-
畜禽饲料添加蓝矾或称胆矾(CuSO4·5H2O)、皓矾(ZnSO4·7H2O)等重金属化合物,以增强畜禽的免疫力,促进畜禽的生长[1-2],其中的Cu、Zn等重金属元素通过粪便排出体外[3],导致畜禽粪污中重金属含量超标,其中猪粪的Cu、Zn超标最为显著[4]. 我国一些地区对畜禽粪污排放管控不严,粪污未经处理就被排放到农田作为农肥,引起潜在的土壤重金属污染风险. 重金属Cu、Zn虽然是植物生长所需的微量元素,但过量的Cu、Zn会损害植物根系,抑制动植物生长,还会降低土壤中的生物量及生物活性,最终影响农作物的生长及农产品的安全.
为了减少猪粪农用风险,国家大力倡导利用厌氧发酵技术处理畜禽粪便[5],该技术不仅可以产生清洁能源、减少粪便体积,还能在一定程度上降低重金属生物有效性. 李轶等[6]研究表明,猪粪发酵过程中重金属钝化与发酵原料腐殖化存在着一定关系. 发酵原料腐殖化会产生腐殖质,腐殖质中含有大量羧基、羰基等官能团会与重金属发生吸附络合反应[7],从而降低重金属的生物有效性. 但由于重金属超标,发酵过程中微生物群落代谢功能会受到高浓度重金属的抑制[8],导致腐殖化程度低,钝化效果差. 单一的猪粪厌氧发酵对重金属钝化效果较差,因此就有学者研究在发酵过程中添加钝化剂来有效减少重金属的危害,提高重金属钝化效果[9-10].
腐殖酸(HA)本身就是腐殖化的产物,是农业废弃物转化的产品,可以作为园艺生物改良剂,促进种子萌发、根系发育和植物生长[11]. 同样,腐殖酸可以改善植物细胞内的生化反应并具有直接的营养价值. 此外,腐殖酸被认为是一种含有多种官能团的钝化剂,包括酚类、羧酸类和酮类,可以通过吸附和络合反应与重金属结合[12]. 但是,关于添加腐殖酸对猪粪厌氧发酵中重金属钝化的研究很少,主要都研究发酵前后变化,很少研究发酵过程中的动态变化. 同时在厌氧发酵过程中,腐殖化程度的高低是一个重要的评判标准. 目前由于光谱技术的快速发展,傅里叶红外光谱技术(FTIR)已成为分析厌氧发酵过程中有机物和腐殖质含量变化的常规技术,主要归功于其所需样品量少,测样速度快,灵敏度高等特点. 李轶等[13]就采用FTIR研究猪粪厌氧发酵沼渣中的光谱特性,FTIR可以有效反映猪粪厌氧发酵后的腐殖化程度.
本文主要研究添加腐殖酸对猪粪厌氧发酵过程中重金属及对厌氧发酵前后有机物结构变化的影响,涉及的主要研究内容包括:(1)采用BCR连续提取法来研究重金属(Cu、Zn)形态的动态变化;(2)利用傅里叶红外光谱技术(FTIR)探索猪粪发酵前后有机物结构的变化[14],揭示重金属钝化与有机物腐殖化程度的关系,为增加猪粪厌氧发酵产气量、减量化和重金属钝化提供理论依据,为降低猪粪中重金属Cu、Zn有效性、降低重金属污染风险和提高发酵质量提供技术指导.
