[1] |
TANG X J, BAI Y, DUONG A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects [J]. Environment International, 2009, 35(8): 1210-1224. doi: 10.1016/j.envint.2009.06.002
|
[2] |
MCGWIN G, LIENERT J, KENNEDY J I. Formaldehyde exposure and asthma in children: A systematic review [J]. Environmental Health Perspectives, 2010, 118(3): 313-317. doi: 10.1289/ehp.0901143
|
[3] |
DAI W T, ZHONG H B, LI L J, et al. Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime [J]. Science of the Total Environment, 2018, 633: 308-316. doi: 10.1016/j.scitotenv.2018.03.124
|
[4] |
VILLANUEVA F, LARA S, NOTARIO A, et al. Formaldehyde, acrolein and other carbonyls in dwellings of university students. Levels and source characterization [J]. Chemosphere, 2022, 288: 132429. doi: 10.1016/j.chemosphere.2021.132429
|
[5] |
WU C, XU B, SHI S S, et al. Time-activity pattern observatory from mobile web logs [J]. International Journal of Embedded Systems, 2015, 7(1): 71. doi: 10.1504/IJES.2015.066144
|
[6] |
ZHOU X J, LIU Y F, LIU J P. Alternately airtight/ventilated emission method: A universal experimental method for determining the VOC emission characteristic parameters of building materials [J]. Building and Environment, 2018, 130: 179-189. doi: 10.1016/j.buildenv.2017.12.025
|
[7] |
LIANG W H, YANG X D. Indoor formaldehyde in real buildings: Emission source identification, overall emission rate estimation, concentration increase and decay patterns [J]. Building and Environment, 2013, 69: 114-120. doi: 10.1016/j.buildenv.2013.08.009
|
[8] |
SALEM M Z M, BÖHM M, SRBA J, et al. Evaluation of formaldehyde emission from different types of wood-based panels and flooring materials using different standard test methods [J]. Building and Environment, 2012, 49: 86-96. doi: 10.1016/j.buildenv.2011.09.011
|
[9] |
KIM J A, KIM S, KIM H J, et al. Evaluation of formaldehyde and VOCs emission factors from paints in a small chamber: The effects of preconditioning time and coating weight [J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 52-57.
|
[10] |
REINGRUBER H, PONTEL L B. Formaldehyde metabolism and its impact on human health [J]. Current Opinion in Toxicology, 2018, 9: 28-34. doi: 10.1016/j.cotox.2018.07.001
|
[11] |
BORAN S, USTA M, GÜMÜŞKAYA E. Decreasing formaldehyde emission from medium density fiberboard panels produced by adding different amine compounds to urea formaldehyde resin [J]. International Journal of Adhesion and Adhesives, 2011, 31(7): 674-678. doi: 10.1016/j.ijadhadh.2011.06.011
|
[12] |
CHAN C S, RANASINGHE R S A, HO S S H, et al. Evaluation of hazardous airborne carbonyls in five urban roadside dwellings: A comprehensive indoor air assessment in Sri Lanka [J]. Atmospheric Pollution Research, 2018, 9(2): 270-277. doi: 10.1016/j.apr.2017.10.002
|
[13] |
JIANG C J, LI D D, ZHANG P Y, et al. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment [J]. Building and Environment, 2017, 117: 118-126. doi: 10.1016/j.buildenv.2017.03.004
|
[14] |
SHI S S, CHEN C, ZHAO B. Air infiltration rate distributions of residences in Beijing [J]. Building and Environment, 2015, 92: 528-537. doi: 10.1016/j.buildenv.2015.05.027
|
[15] |
STEINEMANN A. Ten questions concerning air fresheners and indoor built environments [J]. Building and Environment, 2017, 111: 279-284. doi: 10.1016/j.buildenv.2016.11.009
|
[16] |
GAO K, XIE J R, YANG X D. Estimation of the contribution of human skin and ozone reaction to volatile organic compounds (VOC) concentration in aircraft cabins [J]. Building and Environment, 2015, 94: 12-20. doi: 10.1016/j.buildenv.2015.07.022
|
[17] |
XIONG J Y, HE Z C, TANG X C, et al. Modeling the time-dependent concentrations of primary and secondary reaction products of ozone with squalene in a university classroom [J]. Environmental Science & Technology, 2019, 53(14): 8262-8270.
