-
羰基化合物是大气中一类重要的含氧挥发性有机化合物(OVOCs),在对流层光化学作用中起重要作用,是大气中O3、过氧乙酰硝酸酯(PANs)、有机酸等二次污染物形成的中间产物,影响对流层大气的氧化潜势[1]. 羰基化合物的光解被认为是大气中许多自由基生成的主要途径,如ROx等,这些自由基通过影响大气中NO向NO2转化的化学速率,从而进一步影响O3的二次生成[2-3]. 羰基化合物对气溶胶中有机组分的贡献也十分显著,是大气中二次有机气溶胶(SOA)生成的重要中间产物[4-5]. 城市大气中羰基化合物的来源主要包括一次来源和二次生成,一次来源可分为机动车尾气、餐饮业烟气、燃烧(家用燃料和烟草)和工业废气等一次人为排放源以及少量的生物排放,二次生成主要发生在光化学反应过程中[1, 6-10].
浙江省地处长江三角洲地区南翼,地势自西南向东北呈阶梯状倾,受地理位置和地形条件的影响,与周边地区大气对流充分,季风特点显著. 杭州是浙江省的省会,是长三角地区第二大城市,汽车保有量从39万辆(2000年)增加到282万辆(2020年),2020年常住人口1196万. 绍兴市是长三角城市群重要城市,以纺织印染工业为主导产业,2020年常住人口529万,汽车保有量162万辆. 当前长三角大部分城市进入臭氧污染和PM2.5污染并重的大气控制新阶段,因此作为二者共同前体物的VOCs成为关注焦点,杭州[11-12]和绍兴[13] 城区以及工业源排放的VOCs均有报道,但目前针对含氧有机物(OVOC)特别是羰基化合物的研究仍较少.
在本研究中,于2020年11月在杭州采样,2021年1—11月在绍兴市采样,实地测量了两地环境空气中羰基化合物浓度. 研究目的是:(1)认识杭州和绍兴大气中羰基化合物的浓度及其日变化特征;(2)研究大气中羰基化合物对大气氧化性的贡献.
杭州及绍兴大气中羰基化合物的污染特征、来源及影响
The pollution levels, sources and impact of carbonyls in Hangzhou and Shaoxing atmosphere
-
摘要: 长江三角洲地区是我国“三区十群”大气污染防治重点区域之一,城市大气光化学污染严重,但对其形成机制研究较少. 本论文采用2,4-二硝基苯肼固相吸附采样,高效液相色谱法(HPLC)分离检测技术,测定了杭州和绍兴两个长三角典型城市大气羰基化合物,研究了羰基化合物的时空分布特征及其对大气光氧化的贡献,并利用比值法初步分析了羰基化合物的来源. 结果表明,杭州市和绍兴市大气中主要羰基化合物都是甲醛、乙醛和丙酮,其在杭州市的质量浓度分别是(3.81±1.15)μg·m−3、(4.71±2.18)μg·m−3、(10.34±10.20)μg·m−3(n=209),在绍兴市的质量浓度分别为(5.85±3.93)μg·m−3、(3.88±1.97)μg·m−3、(8.30±6.87)μg·m−3(n=499),这3种化合物占杭州市和绍兴市羰基化合物总量分别是76.2%、80.5%. 绍兴市夏季羰基化合物的平均总浓度明显高于其他季节,大气光化学污染可能是绍兴大气羰基化合物的主要来源. 2021年4月28日—5月5日,在绍兴的一次臭氧轻度污染过程期间,臭氧污染的节假日期间羰基化合物总量高于工作日,且夜间高于白天. 对杭州和绍兴臭氧生成潜势(OFP)贡献较大的羰基化合物是甲醛和乙醛,它们对杭州市秋季大气中OFP的贡献达53.4%,对绍兴市全年大气中总OFP的贡献值为55.8%—78.2%. 本研究结果有助于认识大气羰基化合物对杭州市和绍兴市臭氧的贡献.Abstract: The Yangtze River Delta region (YRD) is one of China’s “Three Regions and Ten Groups” air pollution prevention and control areas. Although the urban atmospheric photochemical pollution is quite serious, there are few studies on its formation mechanism. To investigate the pollution characteristics of carbonyls in urban ambient air in the YRD region, Hangzhou City and Shaoxing City were selected as typical cities. The levels of carbonyl compounds in Hangzhou and Shaoxing were measured by using a high-performance liquid chromatography (HPLC). The spatiotemporal variations and the contributions to atmospheric photo-oxidation of carbonyl compounds were studied. The preliminary sources analysis of carbonyls was carried out by a ratio method. Formaldehyde, acetaldehyde, and acetone were the three most abundant carbonyls of both cities with the mean concentrations of (3.81±1.15) μg∙m−3, (4.71±2.18) μg∙m−3 and (10.34±10.20) μg∙m−3 (n=209), respectively, in Hangzhou city. The mean concentrations of formaldehyde, acetaldehyde and acetone in Shaoxing city were (5.85±3.93) μg∙m−3, (3.88±1.97) μg∙m−3, and (8.30±6.87) μg∙m−3 (n=499), respectively. These three compounds accounted for above 76.2% and 80.5% of total carbonyls in Hangzhou and Shaoxing. The total carbonyl concentrations showed significant higher levels in summer compared to other seasons at Shaoxing. The photo-oxidation of hydrocarbons might be the important sources to carbonyls in Shaoxing. A