添加腐殖酸对猪粪/玉米秸秆厌氧发酵中铜、锌钝化效果的影响
Effect of adding humic acid on the passivation of copper and zinc during anaerobic digestion of pig manure/corn stover
-
摘要: 针对畜禽饲料添加蓝矾或称胆矾(CuSO4·5H2O)、皓矾(ZnSO4·7H2O)等重金属化合物,引起畜禽粪便重金属污染风险,本研究通过构建以猪粪/玉米秸秆为发酵原料、腐殖酸为钝化剂的发酵系统,考察添加腐殖酸对猪粪/玉米秸秆厌氧发酵过程中产气量、重金属(Cu、Zn)形态变化及沼渣光谱特性的影响. 结果表明,添加的腐殖酸对猪粪/玉米秸秆厌氧发酵产气具有显著促进作用,添加腐殖酸样本组(编号:F1、F2、F3)较未添加组(编号:CK)的累积产气量分别提高了19.81%、28.44%、50.25%;通过BCR提取法分析沼渣中的Cu、Zn形态动态变化,显示添加腐殖酸有利于Cu、Zn的有效态向稳定态转化,F3中Cu、Zn有效态转化为稳定态的效果最佳;显著性分析表明F3中Cu、Zn的钝化效果最佳,Cu、Zn的钝化效果分别为58.72%、17.95%,显著优于其他处理组;腐殖酸对Cu的钝化效果整体优于Zn;FTIR结果显示,厌氧发酵后各处理组沼渣中碳水化合物、脂肪族化合物等有机物分解、减少,芳香族化合物等腐殖质含量增多,且F3中腐殖化程度最高. 因此添加适量腐殖酸有利于降低Cu、Zn的生物有效性,提高腐殖化程度,可为降低猪粪中重金属Cu、Zn有效性、降低重金属污染风险和提高发酵质量提供技术指导.Abstract: The introduction of heavy metal compounds, such as blue vitriol (CuSO4·5H2O) and halo alum (ZnSO4·7H2O), in the livestock and poultry feeds could bring heavy metal pollution risk from livestock manure. This study established an anaerobic digestion system using pig manure/corn stalk and humic acid as fermentation raw materials and the passivator respectively. Effects of adding humic acid on the gas production, state transformation of heavy metals (Cu, Zn) and the spectral characteristics of the biogas residue were examined. The results show that the addition of humic acid can promote significantly gas production during the anaerobic digestion of pig manure/corn stover. The sample group with humic acid (serial number: F1, F2, F3) increased by 19.81%, 28.44%, and 50.25% comparing with the group without humic acid (serial number: CK). The state transformation of Cu and Zn is analyzed by BCR extraction method, adding humic acid is beneficial to the conversion of Cu and Zn from effective state to stable state, and conversion ratios of Cu and Zn from effective state to the stable state in F3 is maximum. Significance analysis shows that Cu and Zn have the best passivation effects in F3. 58.72% and 17.95% of Cu and Zn are passivated, the passivation of Cu by humic acid is better than Zn. FTIR results showed that organic matter in the biogas residue of each treatment group, such as carbohydrates and aliphatic compounds, decomposed accompanying with the increase in the content of humus such as aromatic compounds, and the degree of humification in F3 was the highest. Therefore, adding an appropriate amount of humic acid is beneficial to reduce the bioavailability of Cu and Zn and promote the humification degree. This study can provide technical guidance for reducing the effectiveness and pollution risk of Cu and Zn in pig manure and improving anaerobic digestion efficiency.
-
Key words:
- Pig manure /
- anaerobic digestion /
- heavy metal state /
- humic acid /
- FTIR.
-
表 1 猪粪/玉米秸秆主要成分
Table 1. Main components of pig manure/corn stover
材料
Material含水率/%
Water content总有机碳含量/%
Total organic carbon content总氮含量/%
Total nitrogen contentC/N Cu含量/(mg·kg−1)
Cu contentZn含量/(mg·kg−1)
Zn content猪粪 79.84 9.20 0.59 15.59 254.17 1039.83 玉米秸秆 4.45 15.13 0.36 42.03 ND ND 注:ND表示未检出. ND means not detected. 表 2 实验处理组
Table 2. Experimental treatment groups
编号
Serial number处理组
Treatment groupCK 猪粪+玉米秸秆 F1 猪粪+玉米秸秆+2.5%腐殖酸 F2 猪粪+玉米秸秆+5.0%腐殖酸 F3 猪粪+玉米秸秆+7.5%腐殖酸 表 3 FTIR特征吸收带归属