|
[18] |
LUI K H, HO S S H, LOUIE P K K, et al. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air [J]. Atmospheric Environment, 2017, 152: 51-60. doi: 10.1016/j.atmosenv.2016.12.004
|
[19] |
LV Y, ZHOU Y W, CHEN X, et al. Study on indoor and outdoor permeability coefficients and bacterial components, sources of fine particles in severe cold region of China [J]. Sustainable Cities and Society, 2020, 55: 102020. doi: 10.1016/j.scs.2020.102020
|
[20] |
黄晓影. 包头市城区住宅醛酮污染水平及其影响因素分析[D]. 包头: 内蒙古科技大学, 2017.
HUANG X Y. Characteristics of carbonyls in Baotou urban residences: Levels and factor[D]. Baotou: Inner Mongolia University of Science and Technology, 2017(in Chinese).
|
[21] |
PU Z N, HUANG L H, YUE Y, et al. Characteristics of carbonyls in Beijing urban residences: Concentrations, source strengths and influential factors [J]. Procedia Engineering, 2015, 121: 2052-2059. doi: 10.1016/j.proeng.2015.09.206
|
[22] |
HUANG C, LIU W, CAI J, et al. Household formaldehyde exposure and its associations with dwelling characteristics, lifestyle behaviours, and childhood health outcomes in Shanghai, China [J]. Building and Environment, 2017, 125: 143-152. doi: 10.1016/j.buildenv.2017.08.042
|
[23] |
戴文婷. 关中含氧挥发性有机物对臭氧和二次有机气溶胶形成影响[D]. 西安: 中国科学院地球环境研究所, 2020.
DAI W T. Distribution of oxygenated volatile organic compunds in the Guanzhong basin and their impacts on ozone and secondary organic aerosols formation[D]. Xi'an: Institute of Earth Environment, Chinese Academy of Sciences, 2020(in Chinese).
|
[24] |
LANDRIGAN P J. Children as a vulnerable population [J]. Human and Ecological Risk Assessment:An International Journal, 2005, 11(1): 235-238. doi: 10.1080/10807030590920051
|
[25] |
MATZ C J, STIEB D M, DAVIS K, et al. Effects of age, season, gender and urban-rural status on time-activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2) [J]. International Journal of Environmental Research and Public Health, 2014, 11(2): 2108-2124. doi: 10.3390/ijerph110202108
|
[26] |
FAN G T, XIE J C, YOSHINO H, et al. Concentration characteristics of gaseous carbonyl compounds in urban houses in two different climatic zones of China and health risk assessment for schoolchildren [J]. Sustainable Cities and Society, 2020, 60: 102270. doi: 10.1016/j.scs.2020.102270
|
[27] |
段小丽. 中国人群暴露参数手册(儿童卷)概要[M]. 北京: 中国环境科学出版社, 2016.
DUAN X L. Highlight of Chinese children's exposure factors handbook [M]. Beijing: China Environmental Science Press, 2016(in Chinese).
|
[28] |
BRADMAN A, GASPAR F, CASTORINA R, et al. Formaldehyde and acetaldehyde exposure and risk characterization in California early childhood education environments [J]. Indoor Air, 2017, 27(1): 104-113. doi: 10.1111/ina.12283
|
[29] |
吴可. 新装修住宅室内VOCs及其污染影响的长期变化特征研究[D]. 南京: 南京理工大学, 2020.
WU K. Study on the long-term variation characteristics of indoor VOCs and pollution impact in newly decorated buildings[D]. Nanjing: Nanjing University of Science and Technology, 2020(in Chinese).
|
[30] |
NAGATA Y. Measurement of odor threshold value of odor substances by triangle odor bag method[R]. Meeting of the Japan Society of Air Pollution, 1988.
|
[31] |
SALTHAMMER T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings [J]. Building and Environment, 2019, 150: 219-232. doi: 10.1016/j.buildenv.2018.12.042
|
[32] |
YAMASHITA S, KUME K, HORIIKE T, et al. A simple method for screening emission sources of carbonyl compounds in indoor air [J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 370-376.
