

DOI:10.7524/j.issn.0254-6108.2022021102

周子琳, 黄金晶, 商伟伟, 等. 紫外/过二硫酸盐对组胺 H₂ 受体拮抗剂的降解特性及自由基模拟[J]. 环境化学, 2023, 42(7): 2442-2455. ZHOU Zilin, HUANG Jinjing, SHANG Weiwei, et al. Degradation of histamine H₂-receptor antagonists by UV/PDS: Kinetics and radical modeling[J]. Environmental Chemistry, 2023, 42 (7): 2442-2455.

紫外/过二硫酸盐对组胺 H₂ 受体拮抗剂的降解特性 及自由基模拟^{*}

周子琳 黄金晶 商伟伟 钱雅洁**

(东华大学环境科学与工程学院,上海,201620)

摘 要研究了基于硫酸根的高级氧化技术 UV/过二硫酸盐(UV/PDS)对水体中组胺 H₂受体拮抗剂(HRAs)的降解,并选取 HRAs 中的典型物质西咪替丁(CMTD)为目标污染物.采用竞争动力学方法得到了 HRAs和·OH及SO₄·反应的二级速率常数, k_{-OH/HRAs}为(2.8—14.6)×10⁹ L·mol⁻¹·s⁻¹, k_{SO₄}·/_{/HRAs}为(0.81—8.10)×10⁹ L·mol⁻¹·s⁻¹.研究在实验基础上建立了 UV/PDS 的自由基拟稳态模型,模拟结果表明,UV/PDS对污染物的降解,其间接光解起主要作用,体系中·OH和SO₄-是间接光解的主导自由基.在(0.1—0.5) mmol·L⁻¹ PDS 投加量下,·OH和SO₄·的浓度分别为(3.85—5.16)×10⁻¹⁶ mol·L⁻¹,(1.21—1.68)×10⁻¹³ mol·L⁻¹,SO₄·对污染物的降解起主导作用.酸性条件下自由基浓度相对更高,从而促进了CMTD的去除.水体基质(Cl⁻、HCO₃和 NOM)存在条件下,CMTD的降解受到一定的抑制,模拟结果表明自由基浓度显著降低;但是模拟结果与实验结果有一定偏差,主要是基质存在下生成了衍生自由基,由于衍生自由基的复杂性而未计入模型计算中导致.在实际水样中应用的研究表明,UV/PDS可以有效降解地表水(SW)和实际废水(WW)中的CMTD,具有良好的应用前景. **关键词** 组胺 H₂受体拮抗剂,西咪替丁,UV/PDS,自由基模拟.

Degradation of histamine H₂-receptor antagonists by UV/PDS: Kinetics and radical modeling

ZHOU Zilin HUANG Jinjing SHANG Weiwei QIAN Yajie ** (College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China)

Abstract The degradation of histamine H₂-receptor antagonist (HRAs) by sulfate radical based advanced oxidation processes (SR-AOPs) of UV/peroxydisulfate (UV/PDS) was investigated in this study. Cimetidine (CMTD), a typical compound of HRAs, was selected as the target pollutant. The second-order rate constants between HRAs with ·OH and SO₄⁻ · were obtained by competition kinetic approaches, with $k_{2OH/HRAs}$ in the range of (2.8—14.6)×10⁹ L·mol⁻¹·s⁻¹ and $k_{SO_4^-/HRAs}$ in the range of (0.81—8.10)×10⁹ L·mol⁻¹·s⁻¹, respectively. Based on experimental results, a pseudo steady-state kinetic model was developed to calculate the radical concentration. The modeling results showed that CMTD degradation was mainly caused by indirect photolysis, which dominated by ·OH and SO₄⁻. With the dosage of (0.1—0.5) mmol·L⁻¹ PDS, the ·OH and SO₄⁻ · concentrations were in the range of (3.85—5.16) ×10⁻¹⁶ mol·L⁻¹ and (1.21—1.68) ×10⁻¹³ mol·L⁻¹, respectively. Thereby, SO₄⁻ · was

²⁰²² 年 2 月 11 日收稿(Received: February 11, 2022).

^{*} 国家自然科学基金 (52170069) 资助.

Supported by the National Natural Science Foundation of China (52170069).

^{**} 通信联系人 Corresponding author, Tel: 021-67798739, E-mail: yqian@dhu.edu.cn

deemed as the major contributor to CMTD degradation. The radical concentration was relatively higher under acidic conditions, which promoted the degradation of CMTD. In the presence of water matrices, i.e., Cl^- , HCO_3^- and NOM, the degradation of CMTD was inhibited to some extent. Modeling results confirmed that the radical concentration decreased significantly. However, a certain deviation between modeling and experimental results was observed in the presence of water matrices, which might be caused by the secondary radicals derived from \cdot OH and SO_4^- reacting with water matrices. Due to the complexity of secondary radicals, the reactions of derived radicals were not included in the model. The application of UV/PDS in real water samples showed that CMTD could be effectively degraded by UV/PDS in surface water (SW) and wastewater (WW), which is promising in water treatment.

Keywords histamine H₂-receptor antagonist, Cimetidine, UV/PDS, radical modeling.

我国是药物生产和使用大国.药物主要作用为预防和治疗人类、动植物等疾病,调节生理机能,恢 复机体正常等.近年来,由于药物的生产,使用和排放缺乏长期有效的监管机制,导致在农作物土壤、 地下水、地表水甚至饮用水水源中检测出了药物的存在^[1-2],虽然检出浓度较低,在 ng·L⁻¹和 μg·L⁻¹ 之间,但对自然水体中的细菌产生抗性基因的风险不容忽视^[3-4].药物毒性的累积性对人体的潜在伤害 较为严重,例如饮用含有药物污染的地下水会影响人体的内分泌系统,长期饮用可导致癌症和畸形^[5].

高级氧化技术(AOPs)是高效去除水体中痕量有机污染物的技术,其主要通过自由基及非自由基 途径将污染物氧化甚至矿化^[6].近年来,基于硫酸根自由基的高级氧化技术(SR-AOPs)受到广泛关注, 相比于热活化、臭氧活化、金属活化产生活性基团等方式,UV活化效率高、副产物少且经济环保^[7].同 时,相比于传统的以·OH自由基(*E*⁰=1.9—2.7 V)^[8]主导的高级氧化技术(HR-AOPs),SO₄-自由基 (*E*⁰=2.5—3.1V)^[9]以其高氧化电位、pH适应范围广、稳定性强,对污染物降解具有更广阔的应用前景.