slight ozone pollution process occurred in Shaoxing from April 28 to May 5, 2021, the total carbonyl concentrations during Labor Day period of ozone pollution was higher than that of working days, and concentrations during night were higher than those during daytime. The most important species of carbonyls which contributed to the ozone formation potentials (OFP) were formaldehyde and acetaldehyde both in Hangzhou and Shaoxing. These two species contributed 53.4% to the OFP in autumn of Hangzhou, and 55.8%—78.2% to the OFP in Shaoxing for the whole year. This study helps to understand the contribution of atmospheric carbonyls to ozone in Hangzhou and Shaoxing, may be useful to control ozone pollution.
-
Key words:
- carbonyl compounds /
- spatiotemporal variations /
- photo-oxidation /
- the Yangtze River Delta /
- Hangzhou /
- Shaoxing
-
表 1 杭州和绍兴采样期间气象条件信息
Table 1. Meteorological parameters in the sampling periods at the Hangzhou site (S1) and Shaoxing site (S2)
温度/℃
Temperature相对湿度/%
Relative humidity风速/(m·s−1)
Wind speed天气
Weather杭州 秋季 9—24 24—95 0—5.812 晴、多云、小雨 冬季 -2—20 15—82 0.898—7.184 晴、阴、多云 绍兴 春季 18—23 57—100 0.898—4.041 晴、多云、小雨 夏季 25—35 49—91 0.447—5.812 晴、多云 秋季 6—21 24—91 0—8.047 晴、多云 表 2 杭州市秋季、绍兴市四季羰基化合物的浓度(μg∙m−3)
Table 2. Average concentration of the carbonyls in each sampling periods at Hangzhou site and Shaoxing site (μg∙m−3)
甲醛
Formaldehyde乙醛
Acetaldehyde丙酮
Acetone正丁醛
Butyraldehyde其它9种羰基化合物
Other 9 carbonyls合计
Total杭州秋季 范围 1.79—7.53 2.02—17.26 3.55—88.84 1.86—3.15 0.43—18.71 4.33—141.02 平均浓度 3.81±1.15 4.71±2.18 10.34±10.20 2.61±1.57 3.29±3.22 24.76±18.33 绍兴冬季 范围 1.13—8.90 1.13—13.00 3.03—38.20 0.70—20.40 0.80—9.93 6.83—81.53 平均浓度 3.72±1.41 4.69±2.29 8.08±6.31 4.49±3.43 3.81±3.81 25.61±19.05 绍兴春季 范围 1.20—40.33 0.12—23.02 2.53—67.48 0.08—1.40 0.14—10.56 1.69—101.46 平均浓度 8.63±5.62 3.97±3.82 14.71±10.97 0.56±0.31 2.32±3.42 31.01±25.29 绍兴夏季 范围 6.62—25.30 2.23—6.14 5.82—21.82 0.66—2.24 1.22—17.69 16.55—64.03 平均浓度 10.38±2.61 3.92±1.09 13.97±4.25 1.27±0.37 6.58±5.72 36.12±14.04 绍兴秋季 范围 0.85—9.97 0.61—6.51 0.24—41.63 0.03—8.54 0.07—15.80 1.62—60.97 平均浓度 4.90±2.03 2.90±1.14 5.62±5.65 2.66±2.01 3.07±6.04 18.88±18.36 表 3 不同城市羰基化合物质量浓度对比(μg∙m−3)
Table 3. A comparison of atmospheric formaldehyde, acetaldehyde, acetone and C1/C2 value in different urban cities (μg∙m−3)
地区
Location采样时间
Period甲醛
Formaldehyde乙醛
Acetaldehyde丙酮
AcetoneC1/C2 杭州 2020.11 3.81 4.71 10.34 0.81 绍兴 2021.01 3.72 4.69 8.08 0.86 绍兴 2021.05 8.63 3.97 14.71 2.18 绍兴 2021.09 10.38 3.92 13.97 2.73 绍兴 2021.11 4.90 2.90 5.62 2.06 杭州[11] 2006.03—04 22.2 6.37 18.4 — 长沙[20] 2014.12—2015.01 5.88 4.84 7.84 1.33 长沙[20] 2015.06—07 14.09 8.28 9.02 2.10 上海[32] 2007.01—10 19.4 15.9 11.9 — 武汉[19] 2017—2018 6.57 4.63 7.46 1.42 香港[31] 2013全年 5.2 2.8 — — 北京[6] 2008冬 4.8 6.0 11.6 — 广州[35] 2005.11 6.02 7.37 8.33 0.84 南宁[22] 2012.10—2012.07 6.79 15.81 5.43 0.43 日本,大阪[18] 2003.07—10 3.0—6.9 1.3—4.6 3.9—14 — 西安[9] 2009夏 7.92 3.7 6.41 2.14 西安[9] 2010冬 5.57 12.0 9.33 0.47 贵阳[21] 2008.12—2009.08 4.80 5.70 5.10 — 法国,奥尔良*[33] 2011.01 1.79 1.21 2.51 2.18 意大利,罗马[8] 2005.07—09 5.11 1.73 9.30 — “—”表示数据在相关引用中不可用;“*”表示原文中单位是ppbv,进行换算: .$ 1\;\text{μ}\mathrm{g}\cdot{\mathrm{m}}^{-3}={M}_{\mathrm{g}}/24.45\;\mathrm{p}\mathrm{p}\mathrm{b}\mathrm{v} $ 表 4 “五一”节假日前后天气条件和其它污染物浓度范围
