-
近年来,挥发性有机化合物(VOCs)因其对空气污染的影响大而备受关注,如化学烟雾、雾霾等严重影响大气环境和人类健康[1]. 目前,美国环境保护署将超过300种化学物质列为挥发性有机化合物,其中大部分被认为是造成空气污染的主要污染物[2]. 在目前可以在工业上大规模应用的技术中,催化燃烧由于其转化效率高,能耗低而被认为是一种有前景的技术[3-5]. 用于催化氧化VOCs的催化剂中,75%是贵金属催化剂,一般认为比金属氧化物催化剂更有活性[6],但是贵金属元素的高价值和低储量限制了其实际应用. 近年来,部分研究以过渡金属混合氧化物作为替代贵金属催化剂的催化材料,因其中一些对卤素和硫等毒物表现出很高的选择性和抗性等原因而受到了广泛关注[7].
在处理废气的过程中,因为其中含有许多不同性质的有机污染物,这对催化剂的性能提出了更高的要求[8]. 整体式蜂窝催化剂促进活性组分的更高分散,成本低,热稳定性高[9]. 在固定床操作中,大量的球团或颗粒可能会由于烟气中的微粒而造成高流动阻力和堵塞问题. 相比之下,蜂窝状催化剂的压降低,耐磨性好,不易堵塞[10]. 在各种催化剂载体中,堇青石具有高机械稳定性和低热膨胀系数(CET)等特点而被广泛应用[11]. 但由于其表面光滑,活性组分难以固定,因此负载前的预处理是必要的. 催化剂载体常用的预处理方法有表面涂层法和化学处理法等,其中酸蚀在化学处理法中特别常见,包括无机酸(硝酸[11-13]、盐酸[12-13]、硫酸[14])和有机酸(柠檬酸[13]、草酸[10, 12-13]、甲酸、EDTA[13]等). 一方面酸蚀堇青石载体可以使Mg、Al等离子溶出,这可以产生更多的微孔与中孔,另一方面游离二氧化硅再沉淀使堇青石表面结构发生重组,同时微孔向中孔方向靠拢,中孔逐渐合并为大孔. Mccabe等[13]报道了在实验中当在质量浓度37%且煮沸的盐酸中连续酸蚀6 h比表面积达到最大,并表明酸处理使堇青石表面产生游离的二氧化硅,以结晶或无定形形式存在,使堇青石的表面形貌发生了一定程度的变化.
在加热方式上,目前催化燃烧装置多采用电加热对废气进行预热,但存在对催化剂加热慢、加热不均匀、设备能耗大等问题. 与催化氧化工艺中的传统电加热方法相比,微波加热可以快速、有选择性的加热催化剂上具有吸波能力的活性组分[15-18],同时微波加热降低了VOCs反应温度和活化能[19-20]. 本课题组之前的研究表明,与电炉加热相比,微波加热可以降低甲苯氧化温度和工艺能耗,并对催化剂结构与活性组分的分布几乎不产生影响[21-22].
根据已报道文献所知,催化剂预处理条件与催化剂性能密切相关,在酸蚀预处理的条件下,有关载体的负载性能及后续微波催化性能的报道较少. 有必要开展对载体酸蚀处理及后续负载性能及微波催化性能的系统研究. 本研究为制取具有高催化活性的堇青石催化剂,采用不同质量浓度的硝酸对堇青石载体进行预处理,随后负载Cu-Mn-Ce复合氧化物制成整体式催化剂,在微波条件下对气态甲苯进行催化氧化,研究了堇青石载体酸蚀预处理程度对催化剂催化性能的影响. 采用XRD、BET、SEM、XPS对负载催化剂进行表征,分析酸蚀预处理对于活性组分负载阶段的影响. 研究工作将为整体式催化剂载体酸蚀预处理提供理论参考.
