[1] PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds [J]. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 41-78. doi: 10.1080/10643380701413658
[2] TAYLOR S H. Preface: catalytic aspects of complete oxidation of volatile organic compounds [J]. Topics in Catalysis, 2009, 52(5): 457. doi: 10.1007/s11244-009-9179-3
[3] EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds [J]. Journal of Hazardous Materials, 2004, 109(1/2/3): 113-139.
[4] HUANG H F, LIU Y Q, TANG W, et al. Catalytic activity of nanometer La1−xSrxCoO3 (x = 0, 0.2) perovskites towards VOCs combustion [J]. Catalysis Communications, 2008, 9(1): 55-59. doi: 10.1016/j.catcom.2007.05.004
[5] LU H F, ZHOU Y, HUANG H F, et al. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion [J]. Journal of Rare Earths, 2011, 29(9): 855-860. doi: 10.1016/S1002-0721(10)60555-8
[6] ERTL G, HK ZINGER, FS TH, J WEITKAMP, et al. Handbook of heterogeneous catalysis. 8 Volumes, 2nd Edition [M]. Wiley, 2008.
[7] LEE J E, OK Y S, TSANG D C W, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review [J]. Science of the Total Environment, 2020, 719: 137405. doi: 10.1016/j.scitotenv.2020.137405
[8] ARMOR J N. Environmental catalysis [J]. Applied Catalysis B:Environmental, 1994, 5(1/2): N7.
[9] DENG L, HUANG C, KAN J W, et al. Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO3 catalysts for VOCs combustion [J]. Journal of Rare Earths, 2018, 36(3): 265-272. doi: 10.1016/j.jre.2017.07.015
[10] LIU Q Y, LIU Z Y, HUANG Z G, et al. A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: Preparation and evaluation [J]. Catalysis Today, 2004, 93/94/95: 833-837.
[11] LIU Q C, HE Y Y, YANG J, et al. Modification of cordierite honeycomb ceramics matrix for DeNOx catalyst [J]. MRS Proceedings, 2012, 1449: (1):141-146.
[12] LIU Q Y, LIU Z Y, HUANG Z G. CuO supported on Al2O3-coated cordierite-honeycomb for SO2 and NO removal from flue gas:   effect of acid treatment of the cordierite [J]. Industrial & Engineering Chemistry Research, 2005, 44(10): 3497-3502.
[13] SHIGAPOV A N, GRAHAM G W, MCCABE R W, et al. The preparation of high-surface-area cordierite monolith by acid treatment [J]. Applied Catalysis A:General, 1999, 182(1): 137-146. doi: 10.1016/S0926-860X(99)00003-4
[14] MADHUSOODANA C, DAS R, KAMESHIMA Y, et al. Characterization and adsorption behavior of ZSM-5 zeolite film on cordierite honeycombs prepared by a novel in situ crystallization method [J]. Journal of Porous Materials, 2001, 8(4): 265-271. doi: 10.1023/A:1013160914074
[15] BO L L, SUN S Y. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst [J]. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385-392. doi: 10.1007/s11705-018-1738-3
[16] BUCHELNIKOV V D, LOUZGUINE-LUZGIN D V, XIE G, et al. Heating of metallic powders by microwaves: Experiment and theory [J]. Journal of Applied Physics, 2008, 104(11): 113505. doi: 10.1063/1.3009677
[17] KHALED D E, NOVAS N, GAZQUEZ J A, et al. Microwave dielectric heating: Applications on metals processing [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2880-2892. doi: 10.1016/j.rser.2017.10.043
[18] MISHRA R R, SHARMA A K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing [J]. Composites Part A:Applied Science and Manufacturing, 2016, 81: 78-97. doi: 10.1016/j.compositesa.2015.10.035
[19] JACOB J, CHIA L H L, BOEY F Y C. Thermal and non-thermal interaction of microwave radiation with materials [J]. Journal of Materials Science, 1995, 30(21): 5321-5327. doi: 10.1007/BF00351541
[20] ROUSSY G, THIEBAUT J M, SOUIRI M, et al. Controlled oxidation of methane doped catalysts irradiated by microwaves [J]. Catalysis Today, 1994, 21(2/3): 349-355.
[21] BO L L, LIAO J B, ZHANG Y C, et al. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating [J]. Frontiers of Environmental Science & Engineering, 2013, 7(3): 395-402.
