-
我国是药物生产和使用大国. 药物主要作用为预防和治疗人类、动植物等疾病,调节生理机能,恢复机体正常等. 近年来,由于药物的生产,使用和排放缺乏长期有效的监管机制,导致在农作物土壤、地下水、地表水甚至饮用水水源中检测出了药物的存在[1-2],虽然检出浓度较低,在ng·L−1和μg·L−1之间,但对自然水体中的细菌产生抗性基因的风险不容忽视[3-4]. 药物毒性的累积性对人体的潜在伤害较为严重,例如饮用含有药物污染的地下水会影响人体的内分泌系统,长期饮用可导致癌症和畸形[5].
高级氧化技术(AOPs)是高效去除水体中痕量有机污染物的技术,其主要通过自由基及非自由基途径将污染物氧化甚至矿化[6]. 近年来,基于硫酸根自由基的高级氧化技术(SR-AOPs)受到广泛关注,相比于热活化、臭氧活化、金属活化产生活性基团等方式,UV活化效率高、副产物少且经济环保[7]. 同时,相比于传统的以·OH自由基(E0=1.9—2.7 V)[8]主导的高级氧化技术(HR-AOPs),
${\rm{SO}}_4^{-}\cdot $ 自由基(E0=2.5—3.1V)[9]以其高氧化电位、pH适应范围广、稳定性强,对污染物降解具有更广阔的应用前景.本论文选取可与组胺H2受体结合,产生抑酸作用,用于治疗消化性溃疡等疾病的受体拮抗剂(HRAs)[10](雷尼替丁(Ranitidine,RNTD)、尼扎替丁(Nizatidine,NZTD)、法莫替丁(Famotidine,FMTD)、西咪替丁(Cimetidine,CMTD)、罗沙替丁(Roxatidine,RXTD))为研究对象. 由于患者在给药后很大一部分HRAs以原结构排出至环境中,传统污水处理工艺无法有效去除HRAs[11-13],在地表水中检测到CMTD浓度达580 ng·L−1[14],在污水厂出水中检测到CMTD、FMTD和RNTD的浓度高达0—5.38 μg·L−1[11, 14]. HRAs在水体中的污染会对生态系统和公共卫生带来潜在风险[15],基于生物处理的传统污水处理工艺对HRAs的去除效果有限. 高级氧化被认为是去除水中有机微污染物的有效技术 [16],但是对HRAs类污染物的去除特性研究罕有报道. CMTD是第一代HRAs,污水厂出水中浓度甚至高达5380 ng·L−1[14],鉴于CMTD的高使用量和排放量,将其作为特征物质,通过建立拟稳态动力学模型,探究UV/PDS体系降解HRAs的机理,PDS投加量、不同pH条件、水体基质(Cl−、
${\rm{HCO}}_3^{-} $ 和NOM)对UV/PDS体系的影响,并评估在实际水样(地表水(SW)、实际废水(WW))中的应用. 通过比对实验值与模型预测值的差异,进一步评估UV/PDS体系稳态模型的适用性,明确UV/PDS降解HRAs的反应机理和应用前景.