本论文选取可与组胺 H₂受体结合,产生抑酸作用,用于治疗消化性溃疡等疾病的受体拮抗剂(HRAs)^[10](雷尼 替丁(Ranitidine, RNTD)、尼扎 替丁(Nizatidine, NZTD)、法 莫 替丁(Famotidine, FMTD)、西咪替丁(Cimetidine, CMTD)、罗沙替丁(Roxatidine, RXTD))为研究对象.由于患者在给药后很大一部分 HRAs 以原结构排出至环境中,传统污水处理工艺无法有效去除 HRAs^[11-13],在地表水中检测到 CMTD 浓度达 580 ng·L^{-1[14]},在污水厂出水中检测到 CMTD、FMTD 和 RNTD 的浓度高达 0—5.38 µg·L^{-1[11,14]}. HRAs 在水体中的污染会对生态系统和公共卫生带来潜在风险^[15],基于生物处理的 传统污水处理工艺对 HRAs 的去除效果有限.高级氧化被认为是去除水中有机微污染物的有效技术^[16], 但是对 HRAs 类污染物的去除特性研究罕有报道.CMTD 是第一代 HRAs,污水厂出水中浓度甚至高达 5380 ng·L^{-1[14]},鉴于 CMTD 的高使用量和排放量,将其作为特征物质,通过建立拟稳态动力学模型,探究 UV/PDS 体系降解 HRAs 的机理, PDS 投加量、不同 pH 条件、水体基质(Cl、HCO₃和 NOM)对 UV/PDS 体系的影响,并评估在实际水样(地表水(SW)、实际废水(WW))中的应用.通过比对实验值 与模型预测值的差异,进一步评估 UV/PDS 体系稳态模型的适用性,明确 UV/PDS 降解 HRAs 的反应 机理和应用前景.

1 材料与方法(Materials and methods)

1.1 实验材料

RNTD、NZTD、RXTD、CMTD、FMTD(~99.8%)(结构如表1所示),过二硫酸钠(PDS,99.9%)、 双氧水(H₂O₂,质量分数30%)、氯化钠(NaCl,99%)、碳酸氢钠(NaHCO₃,99.7%)、磷酸氢二钠 (Na₂HPO₄,99.9%)、磷酸二氢钠(NaH₂PO₄,99.9%)、硫代硫酸钠(Na₂S₂O₃,99.99%)、乙酸铵 (CH₃COONH₄,99.9%)、乙酸钠(CH₃COONa,99.9%)、腐殖酸(HA)、浓硫酸(H₂SO₄,98%)、乙醇 (CH₃CH₂OH,99.5%)、叔丁醇(C₄H₁₀O,99.5%)等试剂均购自 Sigma-Aldrich 或 ANPEL 实验室技术 (上海)有限公司.甲醇、乙腈等为色谱级,实验溶液配置及反应用水均采用 Milli-Q纯化系统 (18.2 mΩ·cm)制备的超纯水.

Table 1 Chemical Structures of Theas			
污染物	分子量	分子式	化学结构式
Contaminants	Molecular weight	Molecular formula	Chemical structural formula
雷尼替丁	314.40	$C_{13}H_{22}N_4O_3S$	H ₃ C N CH ₃
尼扎替丁	331.46	$C_{12}H_{21}N_5O_2S_2$	$H_{3C} \rightarrow N$ $S \rightarrow H$ NO_2 $H_{3C} \rightarrow N $ $HN $ CH_3
法莫替丁	337.45	$C_8H_{15}N_7O_2S_3$	H ₂ N NH ₂ NH ₂ O NH ₂ NH ₂ NH ₂ O NH ₂ NH ₂
西咪替丁	252.34	$C_{10}H_{16}N_6S$	HN CH ₃ CH ₃ CH ₃
罗沙替丁	306.19	$C_{17}H_{26}N_2O_3$	ON ON ON ON

	表	1	HRAs	的化学结构
hla	1	Ch	omical	Structures of UD A

T.

1.2 实验设备及仪器

本实验过程中主要使用的仪器设备为高效液相色谱(HPLC, 1260, Agilent Technology, USA), 紫外 分光光度计(UV-1600PC, Shanghai Mapada Instruments),离子色谱仪(Thermo Dionex Aquion, 赛默飞世 尔科技有限公司), pH 计(FE28K, Mettler Toledo), 紫外反应器(内置一个4W的低压紫外汞灯, 输出波 长为 254 nm)等.

1.3 实验方法

1.3.1 光强测定实验

本实验使用的圆柱形石英反应器内置一个4W的低压紫外汞灯,其光强根据草酸铁钾 (K₃Fe(C₂O₄)₃·3H₂O)法^[17] 测定为 3.2×10⁻⁸ Einstein·L⁻¹·s⁻¹.

1.3.2 HRAs 降解动力学实验

HRAs 降解动力学实验在圆柱形石英反应器中进行,反应溶液置于石英杯中,磁力搅拌器维持反 应溶液的均匀混合.反应体系总体积为100 mL,10 mmol·L⁻¹磷酸盐缓冲溶液维持体系 pH7,在 0.01 mmol·L⁻¹HRAs 的溶液中加入 0.2 mmol·L⁻¹PDS, 并于不同时刻取样 1 mL 过 0.45 μm 滤膜后加入至 含有 300 mmol·L⁻¹ Na₂S₂O₃ 的液相小瓶中. 样品在 4 ℃ 下冰箱保存, 24 h 内进行液相分析, 所有实验均 进行两次以上.

1.3.3 SO₄·和·OH自由基竞争动力学实验

UV/PDS 体系中 HRAs 的降解主要是由直接光解和间接光解作用[18]. 如式(1)所示, kobs 为拟一级降 解速率常数(s^{-1})、 k_d 和 k_i 分别为直接和间接光解速率常数(s^{-1}). k_i 可由 k_{obs} 与 k_d 的差值计算. 如式(2) 所示, UV/PDS体系中SO4和OH两种自由基主导了间接光解[19], k.OH/HRAs和kSO4/HRAs分别是HRAs 和·OH与SO4·的二级速率常数.无法通过竞争实验同时测定 k.OH/HRAs 和kSO4·/HRAs,故本研究引入间接光 解以·OH 主导的 UV/H₂O₂ 体系^[18], 此体系中 HRAs 的降解如式(3)所示.

$$k_{\rm obs} = k_{\rm d} + k_i \tag{1}$$

$$k_i = k_{\text{SO}_4^- / \text{HRAs}} [\text{SO}_4^- \cdot]_{\text{ss}} + k_{\text{OH}/\text{HRAs}} [\cdot \text{OH}]_{\text{ss}}$$
(2)

$$-\frac{d[HRAs]}{dt} = k_{obs,HRAs}[HRAs] = k_{d,HRAs}[HRAs] + k_{i,HRAs}[HRAs] = k_{d,HRAs}[HRAs] + k_{OH,HRAs}[\cdot OH][HRAs]$$
(3)

在 UV/H₂O₂ 体系中,采用硝基苯(NB, $k_{2OH/NB}$ =3.0×10⁹ L·mol⁻¹·s⁻¹)作为·OH 的竞争化合物来测定 $k_{OH/HRAs}$;在 UV/PDS 体系中,采用苯甲醚(AS, $k_{SO_4^-/AS}$ =4.9×10⁹ L·mol⁻¹·s⁻¹)作为SO₄⁻·的竞争化合物来测 定 $k_{SO_4^-/HRAs}$ ^[19-21].