Table 3. Assignment of characteristic absorption bands of FTIR
波数/ cm−1
Wavenumber振动峰
Vibration peak基团
Group3408—3450 O—H 碳水化合物、酰胺化合物、蛋白质、水 2850—2922 C—H 碳水化合物、脂肪族化合物的亚甲基 1600—1653 C=O、—COO—、C=C、N—H 羧酸盐、烯烃、酯类、酰胺类、芳香族 1400—1430 C—O、—COO—、—OH、—CH2 木质素、脂肪族化合物、羧酸盐 1105—1160 C—O—C、C—O、C—N 糖类、脂肪族化合物、氨基酸盐 表 4 各处理组的特征参数比值
Table 4. The ratio of characteristic parameters of each treatment group
处理组
Treatment group时间
TimeA芳香族碳/碳水化合物碳
Aromatic carbon /
Carbohydrate carbonB芳香族碳/脂肪族碳
Aromatic carbon /
Aliphatic carbonC芳香族碳/羧酸碳
Aromatic carbon /
Carboxylic carbonD芳香族碳/多糖碳
Aromatic carbon /
Polysaccharide carbon猪粪/玉米秸秆 未发酵 1.035 0.933 0.950 1.031 CK 发酵后 1.037 0.951 0.982 1.064 F1 发酵后 1.046 0.988 1.014 1.065 F2 发酵后 1.049 1.002 1.027 1.085 F3 发酵后 1.144 1.012 1.028 1.136 -
[1] AWASTHI M K, DUAN Y M, AWASTHI S K, et al. Emerging applications of biochar: Improving pig manure composting and attenuation of heavy metal mobility in mature compost [J]. Journal of Hazardous Materials, 2020, 389: 122116. doi: 10.1016/j.jhazmat.2020.122116 [2] 候月卿, 沈玉君, 刘树庆. 我国畜禽粪便重金属污染现状及其钝化措施研究进展 [J]. 中国农业科技导报, 2014, 16(3): 112-118. HOU Y Q, SHEN Y J, LIU S Q. Present status of heavy metal pollution from livestock waste and progress on passivation measures [J]. Journal of Agricultural Science and Technology, 2014, 16(3): 112-118(in Chinese).
[3] LI R, MENG H B, ZHAO L X, et al. Study of the morphological changes of copper and zinc during pig manure composting with addition of biochar and a microbial agent [J]. Bioresource Technology, 2019, 291: 121752. doi: 10.1016/j.biortech.2019.121752 [4] 贾武霞, 文炯, 许望龙, 等. 我国部分城市畜禽粪便中重金属含量及形态分布 [J]. 农业环境科学学报, 2016, 35(4): 764-773. JIA W X, WEN J, XU W L, et al. Content and fractionation of heavy metals in livestock manures in some urban areas of China [J]. Journal of Agro-Environment Science, 2016, 35(4): 764-773(in Chinese).
[5] . 国家发展改革委和农业部印发《全国农村沼气发展“十三五”规划》[J]. 能源研究与利用, 2017(2): 10. The national development and reform commission and the ministry of agriculture issued the "13th five-year plan for national rural biogas development [J]. Energy Research & Utilization, 2017(2): 10(in Chinese).
[6] 李轶, 宫兴隆, 郭敬阳, 等. 不同预处理玉米秸秆对猪粪厌氧发酵重金属镉钝化效果 [J]. 农业工程学报, 2020, 36(11): 254-260. LI Y, GONG X L, GUO J Y, et al. Effects of various pretreated maize stovers on the passivation of cadmium by anaerobic fermentation of pig manure [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 254-260(in Chinese).
[7] 卜贵军, 于静, 邸慧慧, 等. 鸡粪堆肥有机物演化对重金属生物有效性影响研究 [J]. 环境科学, 2014, 35(11): 4352-4358. BU G J, YU J, DI H H, et al. Influence of organic matter evolution during composting on the bioavailability of heavy metals [J]. Environmental Science, 2014, 35(11): 4352-4358(in Chinese).
[8] 陈琳. Cu、Cd对农业废弃物发酵过程中微生物和酶活性的影响[D]. 杨凌: 西北农林科技大学, 2012. CHEN L. Effects of Cu, Cd on microorganisms and enzyme activities during agricultural waste fermentation process[D]. Yangling: Northwest A & F University, 2012(in Chinese).
[9] 刘春软. 厌氧发酵条件下不同添加剂对猪粪产气特性以及重金属钝化效果研究[D]. 合肥: 安徽大学, 2019. LIU C R. Effects of different additives on gas-producting characteristics and passivation of heavy metals in pig manure during anaerobic fermentation[D]. Hefei: Anhui University, 2019(in Chinese).