紫外/过二硫酸盐对组胺H2受体拮抗剂的降解特性及自由基模拟
Degradation of histamine H2-receptor antagonists by UV/PDS: Kinetics and radical modeling
-
摘要: 研究了基于硫酸根的高级氧化技术UV/过二硫酸盐(UV/PDS)对水体中组胺H2受体拮抗剂(HRAs)的降解,并选取HRAs中的典型物质西咪替丁(CMTD)为目标污染物. 采用竞争动力学方法得到了HRAs和·OH及
${\rm{SO}}_4^{-}\cdot $ 反应的二级速率常数,k·OH/HRAs为(2.8—14.6)×109 L·mol−1·s−1,$k_{{\rm{SO}}_4^{-}\cdot /{\rm{HRAs}}} $ 为(0.81—8.10)×109 L·mol−1·s−1. 研究在实验基础上建立了UV/PDS的自由基拟稳态模型,模拟结果表明,UV/PDS对污染物的降解,其间接光解起主要作用,体系中·OH和${\rm{SO}}_4^{-}\cdot $ 是间接光解的主导自由基. 在(0.1—0.5) mmol·L−1 PDS投加量下,·OH和${\rm{SO}}_4^{-}\cdot $ 的浓度分别为(3.85—5.16) ×10−16 mol·L−1,(1.21—1.68) ×10−13 mol·L−1,${\rm{SO}}_4^{-}\cdot $ 对污染物的降解起主导作用. 酸性条件下自由基浓度相对更高,从而促进了CMTD的去除. 水体基质(Cl−、${\rm{HCO}}_3^{-} $ 和NOM)存在条件下,CMTD的降解受到一定的抑制,模拟结果表明自由基浓度显著降低;但是模拟结果与实验结果有一定偏差,主要是基质存在下生成了衍生自由基,由于衍生自由基的复杂性而未计入模型计算中导致. 在实际水样中应用的研究表明,UV/PDS可以有效降解地表水(SW)和实际废水(WW)中的CMTD,具有良好的应用前景.Abstract: The degradation of histamine H2-receptor antagonist (HRAs) by sulfate radical based advanced oxidation processes (SR-AOPs) of UV/peroxydisulfate (UV/PDS) was investigated in this study. Cimetidine (CMTD), a typical compound of HRAs, was selected as the target pollutant. The second-order rate constants between HRAs with ·OH and${\rm{SO}}_4^{-}\cdot $ were obtained by competition kinetic approaches, with kžOH/HRAs in the range of (2.8—14.6)×109 L·mol−1·s−1 and$k_{{\rm{SO}}_4^{-}\cdot /{\rm{HRAs}}} $ in the range of (0.81—8.10)×109 L·mol−1·s−1, respectively. Based on experimental results, a pseudo steady-state kinetic model was developed to calculate the radical concentration. The modeling results showed that CMTD degradation was mainly caused by indirect photolysis, which dominated by ·OH and${\rm{SO}}_4^{-}\cdot $ . With the dosage of (0.1—0.5) mmol·L−1 PDS, the ·OH and${\rm{SO}}_4^{-}\cdot $ concentrations were in the range of (3.85—5.16) ×10−16 mol·L−1 and (1.21—1.68) ×10−13 mol·L−1, respectively. Thereby,${\rm{SO}}_4^{-}\cdot $ was deemed as the major contributor to CMTD degradation. The radical concentration was relatively higher under acidic conditions, which promoted the degradation of CMTD. In the presence of water matrices, i.e., Cl−,${\rm{HCO}}_3^{-} $ and NOM, the degradation of CMTD was inhibited to some extent. Modeling results confirmed that the radical concentration decreased significantly. However, a certain deviation between modeling and experimental results was observed in the presence of water matrices, which might be caused by the secondary radicals derived from ·OH and${\rm{SO}}_4^{-}\cdot $ reacting with water matrices. Due to the complexity of secondary radicals, the reactions of derived radicals were not included in the model. The application of UV/PDS in real water samples showed that CMTD could be effectively degraded by UV/PDS in surface water (SW) and wastewater (WW), which is promising in water treatment.-
Key words:
- histamine H2-receptor antagonist /
- Cimetidine /
- UV/PDS /
- radical modeling.