在 UV/H₂O₂ 体系中, NB 的降解可以用式(4)表示.

$$-\frac{d[NB]}{dt} = k_{obs,NB}[NB] = k_{d,NB}[NB] + k_{i,NB}[NB] = k_{d,NB}[NB] + k_{OH,NB}[\cdot OH][NB]$$
(4)

其中, $k_{obs,HRAs}$ 和 $k_{obs,NB}$ 是实验所得的拟一级降解速率常数(s^{-1}); $k_{d,HRAs}$ 和 $k_{d,NB}$ 是实验所得的拟一级 直接光解速率常数(s^{-1}); $k_{i,HRAs}$ 和 $k_{i,NB}$ 为间接光解速率常数(s^{-1}); $k_{zOH,HRAs}$ 和 $k_{zOH,NB}$ 是 HRAs 和 NB 分别与·OH 的二级速率常数(L·mol⁻¹žs⁻¹).

结合方程(3)和(4)得到方程(5):

$$\ln\left(\frac{[\text{HRAs}]_{t}}{[\text{HRAs}]_{0}}\right) - k_{d,\text{HRAs}}t = \left(\ln\left(\frac{[\text{NB}]_{t}}{[\text{NB}]_{0}}\right) - k_{d,\text{NB}}t\right)\frac{k_{\cdot\text{OH/HRAs}}}{k_{\cdot\text{OH/NB}}}$$
(5)

式(5)可以进一步表示为式(6):

$$k_{i,\text{HRAs}} = k_{i,\text{NB}} \frac{k_{.\text{OH/HRAs}}}{k_{.\text{OH/NB}}}$$
(6)

其中, k_{i,HRAs} 和 k_{i,NB} 可以从式(7)和(8)中获得:

$$k_{i,\text{HRAs}} = k_{obs,\text{HRAs}} - k_{d,\text{HRAs}} \tag{7}$$

$$k_{i,\rm NB} = k_{obs,\rm NB} - k_{d,\rm NB} \tag{8}$$

将 k_{i,HRAs} 和 k_{i,NB} 的计算值以及已知的 k_{žOH,NB} 带入式(6)中,即可推导出 HRAs 和·OH 的二级速率 常数 k_{.OH/HRAs}.

UV/PDS 体系,首先向反应体系中加入 200 mmol·L⁻¹ 叔丁醇(TBA, *k*_{-OH/TBA}=(3.8—7.6)×10⁸ L·mol⁻¹·s⁻¹) 以淬灭反应体系中的·OH,之后可用上述方法测定SO₄·与 HRAs 的反应速率常数. UV/PDS 体系中 HRAs 的降解可用式(9)表示, NB 降解所测得的·OH 浓度可用式(10)表示, SO₄·和·OH 引起的 AS 降解 所测得的SO₄·浓度可用式(11)表示,将式(10)和(11)带入式(9)中,可计算出SO₄·与 HRAs 的二级速率 常数*k*_{SOT/HRAs}.

$$\ln\left(\frac{[\text{HRAs}]_{t}}{[\text{HRAs}]_{0}}\right) = k_{\text{OH/HRAs}} \int [\cdot \text{OH}]_{t} dt + k_{\text{SO}_{4}^{-}/\text{HRAs}} \int [\text{SO}_{4}^{-}\cdot]_{t} dt + k_{d} t$$
(9)

$$\int \left[\cdot \operatorname{OH}\right]_{t} dt = \frac{\ln([\operatorname{NB}]_{t}/[\operatorname{NB}]_{0}) - k_{\mathrm{d,NB}}}{k_{\mathrm{OH/NB}}}$$
(10)

$$\int [SO_{4}^{-} \cdot]_{t} dt = \frac{\ln([AS]_{t}/[AS]_{0}) - k_{d,AS}t - k_{OH/AS} \int [\cdot OH]_{t} dt}{k_{SO_{4}^{-}/AS}}$$
(11)

1.3.4 建模方法

(1)模型的基本反应

SO4·的净生成率可用式(12)表示:

$$r_{\rm SO_4^-} = 2\Phi_{\rm PS} P_{\rm U-V} f_{\rm PS} (1 - e^{-2.303(\alpha(\lambda) + \epsilon(\lambda)C)l})$$
(12)

式中, $r_{SO_4^-}$ 为SO₄-的净生成率(mol·s⁻¹); Φ_{PS} 为 PS 的量子产率; P_{U-V} 为 254 nm 下的紫外线强度(3.2×10⁻⁸ Einstein·L⁻¹·s⁻¹); f_{PS} 是 PS 吸收光的分数; $\varepsilon(\lambda)$ 是 PS 在 254 nm 处的摩尔消光系数; C 为 PS 的浓度 (mol·L⁻¹); $\alpha(\lambda)$ 是其他所有溶液成分在 254 nm 处的光吸收(cm⁻¹); l是反应器的光程.

UV/PDS 降解 HRAs 过程中包含大量基元反应, ·OH 和SO₄·是过程中的主要反应物质, 二级自由基如O₂·、HO₂·、SO₅·等由于浓度极低, 衍生自由基如 Cl·、ClOH·⁻、CO₃·等由于产生机理较为复杂, 不包含在 UV/PDS 降解 HRAs 的建模过程中.本模型中涉及的基本反应和速率常数如表 2 所示.