载体酸蚀预处理对CuMnCeOx/堇青石催化氧化甲苯性能的影响
Effects of acid etching pretreatment on toluene performance of CuMnCeOx/cordierite catalyst
-
摘要: 为解决蜂窝堇青石载体比表面积小、活性组分难以负载等问题,采用硝酸酸蚀堇青石载体并负载金属氧化物,制备了Cu-Mn-Ce/堇青石催化剂. 分析了不同酸蚀强度下催化剂对甲苯催化燃烧差异的原因,在40%wt硝酸溶液中、50 ℃下酸蚀4 h条件下得到的催化剂对甲苯的催化性能最佳,与其他催化剂相比,其表面平均孔径为38.31 nm并有更佳的孔隙率,且在12—14 nm处以及20—30 nm处有更佳的孔径分布,其上活性组分分布极为分散,具有更小的活性颗粒尺寸. 在与未经酸蚀预处理催化剂的比较中发现,经酸蚀预处理的催化剂具有更大的比表面积和多样的氧化物晶体类型,更高的Cu/Mn比例(1.72∶1.26),其中Mn4+(31.1%)、Ce3+(27.5%)及Osur(50.9%)在其占比均高于未经酸蚀预处理催化剂.Abstract: Cu-Mn-Ce/cordierite catalyst was prepared by etching cordierite carrier with nitric acid and loading metal oxides in order to solve the problems of low specific surface area of cordierite carrier and difficult loading of active components. The reasons for the difference in catalytic combustion of toluene under different acid etching intensities were analyzed. The catalyst obtained under the condition of 40% wt nitric acid solution and 4 h acid etching at 50 ℃ had the best catalytic performance for toluene. Compared with other catalysts, the average surface pore size of the catalyst was 38.31 nm and the porosity was better. Moreover, the pore size distribution at 12—14 nm and 20—30 nm is better, and the active component distribution on the pore size is very dispersed, and the active particle size is smaller. Compared with the catalyst without acid etching, the catalyst treated by acid etching has larger specific surface area, diversified oxide crystal types, higher Cu/Mn ratio (1.72:1.26). Mn4+(31.1%), Ce3+(27.5%) and Osur(50.9%) were higher than those without acid etching.
-
Key words:
- acid etching /
- cordierite /
- catalytic performance /
- toluene /
- microwave /
- characterization.
-
图 2 (a)在一定的酸蚀时间(4 h)及温度(50 ℃)条件下, 不同浓度酸处理下的堇青石失重率与吸水率变化;(b)在一定的酸浓度下(40%wt ), 不同酸蚀时间下堇青石的失重率与吸水率变化
Figure 2. (a) The weight loss and water absorption of cordierite varied with different concentration of acid treatment under certain etching time (4 h) and temperature (50 ℃);(b) Changes of weight loss and water absorption of cordierite under certain acid concentration (40% wt) and different etching time
表 1 酸处理条件及相应的催化剂
Table 1. Acid treatment conditions and corresponding catalysts
催化剂
Catalyst酸种类
Acid酸浓度/%
Acid concentration处理时间/h
Treatment time处理温度/℃
Treatment temperatureCuMnCeOx/205004
Nitric acid20 4
50CuMnCeOx/405004 40 4 CuMnCeOx/605004 60 4 CuMnCeOx/405008 40 8 CuMnCeOx/405016 40 16 CuMnCeOx/NTa — — 注:NTa是未经过酸蚀的堇青石载体. NTa means without acid treatment. 表 2 不同样品负载后的比表面积、孔体积和孔径
Table 2. Specific surface area, pore volume and pore diameter of the different sample after loading
催化剂
CatalystSBET/(m2·g−1) Vpore/(cm3·g−1) Dpore/nm (BET) CuMnCeOx/205004 2.78 0.033 49.41 CuMnCeOx/405004 2.75 0.032 38.31 CuMnCeOx/605004 3.00 0.063 75.14 CuMnCeOx/405008 2.41 0.033 49.05 CuMnCeOx/405016 4.53 0.065 58.37 CuMnCeOx/NT 2.02 0.027 36.23 表 3 Mn 2P, Ce 3d, O 1sXPS谱图结合能的拟合结果
Table 3. Fitting results of binding energies of Mn 2P, Ce 3d, O 1sXPS spectra
催化剂
CatalystCu/% Mn/% Cu/Mn Mn/% Ce/% O/% Mn3+ Mn4+ Ce3+ Ce4+ Osur Olat CuMnCeOx/405004 59.71 34.64 1.72 68.9 31.1 27.5 72.5 50.9 49.1 CuMnCeOx/NT 52.49 41.36 1.26 82.0 18.0 18.7 81.3 49.0 51.0 -