[10] 刘艳杰. 钝化剂对猪粪厌氧发酵过程产气特性及重金属钝化效果的研究[D]. 沈阳: 沈阳农业大学, 2017. LIU Y J. Study on gas-generating characteristics and passivation of heavy metals in anaerobic fermentation of pig manure by passivating agent[D]. Shenyang: Shenyang Agricultural University, 2017(in Chinese).
[11] CANELLAS L P, OLIVARES F L, AGUIAR N O, et al. Humic and fulvic acids as biostimulants in horticulture [J]. Scientia Horticulturae, 2015, 196: 15-27. doi: 10.1016/j.scienta.2015.09.013 [12] HE E, LÜ C, HE J, et al. Binding characteristics of Cu2 + to natural humic acid fractions sequentially extracted from the lake sediments [J]. Environmental Science and Pollution Research International, 2016, 23(22): 22667-22677. doi: 10.1007/s11356-016-7487-2 [13] 李轶, 宫兴隆, 于嘉琪, 等. 硼泥对猪粪厌氧发酵重金属铬及其光谱特性的影响 [J]. 农业工程学报, 2019, 35(24): 255-261. LI Y, GONG X L, YU J Q, et al. Effects of boron mud on anaerobic fermentation of heavy metal chromium and its spectral characteristics in pig manure [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 255-261(in Chinese).
[14] CHEN X M, ZHAO Y, ZENG C C, et al. Assessment contributions of physicochemical properties and bacterial community to mitigate the bioavailability of heavy metals during composting based on structural equation models [J]. Bioresource Technology, 2019, 289: 121657. doi: 10.1016/j.biortech.2019.121657 [15] 李轶, 曲壮壮, 巩俊璐, 等. 海泡石对猪粪秸秆厌氧发酵产物中Cd的钝化效果研究[J]. 农业工程学报, 2018, 34(S1): 1-6. LI Y, QU Z Z, GONG J L, et al. Passivation effect of Cd by sepiolite in anaerobic fermentation products with pig manure and straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(Sup 1): 1-6(in Chinese).
[16] 巩俊璐. 钝化剂对猪粪/秸秆厌氧发酵中铜和锌减害化的影响研究[D]. 沈阳: 沈阳农业大学, 2018. GONG J L. Effect of passivating agent on the reduction of Cu and Zn in anaerobic fermentation of pig manure/straw[D]. Shenyang: Shenyang Agricultural University, 2018(in Chinese).
[17] 孙向平, 李国学, 肖爱平, 等. 添加不同比例玉米秸秆对猪粪高温堆肥过程中胡敏酸的结构组成及红外光谱特性影响分析 [J]. 光谱学与光谱分析, 2014, 34(9): 2413-2418. doi: 10.3964/j.issn.1000-0593(2014)09-2413-06 SUN X P, LI G X, XIAO A P, et al. Analysis on the impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral feature [J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2413-2418(in Chinese). doi: 10.3964/j.issn.1000-0593(2014)09-2413-06
[18] WANG X Q, MUHMOOD A, LYU T, et al. Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes [J]. Chemical Engineering Journal, 2021, 408: 127322. doi: 10.1016/j.cej.2020.127322 [19] 贾黎, 张自立. 腐殖酸对La3+, Nd3+等重金属离子混合体系吸附的研究 [J]. 中国稀土学报, 2009, 27(6): 816-821. JIA L, ZHANG Z L. Adsorption of La3+, Nd3+ and some heavy metal ions by humic acid in A multi-metal-ion system [J]. Journal of the Chinese Rare Earth Society, 2009, 27(6): 816-821(in Chinese).
[20] 龙良俊. 污泥腐殖酸特性及其改性后对重金属的吸附研究[D]. 重庆: 重庆大学, 2018. LONG L J. Characteristics of humic acid from sewage sludge and adsorption of heavy metals after modification[D]. Chongqing: Chongqing University, 2018(in Chinese).
