.05 0.05 0.04 乙醛 3.0 8.7 5.6 8.9 6.3 6.1 丙酮 108900.0 <0.01 <0.01 <0.01 <0.01 <0.01 丙醛 2.6 1.4 0.9 1.1 1.0 0.9 2-丁酮 1416.4 <0.01 <0.01 <0.01 <0.01 <0.01 丁醛 1.6 1.3 1.1 1.3 1.2 1.7 异戊醛 0.4 6.7 5.1 4.7 6.3 5.4 正戊醛 1.6 1.1 1.8 1.1 1.0 0.7 己醛 1.3 7.1 15.2 7.4 6.3 4.9 庚醛 0.8 5.1 4.0 3.5 3.9 2.7 辛醛 0.06 187.8 220.4 232.1 169.1 126.3 壬醛 2.2 5.8 5.6 4.0 5.4 4.8 癸醛 2.8 1.8 1.5 1.1 2.2 1.2 -
[1] TANG X J, BAI Y, DUONG A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects [J]. Environment International, 2009, 35(8): 1210-1224. doi: 10.1016/j.envint.2009.06.002 [2] MCGWIN G, LIENERT J, KENNEDY J I. Formaldehyde exposure and asthma in children: A systematic review [J]. Environmental Health Perspectives, 2010, 118(3): 313-317. doi: 10.1289/ehp.0901143 [3] DAI W T, ZHONG H B, LI L J, et al. Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime [J]. Science of the Total Environment, 2018, 633: 308-316. doi: 10.1016/j.scitotenv.2018.03.124 [4] VILLANUEVA F, LARA S, NOTARIO A, et al. Formaldehyde, acrolein and other carbonyls in dwellings of university students. Levels and source characterization [J]. Chemosphere, 2022, 288: 132429. doi: 10.1016/j.chemosphere.2021.132429 [5] WU C, XU B, SHI S S, et al. Time-activity pattern observatory from mobile web logs [J]. International Journal of Embedded Systems, 2015, 7(1): 71. doi: 10.1504/IJES.2015.066144 [6] ZHOU X J, LIU Y F, LIU J P. Alternately airtight/ventilated emission method: A universal experimental method for determining the VOC emission characteristic parameters of building materials [J]. Building and Environment, 2018, 130: 179-189. doi: 10.1016/j.buildenv.2017.12.025 [7] LIANG W H, YANG X D. Indoor formaldehyde in real buildings: Emission source identification, overall emission rate estimation, concentration increase and decay patterns [J]. Building and Environment, 2013, 69: 114-120. doi: 10.1016/j.buildenv.2013.08.009 [8] SALEM M Z M, BÖHM M, SRBA J, et al. Evaluation of formaldehyde emission from different types of wood-based panels and flooring materials using different standard test methods [J]. Building and Environment, 2012, 49: 86-96. doi: 10.1016/j.buildenv.2011.09.011 [9] KIM J A, KIM S, KIM H J, et al. Evaluation of formaldehyde and VOCs emission factors from paints in a small chamber: The effects of preconditioning time and coating weight [J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 52-57. [10] REINGRUBER H, PONTEL L B. Formaldehyde metabolism and its impact on human health [J]. Current Opinion in Toxicology, 2018, 9: 28-34. doi: 10.1016/j.cotox.2018.07.001 [11] BORAN S, USTA M, GÜMÜŞKAYA E. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin [J]. International Journal of Adhesion and Adhesives, 2011, 31(7): 674-678. doi: 10.1016/j.ijadhadh.2011.06.011 [12] CHAN C S, RANASINGHE R S A, HO S S H, et al. Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka [J]. Atmospheric Pollution Research, 2018, 9(2): 270-277. doi: 10.1016/j.apr.2017.10.002 [13] JIANG C J, LI D D, ZHANG P Y, et al. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment [J]. Building and Environment, 2017, 117: 118-126. doi: 10.1016/j.buildenv.2017.03.004 [14] SHI S S, CHEN C, ZHAO B. Air infiltration rate distributions of residences in Beijing [J]. Building and Environment, 2015, 92: 528-537. doi: 10.1016/j.buildenv.2015.05.027 [15] STEINEMANN A. Ten questions concerning air fresheners and indoor built environments [J]. Building and Environment, 2017, 111: 279-284. doi: 10.1016/j.buildenv.2016.11.009 [16] GAO K, XIE J R, YANG X D. Estimation of the contribution of human skin and ozone reaction to volatile organic compounds (VOC) concentration in aircraft cabins [J]. Building and Environment, 2015, 94: 12-20. doi: 10.1016/j.buildenv.2015.07.022 [17] XIONG J Y, HE Z C, TANG X C, et al. Modeling the time-dependent concentrations of primary and secondary reaction products of ozone with squalene in a university classroom [J]. Environmental Science & Technology, 2019, 53(14): 8262-8270. [18] LUI K H, HO S S H, LOUIE P K K, et al. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air [J]. Atmospheric Environment, 2017, 152: 51-60. doi: 10.1016/j.atmosenv.2016.12.004 [19] LV Y, ZHOU Y W, CHEN X, et al. Study on indoor and outdoor permeability coefficients and bacterial components, sources of fine particles in severe cold region of China [J]. Sustainable Cities and Society, 2020, 55: 102020. doi: 10.1016/j.scs.2020.102020 [20] 黄晓影. 包头市城区住宅醛酮污染水平及其影响因素分析[D]. 包头: 内蒙古科技大学, 2017. HUANG X Y. Characteristics of carbonyls in Baotou urban residences: Levels and factor[D]. Baotou: Inner Mongolia University of Science and Technology, 2017(in Chinese).
[21] PU Z N, HUANG L H, YUE Y, et al. Characteristics of carbonyls in Beijing urban residences: Concentrations, source strengths and influential factors [J]. Procedia Engineering, 2015, 121: 2052-2059. doi: 10.1016/j.proeng.2015.09.206 [22] HUANG C, LIU W, CAI J, et al. Household formaldehyde exposure and its associations with dwelling characteristics, lifestyle behaviours, and childhood health outcomes in Shanghai, China [J]. Building and Environment, 2017, 125: 143-152. doi: 10.1016/j.buildenv.2017.08.042 [23] 戴文婷. 关中含氧挥发性有机物对臭氧和二次有机气溶胶形成影响[D]. 西安: 中国科学院地球环境研究所, 2020. DAI W T. Distribution of oxygenated volatile organic compunds in the Guanzhong basin and their impacts on ozone and secondary organic aerosols formation[D]. Xi'an: Institute of Earth Environment, Chinese Academy of Sciences, 2020(in Chinese).
[24] LANDRIGAN P J. Children as a vulnerable population [J]. Human and Ecological Risk Assessment:An International Journal, 2005, 11(1): 235-238. doi: 10.1080/10807030590920051 [25] MATZ C J, STIEB D M, DAVIS K, et al. Effects of age, season, gender and urban-rural status on time-activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2) [J]. International Journal of Environmental Research and Public Health, 2014, 11(2): 2108-2124. doi: 10.3390/ijerph110202108 [26] FAN G T, XIE J C, YOSHINO H, et al. Concentration characteristics of gaseous carbonyl compounds in urban houses in two different climatic zones of China and health risk assessment for schoolchildren [J]. Sustainable Cities and Society, 2020, 60: 102270. doi: 10.1016/j.scs.2020.102270 [27] 段小丽. 中国人群暴露参数手册(儿童卷)概要[M]. 北京: 中国环境科学出版社, 2016. DUAN X L. Highlight of Chinese children's exposure factors handbook [M]. Beijing: China Environmental Science Press, 2016(in Chinese).
[28] BRADMAN A, GASPAR F, CASTORINA R, et al. Formaldehyde and acetaldehyde exposure and risk characterization in California early childhood education environments [J]. Indoor Air, 2017, 27(1): 104-113. doi: 10.1111/ina.12283 [29] 吴可. 新装修住宅室内VOCs及其污染影响的长期变化特征研究[D]. 南京: 南京理工大学, 2020. WU K. Study on the long-term variation characteristics of indoor VOCs and pollution impact in newly decorated buildings[D]. Nanjing: Nanjing University of Science and Technology, 2020(in Chinese).