Table 4. The concentration range of weather conditions and other pollutants before and after Labor Day
工作日(2021.04.28—30)
Weekday节假日(2021.05.01—05)
Holiday天气 晴、多云、雾 晴、多云 CO 0.4—1.2 mg∙m−3 0.4—0.9 mg∙m−3 NO2 14—55 μg∙m−3 10—82 μg∙m−3 O3 21—161 μg∙m−3 33—190 μg∙m−3 风速 0—7.152 m∙s−1 0.894—8.046 m∙s−1 -
[1] ZHANG Y N, XUE L K, DONG C, et al. Gaseous carbonyls in China's atmosphere: Tempo-spatial distributions, sources, photochemical formation, and impact on air quality [J]. Atmospheric Environment, 2019, 214: 116863. doi: 10.1016/j.atmosenv.2019.116863 [2] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects [J]. Science of the Total Environment, 2017, 575: 1582-1596. doi: 10.1016/j.scitotenv.2016.10.081 [3] LI L, CHEN C H, HUANG C, et al. Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system [J]. Atmospheric Chemistry and Physics, 2012, 12(22): 10971-10987. doi: 10.5194/acp-12-10971-2012 [4] FU T M, JACOB D J, WITTROCK F, et al. Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols [J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D15): D15303. doi: 10.1029/2007JD009505 [5] LI J Y, MAO J Q, MIN K E, et al. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States [J]. Journal of Geophysical Research:Atmospheres, 2016, 121(16): 9849-9861. doi: 10.1002/2016JD025331 [6] ZHANG Y J, MU Y J, LIU J F, et al. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China [J]. Journal of Environmental Sciences, 2012, 24(1): 124-130. doi: 10.1016/S1001-0742(11)60735-3 [7] DUAN J C, TAN J H, YANG L, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing [J]. Atmospheric Research, 2008, 88(1): 25-35. doi: 10.1016/j.atmosres.2007.09.004 [8] POSSANZINI M, TAGLIACOZZO G, CECINATO A. Ambient levels and sources of lower carbonyls at montelibretti, Rome (Italy) [J]. Water, Air, and Soil Pollution, 2007, 183(1/2/3/4): 447-454. [9] DAI W T, HO S S H, HO K F, et al. Seasonal and diurnal variations of mono- and di-carbonyls in Xi'an, China [J]. Atmospheric Research, 2012, 113: 102-112. doi: 10.1016/j.atmosres.2012.05.001 [10] 李元昭, 李少华, 张成龙, 等. 北京市大兴区夏季大气中醛酮类化合物的污染水平、来源及影响 [J]. 环境化学, 2021, 40(7): 1999-2015. doi: 10.7524/j.issn.0254-6108.2020030103 LI Y Z, LI S H, ZHANG C L, et al. The pollution levels, sources and impact of atmospheric carbonyls in summer of Daxing District, Beijing [J]. Environmental Chemistry, 2021, 40(7): 1999-2015(in Chinese). doi: 10.7524/j.issn.0254-6108.2020030103