[1] PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds [J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 41-78. doi: 10.1080/10643380701413658 [2] TAYLOR S H. Preface: catalytic aspects of complete oxidation of volatile organic compounds [J]. Topics in Catalysis, 2009, 52(5): 457. doi: 10.1007/s11244-009-9179-3 [3] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds [J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139. [4] HUANG H F, LIU Y Q, TANG W, et al. Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion [J]. Catalysis Communications, 2008, 9(1): 55-59. doi: 10.1016/j.catcom.2007.05.004 [5] LU H F, ZHOU Y, HUANG H F, et al. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion [J]. Journal of Rare Earths, 2011, 29(9): 855-860. doi: 10.1016/S1002-0721(10)60555-8 [6] ERTL G, HK ZINGER, FS TH, J WEITKAMP, et al. Handbook of heterogeneous catalysis. 8 Volumes, 2nd Edition [M]. Wiley, 2008. [7] LEE J E, OK Y S, TSANG D C W, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review [J]. Science of the Total Environment, 2020, 719: 137405. doi: 10.1016/j.scitotenv.2020.137405 [8] ARMOR J N. Environmental catalysis [J]. Applied Catalysis B:Environmental, 1994, 5(1/2): N7. [9] DENG L, HUANG C, KAN J W, et al. Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO3 catalysts for VOCs combustion [J]. Journal of Rare Earths, 2018, 36(3): 265-272. doi: 10.1016/j.jre.2017.07.015 [10] LIU Q Y, LIU Z Y, HUANG Z G, et al. A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: Preparation and evaluation [J]. Catalysis Today, 2004, 93/94/95: 833-837. [11] LIU Q C, HE Y Y, YANG J, et al. Modification of cordierite honeycomb ceramics matrix for DeNOx catalyst [J]. MRS Proceedings, 2012, 1449: (1):141-146. [12] LIU Q Y, LIU Z Y, HUANG Z G. CuO supported on Al2O3-coated cordierite-honeycomb for SO2 and NO removal from flue gas: effect of acid treatment of the cordierite [J]. Industrial & Engineering Chemistry Research, 2005, 44(10): 3497-3502. [13] SHIGAPOV A N, GRAHAM G W, MCCABE R W, et al. The preparation of high-surface-area cordierite monolith by acid treatment [J]. Applied Catalysis A:General, 1999, 182(1): 137-146. doi: 10.1016/S0926-860X(99)00003-4 [14] MADHUSOODANA C, DAS R, KAMESHIMA Y, et al. Characterization and adsorption behavior of ZSM-5 zeolite film on cordierite honeycombs prepared by a novel in situ crystallization method [J]. Journal of Porous Materials, 2001, 8(4): 265-271. doi: 10.1023/A:1013160914074 [15] BO L L, SUN S Y. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst [J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385-392. doi: 10.1007/s11705-018-1738-3 [16] BUCHELNIKOV V D, LOUZGUINE-LUZGIN D V, XIE G, et al. Heating of metallic powders by microwaves: Experiment and theory [J]. Journal of Applied Physics, 2008, 104(11): 113505. doi: 10.1063/1.3009677 [17] KHALED D E, NOVAS N, GAZQUEZ J A, et al. Microwave dielectric heating: Applications on metals processing [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2880-2892. doi: 10.1016/j.rser.2017.10.043 [18] MISHRA R R, SHARMA A K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing [J]. Composites Part A:Applied Science and Manufacturing, 2016, 81: 78-97. doi: 10.1016/j.compositesa.2015.10.035 [19] JACOB J, CHIA L H L, BOEY F Y C. Thermal and non-thermal interaction of microwave radiation with materials [J]. Journal of Materials Science, 1995, 30(21): 5321-5327. doi: 10.1007/BF00351541 [20] ROUSSY G, THIEBAUT J M, SOUIRI M, et al. Controlled oxidation of methane doped catalysts irradiated by microwaves [J]. Catalysis Today, 1994, 21(2/3): 349-355. [21] BO L L, LIAO J B, ZHANG Y C, et al. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating [J]. Frontiers of Environmental Science & Engineering, 2013, 7(3): 395-402. [22] 卜龙利, 刘海楠, 王晓晖, 等. 不同加热方式下催化氧化甲苯的性能研究 [J]. 环境化学, 2013, 32(8): 1524-1531. doi: 10.7524/j.issn.0254-6108.2013.08.017 BU L L, LIU H N, WANG X H, et al. Study on the catalytic oxidation of toluene under different heating modes [J]. Environmental Chemistry, 2013, 32(8): 1524-1531(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.08.017