-
表 1 HRAs的化学结构
Table 1. Chemical Structures of HRAs
污染物
Contaminants分子量
Molecular weight分子式
Molecular formula化学结构式
Chemical structural formula雷尼替丁 314.40 C13H22N4O3S 尼扎替丁 331.46 C12H21N5O2S2 法莫替丁 337.45 C8H15N7O2S3 西咪替丁 252.34 C10H16N6S 罗沙替丁 306.19 C17H26N2O3 表 2 拟稳态模型中涉及的基本反应和速率常数
Table 2. Reactions and rate constants involved in the pseudo steady-state model
方程式
Equations速率常数
Rate constants参考文献
References1 ${\text{S} }_{\text{2} }{ {\text{O} }_{\text{8} } }^{2- }\text{+}\text{hv}\text{→2S} {\text{O} }_{\text{4} } ^{- }\cdot$ Φ254 = 0.70 mol·einstein−1 = 22.07 mol−1·cm−1${\epsilon }_{ {\mathrm{S} }_{2}{ {\mathrm{O} }_{8} }^{ {2-} } }^{254}$ [22-23] 2 $ \text{HRAs+}\text{hv}\text{→products} $ rUV,HRAs = -ΦHRAs·I·fHRAs·(1-e-A)
fHRAs = 2.303·b·εHRAs·CHRAs/A3 $\text{S} {\text{O} }_{\text{4} } ^{- }\cdot\text{+}{\text{S} }_{\text{2} } {\text{O} }_{\text{8} } ^{2- }\text{→}{\text{S} }_{\text{2} } {\text{O} }_{\text{8} } ^{- }\cdot \text{+S} {\text{O} }_{\text{4} } ^{2- }$ k1 = 6.62×105 L·mol−1·s−1 [24] 4 $ \text{Alkaline}\text{pH} $ $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+H}{\text O} ^{-}\text{→HO}\cdot \text{+S} {\text{O} }_{\text{4} } ^{2- }$ k2 = 6.25×107 L·mol−1·s−1 [25] 5 $ \text{All pHs} $ $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+}\left({\text{H} }_{\text{2} }\text{O}\right)\text{→HO}\cdot \text{+ HS} {\text{O} }_{\text{4} } ^{-}$ k2’[H2O] = 4.6×102 s−1 [26] 6 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+ S} {\text{O} }_{\text{4} } ^{-}\cdot \text{→}{\text{S} }_{\text{2} } {\text{O} }_{\text{8} } ^{2- }$ k3 = 8.1×108 L·mol−1·s−1 [24] 7 $ \text{HO}\cdot \text{+HO}\cdot \text{→}{\text{H}}_{\text{2}}{\text{O}}_{\text{2}} $ k4 = 5×109 L·mol−1·s−1 [27] 8 ${\text{S} }_{\text{2} } {\text{O} }_{\text{8} } ^{{2-} }\text{+HO}\cdot \text{→HS} {\text{O} }_{\text{4} } ^{-}\text{+ S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+0.5}{\text{O} }_{\text{2} }$ k5 = 1.2×107 L·mol−1·s−1 [28] 9 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+ HO}\cdot \text{→HS} {\text{O} }_{\text{4} } ^{-}\text{+0.5}{\text{O} }_{\text{2} }$ k6 = 1.0×1010 L·mol−1·s−1 [28] 10 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+ R→products}$ $ \text{HO}\cdot \text{+ R→products} $ k7 = $k_{{\rm{SO}}_4^{-}\cdot /{\rm{HRAs}}} $
k7’ = k·OH/HRAs11 $\text{HS} {\text{O} }_{\text{4} } ^{-}\text{↔}{\text{H} }^{\text{+} }\text{+S} {\text{O} }_{\text{4} } ^{{2-} }$ pKa1 = 1.92 [29] 在Cl−存在条件下 12 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+ C}{\text{l} }^{-}\text{→S} {\text{O} }_{\text{4} } ^{{2-} }\text{+Cl}\cdot$ k8 = 4.7×108 L·mol−1·s−1 [30] 13 $\text{S} {\text{O} }_{\text{4} } ^{{2-} }\text{+Cl}\cdot \text{→S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+ C}{\text{l} }^{-}$ k9 = 2.5×108 L·mol−1·s−1 [26] 14 $ \text{OH}\cdot \text{+ C}{\text{l}}^{-}\text{→ClO}{\text{H·}}^{-} $ k10 = 4.3×109 L·mol−1·s−1 [31] 15 $ \text{ClO}{\text{H·}}^{-}\text{→OH}\cdot \text{+ C}{\text{l}}^{-} $ k11 = 6.1×109 s−1 [31] 16 $ \text{Cl}\cdot \text{+}{\text{H}}_{\text{2}}\text{O→ClO}{\text{H·}}^{-}\text{+}{\text{H}}^{\text{+}} $ k12[H2O] = 1.3×103 s−1 [32] 17 $ \text{ClOH}{\text{·}}^{-}\text{+}{\text{H}}^{\text{+}}\text{→Cl}\cdot \text{+}{\text{H}}_{\text{2}}\text{O} $ k13 = 2.1×1010 L·mol−1·s−1 [31] 在 存在条件下${\rm{HCO}}_3^{-} $ 18 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+HC}{ {\text{O} }_{\text{3} } }^{-}\text{→C}{\text{O} }_{\text{3} }\cdot \text{+}{\text{H} }^{\text{+} }\text{+S} {\text{O} }_{\text{4} } ^{{2-} }$ k14 = 3.6×106 L·mol−1·s−1 [22] 19 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+C}{ {\text{O} }_{\text{3} } }^{2- }\text{→C} {\text{O} }_{\text{3} } ^{-}\cdot \text{+S} {\text{O} }_{\text{4} } ^{2- }$ k15 = 6.5×106 L·mol−1·s−1 [33] 20 $\text{HO}\cdot \text{+HC} {\text{O} }_{\text{3} } ^{-}\text{→C} {\text{O} }_{\text{3} } ^{-}\cdot \text{+}{\text{H} }_{\text{2} }\text{O}$ k16 = 8.5×106 L·mol−1·s−1 [8] 21 $\text{HO}\cdot \text{+C} {\text{O} }_{\text{3} } ^{2- }\text{→C} {\text{O} }_{\text{3} } ^{-}\cdot \text{+ O}{\text{H} }^{-}$ k17 = 4.2×108 L·mol−1·s−1 [8] 22 ${\text{H} }_{\text{2} }\text{C}{ {\text{O} }_{\text{3} } }^{\text{*} }\text{↔}{\text{H} }^{\text{+} }\text{+HC} {\text{O} }_{\text{3} } ^{-}$ pKa2 = 6.3 [34] 23 $\text{HC} {\text{O} }_{\text{3} } ^{-}\text{↔}{\text{H} }^{\text{+} }\text{+C} {\text{O} }_{\text{3} } ^{2- }$ pKa3 = 10.3 [31] 在NOM存在条件下 24 $\text{S} {\text{O} }_{\text{4} } ^{-}\cdot \text{+NOM→products}$ k18 = 2.35×107 L·molC−1·s−1 [35] 25 $ \text{HO}\cdot \text{+NOM→products} $ k19 = 3.0×108 L·molC−1·s−1 [20] 表 3 实际水样的表征
Table 3. Characteristics of the water samples
水样
Water samplespH TOC/(mg·L−1) Cl-/(mmol·L−1) NO3- /(mmol·L−1) PO43- /(mmol·L−1) Fe/(mmol·L−1) Mn/ (mmol·L−1) SW 6.57 0.79 0.39 0.0276 ND 3.35×10−6 6.74×10−6 WW 6.86 0.67 2.27 0.8009 ND ND 2.45×10−6 表 4 HRAs与·OH和
的二级反应速率常数${\rm{SO}}_4^{-}\cdot $ Table 4. The second-order rate constants of ·OH and
with HRAs${\rm{SO}}_4^{-}\cdot $ 组胺H2受体拮抗剂
HRAsk·OH/HRAs /(L·mol−1·s−1) /(L·mol−1·s−1)$k_{{\rm{SO}}_4^{-}\cdot /{\rm{HRAs}}} $ FMTD 7.31×109 7.07×109 RNTD 2.80×109 2.46×109 RXTD 3.12×109 0.81×109 NZTD 3.54×109 0.85×109 CMTD 1.46×1010 8.10×109 表 5 不同PDS投加量下UV/PDS模型体系中·OH和
理论浓度分布${\rm{SO}}_4^{-}\cdot $ Table 5. Concentration distribution of ·OH and
under different PDS dosage${\rm{SO}}_4^{-}\cdot $ [PDS]/(mmol·L−1) [·OH]/(mol·L−1) [ ]/(mol·L−1)${\rm{SO}}_4^{-}\cdot $ 0.1 3.85 × 10−16 1.21 × 10−13 0.2 4.20 × 10−16 1.34 × 10−13 0.3 4.54 × 10−16 1.45 × 10−13 0.4 4.86 × 10−16 1.57 × 10−13 0.5 5.16 × 10−16 1.68 × 10−13 注:([CMTD] = 0.01 mmol·L−1, PU-V = 3.2×10−8 Einstein·L−1·s−1). 表 6 不同pH条件下UV/PDS模型体系中·OH和
理论浓度分布${\rm{SO}}_4^{2-} $ Table 6. Concentration distribution of ·OH and
under different pH condition${\rm{SO}}_4^{2-} $ pH [·OH]/(mol·L−1) [ ]/(mol·L−1)${\rm{SO}}_4^{2-} $ 3 4.14 × 10-16 1.35 × 10-13 5 4.14 × 10-16 1.35 × 10-13 7 4.20 × 10-16 1.34 × 10-13 9 1.03 × 10-16 1.34 × 10-13 注:([CMTD] = 0.01 mmol·L−1, [PDS] = 0.2 mmol·L−1, PU-V = 3.2×10−8 Einstein·L−1·s−1). 表 7 Cl−存在条件下UV/PDS模型体系中·OH和