[11] WENG M L, ZHU L Z, YANG K, et al. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China [J]. Journal of Hazardous Materials, 2009, 164(2/3): 700-706. [12] LI K W, CHEN L H, YING F, et al. Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China [J]. Atmospheric Research, 2017, 196: 40-52. doi: 10.1016/j.atmosres.2017.06.003 [13] LI B W, HO S S H, QU L L, et al. Temporal and spatial discrepancies of VOCs in an industrial-dominant city in China during summertime [J]. Chemosphere, 2021, 264: 128536. doi: 10.1016/j.chemosphere.2020.128536 [14] SUN H S, LI J H, ZHANG Y Q, et al. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China [J]. Journal of Structural Geology, 2018, 110: 116-130. doi: 10.1016/j.jsg.2018.03.003 [15] EPA U. Compendium of methods for the determination of toxic organic compounds in ambient air[S]. 1999. [16] HO K F, SAI HANG HO S, CHENG Y, et al. Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel [J]. Atmospheric Environment, 2007, 41(8): 1747-1758. doi: 10.1016/j.atmosenv.2006.10.027 [17] PANG X B, MU Y J. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air [J]. Atmospheric Environment, 2006, 40(33): 6313-6320. doi: 10.1016/j.atmosenv.2006.05.044 [18] UEBORI M, IMAMURA K. Analysis of aliphatic and aromatic carbonyl compounds in ambient air by LC/MS/MS [J]. Analytical Sciences, 2004, 20(10): 1459-1462. doi: 10.2116/analsci.20.1459 [19] YANG Z, CHENG H R, WANG Z W, et al. Chemical characteristics of atmospheric carbonyl compounds and source identification of formaldehyde in Wuhan, Central China [J]. Atmospheric Research, 2019, 228: 95-106. doi: 10.1016/j.atmosres.2019.05.020 [20] JIANG Z H, ZHENG X, ZHAI H Q, et al. Seasonal and diurnal characteristics of carbonyls in the urban atmosphere of Changsha, a mountainous city in south-central China [J]. Environmental Pollution, 2019, 253: 259-267. doi: 10.1016/j.envpol.2019.06.127 [21] PANG X B, LEE X Q. Temporal variations of atmospheric carbonyls in urban ambient air and street canyons of a Mountainous City in Southwest China [J]. Atmospheric Environment, 2010, 44(17): 2098-2106. doi: 10.1016/j.atmosenv.2010.03.006 [22] GUO S J, CHEN M, TAN J H. Seasonal and diurnal characteristics of atmospheric carbonyls in Nanning, China [J]. Atmospheric Research, 2016, 169: 46-53. doi: 10.1016/j.atmosres.2015.09.028 [23] PANG X B, MU Y J, LEE X Q, et al. Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China [J]. Atmospheric Research, 2009, 93(4): 913-919. doi: 10.1016/j.atmosres.2009.05.001 [24] GALBALLY I E, ROY C R. Destruction of ozone at the earth's surface [J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(449): 599-620. doi: 10.1002/qj.49710644915 [25] KARLSSON P E, KLINGBERG J, ENGARDT M, et al. Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe [J]. Science of the Total Environment, 2017, 576: 22-35. doi: 10.1016/j.scitotenv.2016.10.061 [26] VAIRAVAMURTHY A, ROBERTS J M, NEWMAN L. Methods for determination of low molecular weight carbonyl compounds in the atmosphere: A review [J]. Atmospheric Environment. Part A. General Topics, 1992, 26(11): 1965-1993. doi: 10.1016/0960-1686(92)90083-W [27] 王楚涵, 张鑫, 吴鸣, 等. 沈阳市郊区环境空气中醛酮类化合物的污染特征与来源分析 [J]. 环境科学研究, 2020, 33(12): 2771-2784. doi: 10.13198/j.issn.1001-6929.2020.03.39 WANG C H, ZHANG X, WU M, et al. Pollution characterization and source analyses of carbonyls in the ambient air in a suburban area of Shenyang [J]. Research of Environmental Sciences, 2020, 33(12): 2771-2784(in Chinese). doi: 10.13198/j.issn.1001-6929.2020.03.39