	Table 2 Reactions and rate constants involved in the pseudo steady-state model			
	方程式	速率常数	参考文献	
	Equations	Rate constants	References	
1	$S_2O_8^{2-}+hv\rightarrow 2SO_4^-$.	$\Phi^{254} = 0.70 \text{ mol} \cdot \text{einstein}^{-1} \epsilon^{254}_{\text{S}_2 \text{O}_8^{2-}} = 22.07 \text{ mol}^{-1} \cdot \text{cm}^{-1}$	[22 – 23]	
2	HRAs+hv→products	$r_{\rm UV, HRAs} = -\Phi_{\rm HRAs} \cdot I \cdot f_{\rm HRAs} \cdot (1 - e^{-A}) f_{\rm HRAs} = 2.303 \cdot b \cdot \varepsilon_{\rm HRAs} \cdot C_{\rm HRAs} / A$		
3	$\mathrm{SO}_4^-\!\cdot\!+\!\mathrm{S_2O_8^{2-}}\!\!\rightarrow\!\!\mathrm{S_2O_8^-}\!\cdot\!+\!\mathrm{SO_4^{2-}}$	$k_1 = 6.62 \times 10^5 \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[24]	
4	$AlkalinepHSO_{4}^{-} \cdot +HO^{-} \rightarrow HO \cdot +SO_{4}^{2-}$	$k_2 = 6.25 \times 10^7 \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[25]	
5	All $pHsSO_4^- \cdot + (H_2O) \rightarrow HO \cdot + HSO_4^-$	k_2 [H ₂ O] = 4.6×10 ² s ⁻¹	[26]	
6	$SO_4^- \cdot + SO_4^- \cdot \rightarrow S_2O_8^{2-}$	$k_3 = 8.1 \times 10^8 \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	[24]	
7	$HO \cdot +HO \cdot \rightarrow H_2O_2$	$k_4 = 5 \times 10^9 \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$	[27]	
8	$S_2O_8^{2-}$ +HO· \rightarrow HSO ₄ ⁻ +SO ₄ ⁻ ·+0.5O ₂	$k_5 = 1.2 \times 10^7 \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	[28]	
9	$SO_4^- + HO \rightarrow HSO_4^- + 0.5O_2$	$k_6 = 1.0 \times 10^{10} \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[20]	
10	$SO_4^- + R \rightarrow productsHO + R \rightarrow products$	$k_7 = k_{\text{SO}_1^-, /\text{HRAS}} k_7' = k_{\cdot \text{OH}/\text{HRAS}}$	[28]	
11	$HSO_4^- \leftrightarrow H^+ + SO_4^{2-}$	$pK_{a1} = 1.92$	[29]	
		在CF存在条件下		
12	$SO_4^- + Cl^- \rightarrow SO_4^{2-} + Cl$	$k_8 = 4.7 \times 10^8 \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	[30]	
13	$SO_4^{2-}+Cl \cdot \rightarrow SO_4^- \cdot + Cl^-$	$k_9 = 2.5 \times 10^8 \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	[26]	
14	$OH \cdot + Cl^- \rightarrow ClOH \cdot ^-$	$k_{10} = 4.3 \times 10^9 \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[31]	
15	$ClOH \bullet - OH \cdot + Cl$	$k_{11} = 6.1 \times 10^9 \text{ s}^{-1}$	[31]	
16	$Cl \cdot +H_2O \rightarrow ClOH \cdot -+H^+$	$k_{12}[\text{H}_2\text{O}] = 1.3 \times 10^3 \text{ s}^{-1}$	[32]	
17	$ClOH \cdot -+H^+ \rightarrow Cl \cdot +H_2O$	$k_{13} = 2.1 \times 10^{10} \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	[31]	
		在HCO ₃ 存在条件下		
18	$SO_4^- \cdot + HCO_3^- \rightarrow CO_3 \cdot + H^+ + SO_4^{2-}$	$k_{14} = 3.6 \times 10^6 \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[22]	
19	$SO_4^- \cdot + CO_3^{2-} \rightarrow CO_3^- \cdot + SO_4^{2-}$	$k_{15} = 6.5 \times 10^6 \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{s}^{-1}$	[33]	
20	$HO \cdot +HCO_3^- \rightarrow CO_3^- \cdot +H_2O$	$k_{16} = 8.5 \times 10^6 \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[8]	
21	$\text{HO} \cdot + \text{CO}_3^2 \rightarrow \text{CO}_3^- \cdot + \text{OH}^-$	$k_{17} = 4.2 \times 10^8 \mathrm{L \cdot mol^{-1} \cdot s^{-1}}$	[8]	
22	$H_2CO_3^* \leftrightarrow H^+ + HCO_3^-$	$pK_{a2} = 6.3$	[34]	
23	$HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$	$pK_{a3} = 10.3$	[31]	
		在NOM存在条件下		
24	$SO_4^- \cdot + NOM \rightarrow products$	$k_{18} = 2.35 \times 10^7 \mathrm{L \cdot mol_C}^{-1} \cdot \mathrm{s}^{-1}$	[35]	
25	HO · +NOM→products	$k_{19} = 3.0 \times 10^8 \mathrm{L} \cdot \mathrm{mol}_{\mathrm{C}}^{-1} \cdot \mathrm{s}^{-1}$	[20]	

表 2 拟稳态模型中涉及的基本反应和速率常数

(2)[SO₄-·]_{ss,0} 和 [·OH]_{ss,0} 的理论浓度估算和自由基分布

UV/PDS 降解 HRAs 拟稳态模型是在拟稳态假设基础上建立, 假设SO₄·(*r*_{SO4}.)和·OH(*r*_{-OH})的净生 成速率为零, 不随时间变化, 拟稳态自由基浓度 [SO₄·]_{ss}, [·OH]_{ss}等于它们的初始浓度 [SO₄·]_{ss,0} 和 [·OH]_{ss,0}, 表示为方程(13)和(14). 通过实验可知, 反应过程的 PDS 浓度几乎不变(变化在 10% 以内). 此外, 其他物种的拟稳态浓度也均为其初始浓度.

$$[SO_{4}^{-}\cdot]_{ss,0} = \frac{2\Phi_{PS}(P_{U-V})f_{PS}(1-e^{-2.303(\alpha(\lambda)+\epsilon(\lambda)C)I}) + k_{5}[S_{2}O_{8}^{-2}]_{0}[HO \cdot]_{ss,0}}{k_{1}[S_{2}O_{8}^{-2}]_{0} + k_{2}[OH^{-}]_{0} + k_{2}'[H_{2}O] + k_{6}[HO \cdot]_{ss,0} + k_{7}[HRAS]_{0} + \sum_{i}k_{i}[S_{i}]_{0}}$$
(13)

$$[\text{HO}\cdot]_{\text{ss},0} = \frac{k_2[\text{SO}_4^- \cdot]_{\text{ss},0}[\text{HO}^-]_0 + k_2'[\text{H}_2\text{O}][\text{SO}_4^- \cdot]_{\text{ss},0}}{k_5[\text{S}_2\text{O}_8^{2^-}]_0 + k_6[\text{SO}_4^- \cdot]_{\text{ss},0} + k_7'[\text{HRAs}]_0 + \sum_i k_i [\text{S}_i]_0}$$
(14)

式中, [Si]0 是水体基质的初始浓度; ki 是水体基质与·OH和SO4·的速率常数.

1.4 实际水样采集及表征

本实验为了探究 UV/PDS 体系在实际水样中的应用效果,从江苏太湖(N31°6'36", E120°23'3")采

集地表水(SW),从上海市政污水处理厂的二级出水采集实际污水(WW).水样储存于4℃的环境中, 实验前用配备0.45 μm 滤膜的玻璃砂芯抽滤装置过滤水样以去除颗粒物.采用岛津总有机碳分析仪测 定总有机碳含量(TOC).用离子色谱测定了 Cl⁻、NO₃⁻、PO₄⁻离子浓度,用电感耦合等离子体质谱测定 了 Fe、Mn 元素的浓度,如表 3 所示.

Table 3 Characteristics of the water samples							
水样 Water samples	pН	$\text{TOC}/(\text{mg}{\cdot}\text{L}^{-1})$	$Cl^{-1}(mmol \cdot L^{-1})$	$NO_3^-/(mmol \cdot L^{-1})$	$PO_4^{3\text{-}}/(mmol{\cdot}L^{-1})$	$Fe/(mmol \cdot L^{\scriptscriptstyle -1})$	Mn/ (mmol·L ⁻¹)
SW	6.57	0.79	0.39	0.0276	ND	3.35×10 ⁻⁶	6.74×10^{-6}
WW	6.86	0.67	2.27	0.8009	ND	ND	2.45×10^{-6}

表 3 实际水样的表征 **able 3** Characteristics of the water sample

1.5 检测方法

实验中 RNTD、NZTD、FMTD、CMTD、RXTD、NB、AS浓度采用配备 Agilent 1260 色谱柱 (ZORBAX SB-C18, 2.4 mm×150 mm, 5 µm)的高效液相色谱(HPLC, 1260, Agilent Technology, USA)定 量分析. 其中 RNTD、NZTD、RXTD: 流动相为乙腈和乙酸铵(50 mmol)溶液, $V_{(乙腐铵)}=20/80$; FMTD: 流动相为甲醇和水, $V_{(甲醇)}/V_{(水)}=40/60$; CMTD: 流动相为甲醇和水, $V_{(甲醇)}/V_{(\Lambda)}=45/55$; NB、 AS: 流动相为 0.1%(*V/V*)甲酸和甲醇, $V_{(0.1\%(V/V)甲酸)}/V_{(甲醇)}=45/55$. RNTD、NZTD、FMTD、CMTD、 RXTD、NB、AS 的检测波长分别为 242、315、208、270、218、270、220 nm. 柱温均保持在 35 ℃, 等度 洗脱.