[23] 梁文俊, 李庆磊, 任思达. 酸预处理对整体式催化剂载体性能的影响研究 [J]. 中国环境科学, 2020, 40(12): 5237-5245. doi: 10.3969/j.issn.1000-6923.2020.12.016 LIANG W J, LI Q L, REN S D. Influence of acid pretreatment on the performance of monolithic catalyst support [J]. China Environmental Science, 2020, 40(12): 5237-5245(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.12.016
[24] BAI J H, GUO L C. Effects of chemical treatments on thermal expansion properties of cordierite ceramics [J]. Journal of Wuhan University of Technology(Materials Science), 2006, 21(3): 100-102. doi: 10.1007/BF02840892 [25] HOU T Q, WANG B B, JIA Z R, et al. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective [J]. Journal of Materials Science:Materials in Electronics, 2019, 30(12): 10961-10984. doi: 10.1007/s10854-019-01537-0 [26] 段爱红, 毕先钧, 阚家德. 金属氧化物吸收微波辐射的能力与其结构的关系 [J]. 云南化工, 1998, 25(2): 34-36. DUAN A H, BI X J, KAN J D. Temperature rising behavior of metals oxide in microwave field [J]. Yunnan Chemical Technology, 1998, 25(2): 34-36(in Chinese).
[27] 宁轲, 卜龙利, 刘双, 等. 整体式催化剂活性组分负载策略及微波催化燃烧甲苯特性 [J]. 燃料化学学报, 2020, 48(9): 1140-1152. doi: 10.3969/j.issn.0253-2409.2020.09.014 NING K, BU L L, LIU S, et al. Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene [J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1140-1152(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.09.014
[28] ZHANG Y C, BO L L, WANG X H, et al. Study on catalytic oxidation of benzene by microwave heating [J]. Environmental Science, 2012, 33(8): 2759-2765. [29] WANG P, HE Y, YANG Z Q, et al. Experimental study of benzene catalytic combustion over Cu-Mn-Ce/Al2O3 particles [J]. ChemistrySelect, 2020, 5(3): 1122-1129. doi: 10.1002/slct.201902976 [30] WILLIAMS T, BELTRAMINI J, LU G Q. Effect of the preparation technique on the catalytic properties of mesoporous V-HMS for the oxidation of toluene [J]. Microporous and Mesoporous Materials, 2006, 88(1/2/3): 91-100. [31] LU C Y, WEY M Y, CHUANG K H. Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nanotube [J]. Applied Catalysis B:Environmental, 2009, 90(3/4): 652-661. [32] LU H F, KONG X X, HUANG H F, et al. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene [J]. Journal of Environmental Sciences, 2015, 32: 102-107. doi: 10.1016/j.jes.2014.11.015 [33] WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts [J]. Catalysis Communications, 2008, 9(13): 2158-2162. doi: 10.1016/j.catcom.2008.04.021 [34] KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation [J]. Applied Catalysis A:General, 2017, 530: 21-29. doi: 10.1016/j.apcata.2016.11.013 [35] DU J P, QU Z P, DONG C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach [J]. Applied Surface Science, 2018, 433: 1025-1035. doi: 10.1016/j.apsusc.2017.10.116 [36] HE C, YU Y K, SHEN Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction [J]. Applied Surface Science, 2014, 297: 59-69. doi: 10.1016/j.apsusc.2014.01.076 [37] DENG W, DAI Q G, LAO Y J, et al. Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts [J]. Applied Catalysis B:Environmental, 2016, 181: 848-861. doi: 10.1016/j.apcatb.2015.07.053 [38] LÓPEZ J M, GILBANK A L, GARCÍA T, et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation [J]. Applied Catalysis B:Environmental, 2015, 174/175: 403-412. doi: 10.1016/j.apcatb.2015.03.017 [39] BIELAŃSKI A, HABER J. Oxygen in catalysis on transition metal oxides [J]. Catalysis Reviews, 1979, 19(1): 1-41. doi: 10.1080/03602457908065099