[28] ATKINSON R. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000, 34(12/13/14): 2063-2101. [29] MELLOUKI A, WALLINGTON T J, CHEN J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate [J]. Chemical Reviews, 2015, 115(10): 3984-4014. doi: 10.1021/cr500549n [30] SHEN H Q, LIU Y H, ZHAO M, et al. Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in Eastern China [J]. Science of the Total Environment, 2021, 764: 144031. doi: 10.1016/j.scitotenv.2020.144031 [31] LUI K H, HO S S H, LOUIE P K K, et al. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air [J]. Atmospheric Environment, 2017, 152: 51-60. doi: 10.1016/j.atmosenv.2016.12.004 [32] HUANG J, FENG Y L, LI J, et al. Characteristics of carbonyl compounds in ambient air of Shanghai, China [J]. Journal of Atmospheric Chemistry, 2008, 61(1): 1-20. doi: 10.1007/s10874-009-9121-x [33] JIANG Z H, GROSSELIN B, DAËLE V, et al. Seasonal, diurnal and nocturnal variations of carbonyl compounds in the semi-urban environment of Orléans, France [J]. Journal of Environmental Sciences, 2016, 40: 84-91. doi: 10.1016/j.jes.2015.11.016 [34] SHEPSON P B, HASTIE D R, SCHIFF H I, et al. Atmospheric concentrations and temporal variations of C1–C3 carbonyl compounds at two rural sites in central Ontario [J]. Atmospheric Environment. Part A. General Topics, 1991, 25(9): 2001-2015. doi: 10.1016/0960-1686(91)90280-K [35] LÜ H, CAI Q Y, WEN S, et al. Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China [J]. Atmospheric Research, 2009, 94(3): 363-372. doi: 10.1016/j.atmosres.2009.06.014 [36] JI Y M, GAO Y P, LI G Y, et al. Theoretical study of the reaction mechanism and kinetics of low-molecular-weight atmospheric aldehydes (C1-C4) with NO2 [J]. Atmospheric Environment, 2012, 54: 288-295. doi: 10.1016/j.atmosenv.2012.02.040 [37] 史建武, 庞小兵, 白志鹏, 等. 天津及渤海大气中醛酮化合物的检测 [J]. 天津大学学报, 2011, 44(3): 233-241. doi: 10.3969/j.issn.0493-2137.2011.03.008 SHI J W, PANG X B, BAI Z P, et al. Measurement of carbonyl compounds in ambient air of Tianjin City and Bohai Sea [J]. Journal of Tianjin University, 2011, 44(3): 233-241(in Chinese). doi: 10.3969/j.issn.0493-2137.2011.03.008
[38] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2016. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Ambient air quality standard: GB 3095—2012[S]. Beijing: China Environment Science Press, 2016(in Chinese).
[39] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. ChemInform, 2003, 103(12): 4605–4638. [40] CARTER W P L. Development of ozone reactivity scales for volatile organic compounds [J]. Air & Waste, 1994, 44(7): 881-899. [41] GENG F H, ZHAO C S, TANG X, et al. Analysis of ozone and VOCs measured in Shanghai: A case study [J]. Atmospheric Environment, 2007, 41(5): 989-1001. doi: 10.1016/j.atmosenv.2006.09.023