|
[33] |
MISHRA N, BARTSCH J, AYOKO G A, et al. Volatile organic compounds: Characteristics, distribution and sources in urban schools [J]. Atmospheric Environment, 2015, 106: 485-491. doi: 10.1016/j.atmosenv.2014.10.052
|
[34] |
UENO H, SHIMADA A, SUEMITSU S, et al. Hexanal inhalation affects cognition and anxiety-like behavior in mice [J]. Zeitschrift Fur Naturforschung C, Journal of Biosciences, 2020, 75(11/12): 409-415.
|
[35] |
LIU J W, LI X, YANG Y M, et al. An IBBCEAS system for atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO2 concentrations [J]. Atmospheric Measurement Techniques, 2019, 12: 4439-4453. doi: 10.5194/amt-12-4439-2019
|
[36] |
ZOGKA A, ROMANIAS M, THEVENET F. Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS) [J]. Atmospheric Measurement Techniques, 2022, 15(7): 2001-2019. doi: 10.5194/amt-15-2001-2022
|
[37] |
FENG Y L, WEN S, CHEN Y J, et al. Ambient levels of carbonyl compounds and their sources in Guangzhou, China [J]. Atmospheric Environment, 2005, 39(10): 1789-1800. doi: 10.1016/j.atmosenv.2004.10.009
|
[38] |
国家市场监督管理总局, 国家标准化管理委员会. 室内空气质量标准: GB/T 18883—2022[S]. 2022.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Standards for indoor air quality: GB/T 18883—2022[S]. 2022(in Chinese).
|
[39] |
AZUMA K, UCHIYAMA I, UCHIYAMA S, et al. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings [J]. Environmental Research, 2016, 145: 39-49. doi: 10.1016/j.envres.2015.11.015
|
[40] |
HEALTH CANADA. Residential indoor air quality guidelines [EB/OL]. [2022-8-16].
|
[41] |
YOU Y, NIU C, ZHOU J, et al. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors [J]. Journal of Environmental Sciences, 2012, 24(4): 657-664. doi: 10.1016/S1001-0742(11)60812-7
|
[42] |
CLEVELAND W S, GRAEDEL T E, KLEINER B, et al. Sunday and workday variations in photochemical air pollutants in new jersey and New York [J]. Science, 1974, 186(4168): 1037-1038. doi: 10.1126/science.186.4168.1037
|
[43] |
KOO B, JUNG J, POLLACK A K, et al. Impact of meteorology and anthropogenic emissions on the local and regional ozone weekend effect in Midwestern US [J]. Atmospheric Environment, 2012, 57: 13-21. doi: 10.1016/j.atmosenv.2012.04.043
|
[44] |
王俊秀. 南京北郊大气污染物对局地臭氧生成效率的影响[D]. 南京: 南京信息工程大学, 2017.
WANG J X. The effect of atmospheric pollutants on local ozone production efficiency in northern suburb of Nanjing[D]. Nanjing: Nanjing University of Information Science & Technology, 2017(in Chinese).
|
[45] |
楚芳婕, 孙爽, 李令军, 等. 2018—2020年北京市交通监测站点大气污染特征分析 [J]. 中国环境科学, 2021, 41(12): 5548-5560. doi: 10.3969/j.issn.1000-6923.2021.12.010
CHU F J, SUN S, LI L J, et al. Characteristics of the atmospheric pollutants at traffic monitoring sites in Beijing during 2018—2020 [J]. China Environmental Science, 2021, 41(12): 5548-5560(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.12.010
|
[46] |
李建东. 上海大气污染的季节特征及周末效应的研究[D]. 西安: 中国科学院研究生院(地球环境研究所), 2015.
LI J D. Seasonal characteristics of air pollution and weekend effect in Shanghai[D]. Xi'an: Institute of Earth Environment, Chinese Academy of Sciences, 2015(in Chinese).
|
[47] |
NICOLAS M, RAMALHO O, MAUPETIT F. Reactions between ozone and building products: Impact on primary and secondary emissions [J]. Atmospheric Environment, 2007, 41(15): 3129-3138. doi: 10.1016/j.atmosenv.2006.06.062
|
[48] |
刘雨晴. 家庭环境中挥发性有机污染物暴露特征及风险评估[D]. 天津: 天津大学, 2019.
LIU Y Q. Exposure characteristics and risk assessment of volatile organic compounds in household environment[D]. Tianjin: Tianjin University, 2019(in Chinese).
|