[22] 卜龙利, 刘海楠, 王晓晖, 等. 不同加热方式下催化氧化甲苯的性能研究 [J]. 环境化学, 2013, 32(8): 1524-1531. doi: 10.7524/j.issn.0254-6108.2013.08.017 BU L L, LIU H N, WANG X H, et al. Study on the catalytic oxidation of toluene under different heating modes [J]. Environmental Chemistry, 2013, 32(8): 1524-1531(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.08.017
[23] 梁文俊, 李庆磊, 任思达. 酸预处理对整体式催化剂载体性能的影响研究 [J]. 中国环境科学, 2020, 40(12): 5237-5245. doi: 10.3969/j.issn.1000-6923.2020.12.016 LIANG W J, LI Q L, REN S D. Influence of acid pretreatment on the performance of monolithic catalyst support [J]. China Environmental Science, 2020, 40(12): 5237-5245(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.12.016
[24] BAI J H, GUO L C. Effects of chemical treatments on thermal expansion properties of cordierite ceramics [J]. Journal of Wuhan University of Technology(Materials Science), 2006, 21(3): 100-102. doi: 10.1007/BF02840892
[25] HOU T Q, WANG B B, JIA Z R, et al. A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective [J]. Journal of Materials Science:Materials in Electronics, 2019, 30(12): 10961-10984. doi: 10.1007/s10854-019-01537-0
[26] 段爱红, 毕先钧, 阚家德. 金属氧化物吸收微波辐射的能力与其结构的关系 [J]. 云南化工, 1998, 25(2): 34-36. DUAN A H, BI X J, KAN J D. Temperature rising behavior of metals oxide in microwave field [J]. Yunnan Chemical Technology, 1998, 25(2): 34-36(in Chinese).
[27] 宁轲, 卜龙利, 刘双, 等. 整体式催化剂活性组分负载策略及微波催化燃烧甲苯特性 [J]. 燃料化学学报, 2020, 48(9): 1140-1152. doi: 10.3969/j.issn.0253-2409.2020.09.014 NING K, BU L L, LIU S, et al. Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene [J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1140-1152(in Chinese). doi: 10.3969/j.issn.0253-2409.2020.09.014
[28] ZHANG Y C, BO L L, WANG X H, et al. Study on catalytic oxidation of benzene by microwave heating [J]. Environmental Science, 2012, 33(8): 2759-2765.
[29] WANG P, HE Y, YANG Z Q, et al. Experimental study of benzene catalytic combustion over Cu-Mn-Ce/Al2O3 particles [J]. ChemistrySelect, 2020, 5(3): 1122-1129. doi: 10.1002/slct.201902976
[30] WILLIAMS T, BELTRAMINI J, LU G Q. Effect of the preparation technique on the catalytic properties of mesoporous V-HMS for the oxidation of toluene [J]. Microporous and Mesoporous Materials, 2006, 88(1/2/3): 91-100.
[31] LU C Y, WEY M Y, CHUANG K H. Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nanotube [J]. Applied Catalysis B:Environmental, 2009, 90(3/4): 652-661.
[32] LU H F, KONG X X, HUANG H F, et al. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene [J]. Journal of Environmental Sciences, 2015, 32: 102-107. doi: 10.1016/j.jes.2014.11.015
[33] WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts [J]. Catalysis Communications, 2008, 9(13): 2158-2162. doi: 10.1016/j.catcom.2008.04.021
[34] KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation [J]. Applied Catalysis A:General, 2017, 530: 21-29. doi: 10.1016/j.apcata.2016.11.013
[35] DU J P, QU Z P, DONG C, et al. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach [J]. Applied Surface Science, 2018, 433: 1025-1035. doi: 10.1016/j.apsusc.2017.10.116
[36] HE C, YU Y K, SHEN Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction [J]. Applied Surface Science, 2014, 297: 59-69. doi: 10.1016/j.apsusc.2014.01.076
[37] DENG W, DAI Q G, LAO Y J, et al. Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts [J]. Applied Catalysis B:Environmental, 2016, 181: 848-861. doi: 10.1016/j.apcatb.2015.07.053
[38] LÓPEZ J M, GILBANK A L, GARCÍA T, et al. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation [J]. Applied Catalysis B:Environmental, 2015, 174/175: 403-412. doi: 10.1016/j.apcatb.2015.03.017
[39] BIELAŃSKI A, HABER J. Oxygen in catalysis on transition metal oxides [J]. Catalysis Reviews, 1979, 19(1): 1-41. doi: 10.1080/03602457908065099