理论浓度分布${\rm{SO}}_4^{2-} $ Table 7. Concentration distribution of ·OH and
in the presence of Cl−${\rm{SO}}_4^{2-} $ [Cl−]/(mmol·L−1) [·OH]/(mol·L−1) [ ]/(mol·L−1)${\rm{SO}}_4^{2-} $ 0.5 8.48 × 10-16 3.44 × 10-14 1.0 2.95 × 10-16 1.98 × 10-14 1.5 1.60 × 10-16 1.39 × 10-14 2.0 1.05 × 10-16 1.07 × 10-14 注:([CMTD] = 0.01 mmol·L−1, [PDS] = 0.2 mmol·L−1, PU-V = 3.2×10−8 Einstein·L−1·s−1, pH = 7). 表 8
存在条件下UV/PDS模型体系中·OH和${\rm{HCO}}_3^{-} $ 理论浓度分布${\rm{SO}}_4^{-}\cdot $ Table 8. Concentration distribution of ·OH and
in the presence of${\rm{SO}}_4^{-}\cdot $ ${\rm{HCO}}_3^{-} $ [ ]/(mmol·L−1)${\rm{HCO}}_3^{-} $ [·OH]/(mol·L−1) [ ]/(mol·L−1)${\rm{SO}}_4^{-}\cdot $ 0.5 4.10 × 10-16 1.31 × 10-13 1.0 3.81 × 10-16 1.28 × 10-13 1.5 3.64 × 10-16 1.25 × 10-13 2.0 3.47 × 10-16 1.22 × 10-13 注:([CMTD] = 0.01 mmol·L−1, [PDS] = 0.2 mmol·L−1, PU-V = 3.2×10−8 Einstein·L−1·s−1, pH = 7). 表 9 HA存在条件下UV/PDS模型体系中·OH和
理论浓度分布${\rm{SO}}_4^{-}\cdot $ Table 9. Concentration distribution of ·OH and
in the presence of HA${\rm{SO}}_4^{-}\cdot $ [HA]/(mg·L−1) [·OH]/(mol·L−1) [ ]/(mol·L−1)${\rm{SO}}_4^{-}\cdot $ 0.5 3.84 × 10-16 1.32 × 10-13 1.0 3.53 × 10-16 1.31 × 10-13 1.5 3.25 × 10-16 1.29 × 10-13 2.0 3.05 × 10-16 1.28 × 10-13 注:([CMTD] = 0.01 mmol·L−1, [PDS] = 0.2 mmol·L−1, PU-V = 3.2×10−8 Einstein·L−1·s−1, pH = 7). -
[1] XIANG Y, WU H H, LI L, et al. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China [J]. Ecotoxicology and Environmental Safety, 2021, 213: 112044. doi: 10.1016/j.ecoenv.2021.112044 [2] DING G Y, CHEN G L, LIU Y D, et al. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways [J]. Science of the Total Environment, 2020, 738: 139802. doi: 10.1016/j.scitotenv.2020.139802 [3] LI Z, LI M, ZHANG Z Y, et al. Antibiotics in aquatic environments of China: A review and meta-analysis [J]. Ecotoxicology and Environmental Safety, 2020, 199: 110668. doi: 10.1016/j.ecoenv.2020.110668 [4] PERRY J A, WRIGHT G D. The antibiotic resistance “mobilome”: Searching for the link between environment and clinic [J]. Frontiers in Microbiology, 2013, 4: 138. [5] 胡譞予. 水环境中抗生素对健康的危害 [J]. 食品与药品, 2015, 17(3): 215-219. doi: 10.3969/j.issn.1672-979X.2015.03.022 HU X Y. Harm of antibiotics in aquatic environment on health [J]. Food and Drug, 2015, 17(3): 215-219(in Chinese). doi: 10.3969/j.issn.1672-979X.2015.03.022
[6] OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23): 2577-2641. doi: 10.1080/10643389.2013.829765 [7] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) [J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083 [8] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [9] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [10] GANELLIN C R, DURANT G J, EMMETT J C. Some chemical aspects of histamine H2-receptor antagonists [J]. Federation Proceedings, 1976, 35(8): 1924-1930. [11] RADJENOVIĆ J, PETROVIĆ M, BARCELÓ D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment [J]. Water Research, 2009, 43(3): 831-841. doi: 10.1016/j.watres.2008.11.043 [12] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211. [13] CASTIGLIONI S, BAGNATI R, FANELLI R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy [J]. Environmental Science & Technology, 2006, 40(1): 357-363. [14] CHOI K, KIM Y, PARK J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea [J]. Science of the Total Environment, 2008, 405(1/2/3): 120-128. [15] HOPPE P D, ROSI-MARSHALL E J, BECHTOLD H A. The antihistamine cimetidine alters invertebrate growth and population dynamics in artificial streams [J]. Freshwater Science, 2012, 31(2): 379-388. doi: 10.1899/11-089 [16] QIAN Y J, HUANG J J, LIU X, et al. Rapid oxidation of histamine H2-receptor antagonists by peroxymonosulfate during water treatment: Kinetics, products, and toxicity evaluation [J]. Water Research, 2020, 185: 116278. doi: 10.1016/j.watres.2020.116278 [17] KUHN H J, BRASLAVSKY S E, SCHMIDT R. Chemical actinometry [J]. Pure and Applied Chemistry, 1989, 61(2): 187-210. doi: 10.1351/pac198961020187 [18] ZHANG R C, SUN P Z, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS [J]. Environmental Science & Technology, 2015, 49(5): 3056-3066. [19] 李珂, 刘振鸿, 钱雅洁, 等. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性 [J]. 环境工程学报, 2019, 13(1): 40-48. doi: 10.12030/j.cjee.201808012 LI K, LIU Z H, QIAN Y J, et al. Cefalexin degradation by advanced oxidation process based on sulfate radical [J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 40-48(in Chinese). doi: 10.12030/j.cjee.201808012
[20] CRITTENDEN J C, TRUSSELL R R, HAND D W, et al. MWH's water treatment[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. , 2012. [21] LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate [J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562. [22] QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation [J]. Environmental Science & Technology, 2016, 50(2): 772-781. [23] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351. [24] HUIE R E, CLIFTON C L, NETA P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions [J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1991, 38(5): 477-481. doi: 10.1016/1359-0197(91)90065-A [25] HERRMANN H, REESE A, ZELLNER R. Time-resolved UV/VIS diode array absorption spectroscopy of SOx−(x=3, 4, 5) radical anions in aqueous solution [J]. Journal of Molecular Structure, 1995, 348: 183-186. doi: 10.1016/0022-2860(95)08619-7 [26] YU X Y, BAO Z C, BARKER J R. Free radical reactions involving Cl•, Cl2-•, and SO4-• in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl- [J]. The Journal of Physical Chemistry A, 2004, 108(2): 295-308. doi: 10.1021/jp036211i [27] KAMEL D, SIHEM A, HALIMA C, et al. Decolourization process of an azoïque dye (Congo red) by photochemical methods in homogeneous medium [J]. Desalination, 2009, 247(1/2/3): 412-422. [28] CRIQUET J, LEITNER N K V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis [J]. Chemosphere, 2009, 77(2): 194-200. doi: 10.1016/j.chemosphere.2009.07.040 [29] LIANG C J, LAI M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation [J]. Environmental Engineering Science, 2008, 25(7): 1071-1078. doi: 10.1089/ees.2007.0174 [30] YUAN R X, WANG Z H, HU Y, et al. Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification [J]. Chemosphere, 2014, 109: 106-112. doi: 10.1016/j.chemosphere.2014.03.007 [31] JAYSON G G, PARSONS B J, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1973, 69: 1597. [32] LIANG C J, WANG Z S, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃ [J]. Science of the Total Environment, 2006, 370(2/3): 271-277. [33] ZUO Z H, CAI Z L, KATSUMURA Y, et al. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants [J]. Radiation Physics and Chemistry, 1999, 55(1): 15-23. doi: 10.1016/S0969-806X(98)00308-9 [34] STUMM W, MORGAN J J. Aquatic chemistry: Chemical equilibria and rates in natural waters/-3rd ed[M]. Wiley, 1996. [35] XIE P C, MA J, LIU W, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals [J]. Water Research, 2015, 69: 223-233. doi: 10.1016/j.watres.2014.11.029 [36] RICKMAN K A, MEZYK S P. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water [J]. Chemosphere, 2010, 81(3): 359-365. doi: 10.1016/j.chemosphere.2010.07.015 [37] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate [J]. Environmental Science & Technology, 2010, 44(16): 6423-6428. [38] LATCH D E, STENDER B L, PACKER J L, et al. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine [J]. Environmental Science & Technology, 2003, 37(15): 3342-3350. [39] LIANG C J, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures [J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026 [40] DAS T N. Reactivity and role of SO5•- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation [J]. The Journal of Physical Chemistry A, 2001, 105(40): 9142-9155. doi: 10.1021/jp011255h [41] MÁRTIRE D O, ROSSO J A, BERTOLOTTI S, et al. Kinetic study of the reactions of chlorine atoms and Cl2•- radical anions in aqueous solutions. Ⅱ. Toluene, benzoic acid, and chlorobenzene [J]. The Journal of Physical Chemistry A, 2001, 105(22): 5385-5392. doi: 10.1021/jp004630z [42] LARSON R A, ZEPP R G. Reactivity of the carbonate radical with aniline derivatives [J]. Environmental Toxicology and Chemistry, 1988, 7(4): 265-274. doi: 10.1002/etc.5620070403 [43] LUO C W, JIANG J, MA J, et al. Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways [J]. Water Research, 2016, 96: 12-21. doi: 10.1016/j.watres.2016.03.039 [44] GARA P M D, BOSIO G N, GONZALEZ M C, et al. A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion [J]. Photochemical & Photobiological Sciences, 2009, 8(7): 992. [45] WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates [J]. Environmental Science & Technology, 2007, 41(13): 4640-4646. [46] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols [J]. Environmental Science & Technology, 2013, 47(11): 5864-5871. [47] FANG G D, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs [J]. Environmental Science & Technology, 2013, 47(9): 4605-4611.