2 结果与讨论 (Results and discussion)

2.1 HRAs 降解动力学

由实验可知, HRAs 溶液在单独 PDS 处理条件下无明显降解, 在单独紫外线照射下有一定的降解. 紫外线照射条件下加入 PDS 后, HRAs 的降解显著增加, 反应 20 min 后, FMTD、RNTD、RXTD、NZTD 和 CMTD 的去除率分别为 87.96%、99.36%、93.13%、97.42% 和 99.27%. HRAs 的降解如图 1 所示, 在 UV/PDS 体系中, HRAs 的降解 ln([HRAs]/[HRAs]₀)值和反应时间 *t* 表现出良好的线性关系(*R*² > 0.95), 说明反应遵循拟一级动力学.

FMTD(a)、RNTD(b)、RXTD(c)、NZTD(d) 和 CMTD(e) [组胺 H₂ 受体拮抗剂(HRAs)] = 0.01 mmol·L⁻¹, [PDS] = 0.2 mmol·L⁻¹, $P_{U-V} = 3.2 \times 10^{-8}$ Einstein·L⁻¹·s⁻¹ **Fig.1** Degradation of HRAs

实验表明 HRAs 的降解由直接光解和间接光解共同作用,直接光解是 UV 直接氧化 HRAs,间接光解可能是由自由基氧化引起的.已有相关研究表示在 UV/PDS 体系中,例如·OH 和 SO₄·可能是间接光解的主导自由基^[18,22],可与污染物快速反应.

2.2 HRAs 反应速率常数 k-OH/HRAs 和kSO4-/HRAs

本实验采用竞争动力学方法测定 HRAs 的二级反应速率常数 $k_{\cdot OH/HRAs}$ 和 $k_{SO_4^-/HRAs}$,结果如表 4 所示. FMTD, RNTD, RXTD, NZTD 和 CMTD 与·OH 和SO₄·的有较高的二级反应速率常数, $k_{\cdot OH/HRAs}$ 为 (2.8—14.6)×10° L·mol⁻¹·s⁻¹, $k_{SO_4^-/HRAs}$ 为(0.81—8.10)×10° L·mol⁻¹·s⁻¹. HRAs 的富电子部分,例如胺、双键和硫醚键被认为是易受·OH 和SO₄·攻击的反应位点^[16,36]. CMTD 的 k_i 值相比其他 HRAs 较低,后续研究将以 CMTD 为特征污染物进行模型模拟.

1 able 4	Fable 4 The second-order rate constants of ${}^{\circ}OH$ and ${}^{\circ}O_{4} \cdot with HKAS$		
组胺H ₂ 受体拮抗剂 HRAs	$k_{\cdot \text{OH/HRAs}} / (L \cdot \text{mol}^{-1} \cdot \text{s}^{-1})$	$k_{\mathrm{SO}_{4}^{-}\cdot/\mathrm{HRAs}}/(\mathrm{L}\cdot\mathrm{mol}^{-1}\cdot\mathrm{s}^{-1})$	
FMTD	7.31×10 ⁹	7.07×10 ⁹	
RNTD	2.80×10 ⁹	2.46×10 ⁹	
RXTD	3.12×10 ⁹	0.81×10 ⁹	
NZTD	3.54×10 ⁹	0.85×10 ⁹	
CMTD	1.46×10^{10}	8.10×10 ⁹	

表 4 HRAs 与·OH 和SO₄-的二级反应速率常数

anatanta of OII and CO- mith IID A

2.3 PDS 投加量对 HRAs 降解的影响

CMTD 在不同 PDS 投加量的自由基浓度如表 5 所示. 在(0.1—0.5) mmol·L⁻¹ PDS 投加量下, ·OH 和SO₄·的浓度分别为(3.85—5.16) ×10⁻¹⁶ mol·L⁻¹ 和(1.21—1.68) ×10⁻¹³ mol·L⁻¹.

表 5 不同 PDS 投加量下 UV/PDS 模型体系中·OH 和SO₄·理论浓度分布

	т	
$[PDS]/(mmol \cdot L^{-1})$	$[\cdot OH]/(mol \cdot L^{-1})$	$[SO_4^-\cdot]/(mol \cdot L^{-1})$
0.1	$3.85\times10^{\scriptscriptstyle-16}$	$1.21 imes 10^{-13}$
0.2	$4.20 imes10^{-16}$	$1.34 imes 10^{-13}$
0.3	4.54×10^{-16}	$1.45 imes 10^{-13}$
0.4	$4.86\times10^{\scriptscriptstyle-16}$	$1.57 imes 10^{-13}$
0.5	$5.16 imes10^{-16}$	$1.68 imes10^{-13}$
)) (

Table 5 Concentration distribution of \cdot OH and SO₄⁻ under different PDS dosage

注: ([CMTD] = 0.01 mmol·L⁻¹, $P_{U-V} = 3.2 \times 10^{-8}$ Einstein·L⁻¹·s⁻¹).

得到的拟一级降解速率常数 k_{obs}、直接光解速率常数 k_d、间接光解速率常数 k_i和模型预测的 k_{obs}如图 2 所示.图 2(a)表示随着 PDS 投加量的增加,间接光解速率常数 k_i显著增加.图 2(b)表示模拟的 SO₄·和·OH 自由基降解 CMTD 的贡献值.

(a) Experimental and modeling degradation rate constants; (b) Degradation contribution value of SO_4^- and OH

PDS 的浓度在 0.1—0.3 mmol·L⁻¹ 范围内时, 模拟预测结果与实际值可较好的吻合, 说明该模型在 PDS 的低浓度范围内有较好的应用. 而当 PDS 的浓度增加至 0.4 mmol·L⁻¹时, 模拟预测结果与实际值 有一定的偏差, 表示模拟预测低估了实际降解的情况, 这可能由于 UV/PDS 降解 CMTD 的研究不够全 面, 一些基元反应未包含在建模过程中所致. SO₄·可与 OH⁻/H₂O 反应并生成·OH^[9,37], 所以·OH 浓度会 随着 PDS 浓度的增长而增加, 如式(15)和(16). 当 PDS 的浓度在 0.1—0.5 mmol·L⁻¹范围内, CMTD 主 要由间接光解去除, ·OH 的浓度几乎比SO₄-低 3 个数量级, 且 *k*_{·OH/CMTD} 与*k*_{SO₄·/CMTD}为同一数量级. 因此 可推断 *k*_{obs} 的主要部分为SO₄·贡献的 *k*_i, CMTD 主要被SO₄⁻·降解.

$$SO_4^- \cdot + H_2O \to \cdot HO + HSO_4^-$$
(15)

$$\mathrm{SO}_4^- \cdot + \mathrm{OH}^- \to \cdot \mathrm{OH} + \mathrm{SO}_4^{2-}$$
 (16)

2.4 pH对 HRAs 降解的影响

CMTD 在不同 pH 条件下的自由基浓度如表 6 所示.