[30] NAGATA Y. Measurement of odor threshold value of odor substances by triangle odor bag method[R]. Meeting of the Japan Society of Air Pollution, 1988. [31] SALTHAMMER T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings [J]. Building and Environment, 2019, 150: 219-232. doi: 10.1016/j.buildenv.2018.12.042 [32] YAMASHITA S, KUME K, HORIIKE T, et al. A simple method for screening emission sources of carbonyl compounds in indoor air [J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 370-376. [33] MISHRA N, BARTSCH J, AYOKO G A, et al. Volatile organic compounds: Characteristics, distribution and sources in urban schools [J]. Atmospheric Environment, 2015, 106: 485-491. doi: 10.1016/j.atmosenv.2014.10.052 [34] UENO H, SHIMADA A, SUEMITSU S, et al. Hexanal inhalation affects cognition and anxiety-like behavior in mice [J]. Zeitschrift Fur Naturforschung C, Journal of Biosciences, 2020, 75(11/12): 409-415. [35] LIU J W, LI X, YANG Y M, et al. An IBBCEAS system for atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO2 concentrations [J]. Atmospheric Measurement Techniques, 2019, 12: 4439-4453. doi: 10.5194/amt-12-4439-2019 [36] ZOGKA A, ROMANIAS M, THEVENET F. Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS) [J]. Atmospheric Measurement Techniques, 2022, 15(7): 2001-2019. doi: 10.5194/amt-15-2001-2022 [37] FENG Y L, WEN S, CHEN Y J, et al. Ambient levels of carbonyl compounds and their sources in Guangzhou, China [J]. Atmospheric Environment, 2005, 39(10): 1789-1800. doi: 10.1016/j.atmosenv.2004.10.009 [38] 国家市场监督管理总局, 国家标准化管理委员会. 室内空气质量标准: GB/T 18883—2022[S]. 2022. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Standards for indoor air quality: GB/T 18883—2022[S]. 2022(in Chinese).
[39] AZUMA K, UCHIYAMA I, UCHIYAMA S, et al. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings [J]. Environmental Research, 2016, 145: 39-49. doi: 10.1016/j.envres.2015.11.015 [40] HEALTH CANADA. Residential indoor air quality guidelines [EB/OL]. [2022-8-16]. [41] YOU Y, NIU C, ZHOU J, et al. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors [J]. Journal of Environmental Sciences, 2012, 24(4): 657-664. doi: 10.1016/S1001-0742(11)60812-7 [42] CLEVELAND W S, GRAEDEL T E, KLEINER B, et al. Sunday and workday variations in photochemical air pollutants in new jersey and New York [J]. Science, 1974, 186(4168): 1037-1038. doi: 10.1126/science.186.4168.1037 [43] KOO B, JUNG J, POLLACK A K, et al. Impact of meteorology and anthropogenic emissions on the local and regional ozone weekend effect in Midwestern US [J]. Atmospheric Environment, 2012, 57: 13-21. doi: 10.1016/j.atmosenv.2012.04.043 [44] 王俊秀. 南京北郊大气污染物对局地臭氧生成效率的影响[D]. 南京: 南京信息工程大学, 2017. WANG J X. The effect of atmospheric pollutants on local ozone production efficiency in northern suburb of Nanjing[D]. Nanjing: Nanjing University of Information Science & Technology, 2017(in Chinese).
[45] 楚芳婕, 孙爽, 李令军, 等. 2018—2020年北京市交通监测站点大气污染特征分析 [J]. 中国环境科学, 2021, 41(12): 5548-5560. doi: 10.3969/j.issn.1000-6923.2021.12.010 CHU F J, SUN S, LI L J, et al. Characteristics of the atmospheric pollutants at traffic monitoring sites in Beijing during 2018—2020 [J]. China Environmental Science, 2021, 41(12): 5548-5560(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.12.010
[46] 李建东. 上海大气污染的季节特征及周末效应的研究[D]. 西安: 中国科学院研究生院(地球环境研究所), 2015. LI J D. Seasonal characteristics of air pollution and weekend effect in Shanghai[D]. Xi'an: Institute of Earth Environment, Chinese Academy of Sciences, 2015(in Chinese).
[47] NICOLAS M, RAMALHO O, MAUPETIT F. Reactions between ozone and building products: Impact on primary and secondary emissions [J]. Atmospheric Environment, 2007, 41(15): 3129-3138. doi: 10.1016/j.atmosenv.2006.06.062 [48] 刘雨晴. 家庭环境中挥发性有机污染物暴露特征及风险评估[D]. 天津: 天津大学, 2019. LIU Y Q. Exposure characteristics and risk assessment of volatile organic compounds in household environment[D]. Tianjin: Tianjin University, 2019(in Chinese).