[21] 袁飞, 张永霞, 徐恒山, 等. 腐植酸对环境中Cr(Ⅵ)去除机理探究及展望 [J]. 环境化学, 2022, 41(2): 653-662. YUAN F, ZHANG Y X, XU H S, et al. Research and perspect on the removal mechanism of humic acid to Cr(Ⅵ) in the environment [J]. Environmental Chemistry, 2022, 41(2): 653-662(in Chinese).
[22] KERNDORFF H, SCHNITZER M. Sorption of metals on humic acid [J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1701-1708. doi: 10.1016/0016-7037(80)90221-5 [23] 黄国锋, 张振钿, 钟流举, 等. 重金属在猪粪堆肥过程中的化学变化 [J]. 中国环境科学, 2004, 24(1): 94-99. HUANG G F, ZHANG Z T, ZHONG L J, et al. Chemical changes of heavy metals in the process of pig manure composting [J]. China Environmental Science, 2004, 24(1): 94-99(in Chinese).
[24] 张雪英, 周顺桂, 周立祥, 等. 堆肥处理对污泥腐殖物质形态及其重金属分配的影响 [J]. 生态学杂志, 2004, 23(1): 30-33. ZHANG X Y, ZHOU S G, ZHOU L X, et al. Component changes of humic substances and heavy metal distribution before and after sewage sludge composting [J]. Chinese Journal of Ecology, 2004, 23(1): 30-33(in Chinese).
[25] 曲壮壮, 猪粪厌氧发酵重金属镉/铬的形态转化及产气特性研究[D]. 沈阳: 沈阳农业大学, 2020. QU Z Z, Study on the speciation transformation and gas production characteristics of heavy metals cadmium/chromium in anaerobic fermentation of pig manure[D]. Shenyang : Shenyang Agricultural University, 2020 (in Chinese).
[26] 栾润宇, 高珊, 徐应明, 等. 不同钝化剂对鸡粪堆肥重金属钝化效果及其腐熟度指标的影响 [J]. 环境科学, 2020, 41(1): 469-478. LUAN R Y, GAO S, XU Y M, et al. Effect of different passivating agents on the stabilization of heavy metals in chicken manure compost and its maturity evaluating indexes [J]. Environmental Science, 2020, 41(1): 469-478(in Chinese).
[27] CUI H, OU Y, WANG L X, et al. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite [J]. Journal of Hazardous Materials, 2021, 406: 124313. doi: 10.1016/j.jhazmat.2020.124313 [28] 任秀娜, 王权, 赵军超, 等. 添加钙基膨润土对猪粪堆肥中水溶性有机物光谱特征的影响 [J]. 光谱学与光谱分析, 2018, 38(6): 1856-1862. REN X N, WANG Q, ZHAO J C, et al. The effect of Ca-bentonite on spectra of dissolved organic matter during pig manure composting [J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1856-1862(in Chinese).
[29] 陈静, 黄占斌. 腐植酸在土壤修复中的作用 [J]. 腐植酸, 2014(4): 30-34,65. CHEN J, HUANG Z B. Effect of humic acid on soil restoration [J]. Humic Acid, 2014(4): 30-34,65(in Chinese).
[30] 凌翔. 关于腐殖酸的应用化学研究 [J]. 中外企业家, 2019(8): 131. LING X. Applied chemistry research on humic acid [J]. Chinese & Foreign Entrepreneurs, 2019(8): 131(in Chinese).
[31] 荣宏伟, 王勤, 张朝升, 等. Cu2+、Zn2+对生物脱氮系统的影响 [J]. 环境工程学报, 2009, 3(4): 617-620. RONG H W, WANG Q, ZHANG C S, et al. Effects of Cu2+ and Zn2+ on the biological nitrogen removal system [J]. Chinese Journal of Environmental Engineering, 2009, 3(4): 617-620(in Chinese).
[32] 张正哲. 重金属离子对厌氧氨氧化颗粒污泥的影响及其修复策略研究[D]. 杭州: 杭州师范大学, 2016. ZHANG Z Z. Effects of heavy metal ions on anammox granules and strategies for remediation[D]. Hangzhou: Hangzhou Normal University, 2016(in Chinese).
[33] PICCOLO A, SPACCINI R, de MARTINO A, et al. Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition [J]. Chemosphere, 2019, 225: 150-156. doi: 10.1016/j.chemosphere.2019.03.019