Table 6	Table 6 Concentration distribution of \cdot OH and SO ₄ ²⁻ under different pH condition		
pH	$[\cdot OH]/(mol \cdot L^{-1})$	$[SO_4^{2-}]/(mol \cdot L^{-1})$	
3	$4.14\times10^{\text{-16}}$	1.35×10^{-13}	
5	$4.14 imes 10^{-16}$	1.35×10^{-13}	
7	$4.20 imes 10^{-16}$	1.34×10^{-13}	
9	1.03×10^{-16}	1.34×10^{-13}	

表 6	不同 pH 条件下	UV/PDS 模型体系中·OH 和SO ₄ -理论浓度分布
-----	-----------	--

注: ([CMTD] = 0.01 mmol·L⁻¹, [PDS] = 0.2 mmol·L⁻¹, $P_{U-V} = 3.2 \times 10^{-8}$ Einstein·L⁻¹·s⁻¹).

图 3(a)中的点表示实验测得的 k_d、k_i和 k_{obs},实线表示模型预测的 k_{obs}.图 3(b)表示SO₄²⁻和·OH 模拟的降解贡献值.酸性条件下的实验降解结果明显高于中性和碱性条件,表明酸性条件更有利于CMTD 的降解.CMTD 的 pK_a值为 7.1^[38],受 pH 影响较小.此外,在酸性条件下,PDS 被酸催化,体系中SO₄²⁻产生量增加^[39],从而促进了 CMTD 的降解.而 PDS 被酸催化形成的SO₄²⁻的机理未被详细阐明,故未包含在模型的基元反应中,导致了实验值与模型值的偏差.在 pH 5—9 条件下,·OH 和SO₄²⁻的浓度略微增加,故k_i无明显变化.图(b)显示了在不同 pH 条件下,SO₄²⁻自由基的 k_i值一直是 k_{obs}的主要部分,CMTD 的降解主要由SO₄²⁻自由基贡献.

Fig.3 Effect of pH on HRAs degradation

(a) Experimental and modeling degradation rate constants; (b) Degradation contribution value of SO₄²⁻ and ·OH

2.5 水体基质的影响

实验探究了 CMTD 在不同水基质(Cl⁻, HCO₃和 NOM)的降解情况,自由基浓度如表 7、8、9 所示, 实验结果如图 4、5、6 所示.

表 7	Cl 存在条件下 UV/PDS 模型体系中·OH 和SO ₄ -理论浓度分布
Table 7	Concentration distribution of \cdot OH and SO ₄ ²⁻ in the presence of Cl

$[Cl^-]/(mmol \cdot L^{-1})$	$[\cdot OH]/(mol \cdot L^{-1})$	$[SO_4^{2-}]/(mol \cdot L^{-1})$
0.5	$8.48 imes 10^{-16}$	3.44×10^{-14}
1.0	$2.95 imes 10^{-16}$	1.98×10^{-14}
1.5	$1.60 imes 10^{-16}$	1.39×10^{-14}
2.0	$1.05 imes 10^{-16}$	$1.07 imes10^{-14}$

 \exists : ([CMTD] = 0.01 mmol·L⁻¹, [PDS] = 0.2 mmol·L⁻¹, P_{U-V} = 3.2×10⁻⁸ Einstein·L⁻¹·s⁻¹, pH = 7).

(a) Experimental and modeling degradation rate constants; (b) Degradation contribution value of SO_4^{-} and OH

(1) Cl 的影响

CMTD 在 Cl存在条件下自由基浓度如表 7 所示. 如图 4 所示, Cl 对 CMTD 降解的影响表现出显著的变化. Cl 浓度在 0.5—1.0 mmol·L⁻¹范围内,随着 Cl 浓度的增加, *k*_{obs-CMTD} 下降. Cl 浓度在 1.0—2.0 mmol·L⁻¹范围内,随着 Cl 浓度的增加, *k*_{obs-CMTD} 无明显变化. *k*_{obs-CMTD} 的模拟值明显小于实

际值,这可能是因为 Cl⁻可与SO₄⁻和·OH 分别以 4.7×10⁸ L·mol⁻¹·s⁻¹和 4.3×10⁹ L·mol⁻¹·s⁻¹ 的速率常数 反应,如式(17)—(19)所示^[23,30,40]. Cl·、ClOH·⁻、Cl₂⁻等活性氯物质(RCS)与污染物进行了反应,其中 Cl·和Cl₂·都是强氧化剂,氧化还原电位高达 2.4 V 和 2.0 V^[41]. RCS 通过单电子氧化、夺氢或添加不饱 和 C—C 键可以与富电子污染物 CMTD 发生反应^[41]. 这些自由基与 CMTD 的反应未完全包含在模型 中,导致了模型值与实验值的差异. 图(b)展示了随着 Cl⁻浓度的增加, SO₄-降解贡献的减少较为明显, 这可能是由于SO₄·自由基量比·OH 高, Cl⁻与SO₄·反应的消耗导致.

$$\mathrm{SO}_{4}^{-} + \mathrm{Cl}^{-} \to \mathrm{SO}_{4}^{2-} + \mathrm{Cl} \tag{17}$$

$$OH + Cl \rightarrow ClOH^{-}$$
(18)

$$\mathrm{Cl}\cdot + \mathrm{Cl}^{-} \to \mathrm{Cl}_{2}^{-} \tag{19}$$

[西咪替丁(CMTD)] = 0.01 mmol·L⁻¹, [PDS] = 0.2 mmol·L⁻¹, $P_{U-V} = 3.2 \times 10^{-8}$ Einstein·L⁻¹·s⁻¹, pH = 7

Fig.5 Effect of HCO_3^- on HRAs degradation

(a) Experimental and modeling degradation rate constants; (b) Degradation contribution value of SO_4^- and OH

(2) HCO₃的影响

CMTD 在HCO₃存在条件下自由基浓度如表 8 所示. 如图 5 所示,随着HCO₃浓度从 0.5—2.0 mmol·L⁻¹, $k_{obs-CMTD}$ 逐渐降低,这是由于HCO₃、CO₃⁻²是·OH和SO₄⁻的重要清除剂^[42], HCO₃以 3.6×10⁶ L·mol⁻¹·s⁻¹和8.5×10⁶L·mol⁻¹·s⁻¹的速率常数分别与SO₄⁻·和·OH反应^[8,22], CO₃²⁻以 6.5×10⁶L·mol⁻¹·s⁻¹和4.2×10⁸L·mol⁻¹·s⁻¹ 分别与SO₄⁻·和·OH反应^[8,33],从而SO₄⁻·和·OH贡献率下降,且 k_i 值降低. 但是在这里模拟值出现了偏离 实验值的情况,且模拟值始终低于实验值. 这是由于模型中的HCO₃、CO₃²⁻是作为自由基抑制剂考虑, 而在实际反应中, HCO₃、CO₃²⁻与·OH和SO₄⁻·反应生成CO₃⁻·自由基(E^0 =1.59 V)^[24],氧化还原电位低于 SO₄⁻和·OH,但对富电子基团仍有一定的选择性,可部分氧化CMTD,从而造成了实验值与模拟值的偏差.

表 8	HCO3存在条件下	UV/PDS 模型体系中	·OH 和SO ₄ ·理论浓度分布
-----	-----------	--------------	------------------------------

Table 8	Concentration distribution of \cdot OH and SO ₄ ⁻ · in the p	presence of HCO_3^-
$[HCO_3^-]/(mmol \cdot L^{-1})$	$[\cdot OH]/(mol \cdot L^{-1})$	$[\mathrm{SO}_4^-\cdot]/(\mathrm{mol}\cdot\mathrm{L}^{-1})$
0.5	4.10×10^{-16}	1.31×10^{-13}
1.0	3.81×10^{-16}	$1.28\times10^{\text{-13}}$
1.5	$3.64 imes 10^{-16}$	1.25×10^{-13}
2.0	3.47×10^{-16}	1.22×10^{-13}

 $\exists :: ([CMTD] = 0.01 \text{ mmol·L}^{-1}, [PDS] = 0.2 \text{ mmol·L}^{-1}, P_{U-V} = 3.2 \times 10^{-8} \text{ Einstein·L}^{-1} \cdot \text{s}^{-1}, \text{pH} = 7).$

(3) NOM 的影响

HA 作为自然界中广泛存在的大分子有机物,本实验中用 HA 来研究 NOM 对 HRAs 降解速率的 影响. CMTD 在 HA 存在条件下自由基浓度如表9 所示. 图 6显示 CMTD 的 k_{obs} 随着 HA 浓度的增加而逐渐下降,模拟预测值也相应下降. HA 对降解反应 的抑制作用可从以下方面考虑,一方面 HA 吸收过滤了紫外光,从而降低了 PDS 的活化^[43];另一方面, HA 作为自由基清除剂,与 CMTD 竞争SO₄^{-[44]}或·OH^[45]自由基,从而降低了 CMTD 的降解效率. 然而模 拟预测值低于实际值,这可能是由于 NOM 中的酚类^[46]和醌类^[47]等含氧官能团也可以激活 PDS 以产 生SO₄·,这些活性物质同样贡献了 CMTD 的降解. 然而由于 NOM 存在下自由基形成的复杂性,本模型 未包含其基元反应,导致了模拟预测值低于实际值.

$[HA]/(mg \cdot L^{-1})$	$[\cdot OH]/(mol \cdot L^{-1})$	$[\mathrm{SO}_4^-\cdot]/(\mathrm{mol}\cdot\mathrm{L}^{-1})$
0.5	3.84×10^{-16}	1.32×10^{-13}
1.0	3.53×10^{-16}	1.31×10^{-13}
1.5	$3.25 imes 10^{-16}$	$1.29 imes 10^{-13}$
2.0	$3.05 imes 10^{-16}$	$1.28 imes 10^{-13}$

表 9 HA 存在条件下 UV/PDS 模型体系中·OH 和SO₄→理论浓度分布 **Table 9** Concentration distribution of ·OH and SO₄→ in the presence of HA

注: ([CMTD] = 0.01 mmol·L⁻¹, [PDS] = 0.2 mmol·L⁻¹, P_{U-V} = 3.2×10⁻⁸ Einstein·L⁻¹·s⁻¹, pH = 7).

图 6 HA对 HRAs 降解的影响

(a) 实验及模拟的降解速率常数; (b) SO₄·和·OH 自由基降解贡献值

[西咪替丁(CMTD)] = 0.01 mmol·L⁻¹, [PDS] = 0.2 mmol·L⁻¹, P_{U-V} = 3.2×10⁻⁸ Einstein·L⁻¹·s⁻¹, pH = 7

Fig.6 Effect of HA on HRAs degradation

(a) Experimental and modeling degradation rate constants; (b) Degradation contribution value of SO_4^- and OH

综上所述, CMTD 在不同水基质(Cl⁻, HCO₃和 NOM)影响下, HRAs 的间接降解受到抑制, SO₄·比·OH 具有更高的自由基浓度, 且 k_{žOH/CMTD} 与k_{SO₄·/CMTD}为同一数量级, 所以SO₄·是间接光解的主导自由基.

2.6 实际水样

本实验探究了 CMTD 在不同水样下的降解情况,如图 7 所示.图 7(a)和图 7(b)分别为污染物在地 表水(SW)和实际废水(WW)及其空白样中的降解.线和点分别表示水样中 CMTD 降解的模型预测值 和实验值 k_{obs}.

SW 和 WW 水样的各成分如表 3 所示,包括 TOC、Cl⁻、NO₃⁻和PO₄³⁻.为了评估在 SW 和 WW 水样中 UV/PDS 对 HRAs 的去除,重点考虑了 Cl⁻,碱度, NOM 的影响.模型也包含了 SW 和 WW 在 254 nm 处 的水基质吸附系数,分别为 0.051 cm⁻¹ 和 0.086 cm⁻¹.

实验测得的 CMTD 降解拟一级速率常数如下: $k_{obs, blank} > k_{obs, SW} > k_{obs, WW}$,这可能与水基质中复杂离子的光吸收和自由基清除效应有关.模型预测值低估了实际水样中的降解,这是因为复杂物质与 PDS 反应产生的衍生自由基复杂多样,未全部包含在模型中,故导致了模型预测值与实际值的差异.

图 7 实际水样对 HRAs 降解的影响

(a) 地表水中实验及模拟的降解速率常数; (b) 实际废水中实验及模拟的降解速率常数 [西咪替丁(CMTD)] = 0.01 mmol·L⁻¹,
 [PDS] = 0.2 mmol·L⁻¹, P_{U-V} = 3.2×10⁻⁸ Einstein·L⁻¹·s⁻¹, pH_{SW} = 6.57, pH_{WW} = 6.86

Fig.7 Effect of water samples on HRAs degradation

(a) Experimental and modeling degradation rate constants in SW; (b) Experimental and modeling degradation rate constants in WW

3 结论(Conclusion)

(1)UV/PDS 体系可有效去除 HRAs, 反应 20 min 后, FMTD、RNTD、RXTD、NZTD 和 CMTD 的去 除率分别为 87.96%、99.36%、93.13%、97.42% 和 99.27%. CMTD 的降解分为直接光解和间接光解, 其 中间接光解主导了 CMTD 的降解.

(2) 拟稳态动力学模型研究中选取 CMTD 为研究对象, 随着 PDS 用量的增加, 间接光解的贡献增大, SO, 是降解 HRAs 的主要自由基.

(3)酸性条件有利于 CMTD 的降解,模型在中性和碱性条件下可以较好的模拟实验值.

(4)水体基质(Cl⁻, HCO₃和 NOM)添加在地表水和实际废水中, CMTD 的降解均受到一定的抑制, 出现模拟计算结果与实验值偏差较大的情况.这是由于水体基质的复杂性, 一方面降低体系的 SO₄·或·OH 自由基, 一方面生成衍生自由基有助于污染物降解.

参考文献 (References)

- [1] XIANG Y, WU H H, LI L, et al. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China [J]. Ecotoxicology and Environmental Safety, 2021, 213: 112044.
- [2] DING G Y, CHEN G L, LIU Y D, et al. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways [J]. Science of the Total Environment, 2020, 738: 139802.
- [3] LI Z, LI M, ZHANG Z Y, et al. Antibiotics in aquatic environments of China: A review and meta-analysis [J]. Ecotoxicology and Environmental Safety, 2020, 199: 110668.
- [4] PERRY J A, WRIGHT G D. The antibiotic resistance "mobilome": Searching for the link between environment and clinic [J]. Frontiers in Microbiology, 2013, 4: 138.
- [5] 胡譞予.水环境中抗生素对健康的危害 [J]. 食品与药品, 2015, 17(3): 215-219.

HU X Y. Harm of antibiotics in aquatic environment on health [J]. Food and Drug, 2015, 17(3): 215-219(in Chinese).

- [6] OTURAN M A, AARON J J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review [J]. Critical Reviews in Environmental Science and Technology, 2014, 44(23): 2577-2641.
- [7] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-*AOPs*) [J]. Chemical Engineering Journal, 2021, 406: 127083.
- [8] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻ in Aqueous Solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886.
- [9] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and

Chemical Reference Data, 1988, 17(3): 1027-1284.

- [10] GANELLIN C R, DURANT G J, EMMETT J C. Some chemical aspects of histamine H2-receptor antagonists [J]. Federation Proceedings, 1976, 35(8): 1924-1930.
- [11] RADJENOVIĆ J, PETROVIĆ M, BARCELÓ D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment [J]. Water Research, 2009, 43(3): 831-841.
- [12] KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211.
- [13] CASTIGLIONI S, BAGNATI R, FANELLI R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy [J]. Environmental Science & Technology, 2006, 40(1): 357-363.
- [14] CHOI K, KIM Y, PARK J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea [J]. Science of the Total Environment, 2008, 405(1/2/3): 120-128.
- [15] HOPPE P D, ROSI-MARSHALL E J, BECHTOLD H A. The antihistamine cimetidine alters invertebrate growth and population dynamics in artificial streams [J]. Freshwater Science, 2012, 31(2): 379-388.
- [16] QIAN Y J, HUANG J J, LIU X, et al. Rapid oxidation of histamine H₂-receptor antagonists by peroxymonosulfate during water treatment: Kinetics, products, and toxicity evaluation [J]. Water Research, 2020, 185: 116278.
- [17] KUHN H J, BRASLAVSKY S E, SCHMIDT R. Chemical actinometry [J]. Pure and Applied Chemistry, 1989, 61(2): 187-210.
- [18] ZHANG R C, SUN P Z, BOYER T H, et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H₂O₂, and UV/PDS [J]. Environmental Science & Technology, 2015, 49(5): 3056-3066.
- [19] 李珂,刘振鸿,钱雅洁,等. 基于硫酸根自由基的高级氧化对头孢氨苄的降解特性 [J]. 环境工程学报, 2019, 13(1): 40-48. LI K, LIU Z H, QIAN Y J, et al. Cefalexin degradation by advanced oxidation process based on sulfate radical [J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 40-48(in Chinese).
- [20] CRITTENDEN J C, TRUSSELL R R, HAND D W, et al. MWH's water treatment [M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012.
- [21] LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate [J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5558-5562.
- [22] QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and chlorate formation [J]. Environmental Science & Technology, 2016, 50(2): 772-781.
- [23] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) [J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.
- [24] HUIE R E, CLIFTON C L, NETA P. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions [J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1991, 38(5): 477-481.
- [25] HERRMANN H, REESE A, ZELLNER R. Time-resolved UV/VIS diode array absorption spectroscopy of $SO_x^{-}(x=3, 4, 5)$ radical anions in aqueous solution [J]. Journal of Molecular Structure, 1995, 348: 183-186.
- [26] YU X Y, BAO Z C, BARKER J R. Free radical reactions involving Cl•, Cl₂•, and SO₄•, in the 248 nm photolysis of aqueous solutions containing S₂O₈²⁻ and Cl- [J]. The Journal of Physical Chemistry A, 2004, 108(2): 295-308.
- [27] KAMEL D, SIHEM A, HALIMA C, et al. Decolourization process of an azoïque dye (Congo red) by photochemical methods in homogeneous medium [J]. Desalination, 2009, 247(1/2/3): 412-422.
- [28] CRIQUET J, LEITNER N K V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis [J]. Chemosphere, 2009, 77(2): 194-200.
- [29] LIANG C J, LAI M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation [J]. Environmental Engineering Science, 2008, 25(7): 1071-1078.
- [30] YUAN R X, WANG Z H, HU Y, et al. Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification [J]. Chemosphere, 2014, 109: 106-112.
- [31] JAYSON G G, PARSONS B J, SWALLOW A J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1973, 69: 1597.
- [32] LIANG C J, WANG Z S, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C
 [J]. Science of the Total Environment, 2006, 370(2/3): 271-277.
- [33] ZUO Z H, CAI Z L, KATSUMURA Y, et al. Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants [J]. Radiation Physics and Chemistry, 1999, 55(1): 15-23.
- [34] STUMM W, MORGAN J J. Aquatic chemistry: Chemical equilibria and rates in natural waters/-3rd ed [M]. Wiley, 1996.
- [35] XIE P C, MA J, LIU W, et al. Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals [J]. Water Research, 2015, 69: 223-233.

- [36] RICKMAN K A, MEZYK S P. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water [J]. Chemosphere, 2010, 81(3): 359-365.
- [37] FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate [J]. Environmental Science & Technology, 2010, 44(16): 6423-6428.
- [38] LATCH D E, STENDER B L, PACKER J L, et al. Photochemical fate of pharmaceuticals in the environment: Cimetidine and ranitidine [J]. Environmental Science & Technology, 2003, 37(15): 3342-3350.
- [39] LIANG C J, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures [J]. Chemosphere, 2007, 66(1): 106-113.
- [40] DAS T N. Reactivity and role of SO5-- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation [J]. The Journal of Physical Chemistry A, 2001, 105(40): 9142-9155.
- [41] MÁRTIRE D O, ROSSO J A, BERTOLOTTI S, et al. Kinetic study of the reactions of chlorine atoms and Cl₂• radical anions in aqueous solutions. II. Toluene, benzoic acid, and chlorobenzene [J]. The Journal of Physical Chemistry A, 2001, 105(22): 5385-5392.
- [42] LARSON R A, ZEPP R G. Reactivity of the carbonate radical with aniline derivatives [J]. Environmental Toxicology and Chemistry, 1988, 7(4): 265-274.
- [43] LUO C W, JIANG J, MA J, et al. Oxidation of the odorous compound 2, 4, 6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways [J]. Water Research, 2016, 96: 12-21.
- [44] GARA P M D, BOSIO G N, GONZALEZ M C, et al. A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion [J]. Photochemical & Photobiological Sciences, 2009, 8(7): 992.
- [45] WESTERHOFF P, MEZYK S P, COOPER W J, et al. Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates [J]. Environmental Science & Technology, 2007, 41(13): 4640-4646.
- [46] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols [J]. Environmental Science & Technology, 2013, 47(11): 5864-5871.
- [47] FANG G D, GAO J, DIONYSIOU D D, et al. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs [J]. Environmental Science & Technology, 2013, 47(9): 4605-4611.