-
木犀草素(luteolin,LTL)是一种含有顺式二羟基结构的黄酮类化合物,广泛存在于植物、蔬菜和水果中,在废弃花生壳中具有较高的含量[1-2],花生壳作为一种常见的农业固体废弃物,通常被直接焚烧或者掩埋处理,从而导致资源浪费和环境污染[3]. LTL具有多种药理作用,如抗炎、抗癌、抗氧化等,对人体神经有一定的保护作用[4-6]. LTL的高医疗价值使其分离和提取具有重要意义. 硼亲和(boronate affinity,BA)材料是一种可以选择性地分离和富集顺式二羟基生物分子的功能材料,因硼酸配体可以在碱性溶液中与顺式二羟基形成稳定的共价五元或六元环状酯,而共价键可以在酸性溶液中可逆解离[7],被广泛应用于食品检测,生物分离等领域[8-10]. 但单个硼酸单体与含有顺式二羟基的化合物的结合强度相对较弱[11]. 因此,诸多学者在构建硼亲和功能化材料投入了相当大的努力[12-13].
由无机节点和有机配体组成的金属有机骨架材料(metal–organic frameworks,MOFs)具有高比表面积和可调孔径的特性,在分离领域具有广阔的前景[14-15]. 顾金楼课题组[16]通过金属配体片段共组装(MLFC)策略将3,5-二羧基苯硼酸作为配体片段引入了硼亲和功能组分,制备了MIL-100-B MOFs. 通过改变3,5-二羧基苯硼酸和1,3,5-苯三甲酸的配比调节MIL-100-B上硼酸的含量. UiO-66是一种典型的三维微孔金属有机骨架材料,以1,4-苯二甲酸(BDC)为有机配体,锆(Zr)为无机节点,具有优异的物理、化学和水热稳定性,其较大的比表面积也让UiO-66成为吸附分离材料研究热点之一[17-19].
本研究采用MLFC策略制备了硼亲和功能化UiO-66(UiO-66-BA)并用于对LTL的吸附分离. 引入与BDC结构相似的4-羧基苯硼酸(CPBA)作为硼亲和功能组分,与BDC作为混合有机配体. 研究改变CPBA/BDC的摩尔比对UiO-66-BA的晶体骨架结构和硼酸基团数量的影响. 结合场发射扫描电子显微镜(Field Emission Scanning Electron Microscope, FESEM)、X-射线粉末衍射图谱(X-ray diffraction, XRD)、Brunauer-Emmett-Teller (BET) 比表面积、孔容孔径和核磁共振等考查UiO-66-BA的理化性能,考察了溶液pH、初始浓度、吸附时间和吸附温度对UiO-66-BA吸附LTL性能的影响.
硼亲和功能化MOFs的制备及其吸附木犀草素性能研究
Construction of boronate affinity functionalized MOFs for the adsorption and separation of Luteolin
-
摘要: 本研究通过金属配体片段共组装(MLFC)策略引入4-羧基苯硼酸(CPBA)作为硼亲和功能成分,和1,4-对苯二甲酸(BDC)作为混合有机配体,制备了硼酸亲和功能化MOFs(UiO-66-BA). 研究了不同CPBA/BDC的摩尔比对UiO-66-BA框架结晶度和对木犀草素(LTL)吸附性能的影响. 结果表明,当CPBA的摩尔比大于CPBA/BDC总摩尔量的30%时,会导致UiO-66-BA吸附剂的框架结晶度降低,BET比表面积减小,吸附性能下降,再生性能较差. 适量CPBA的添加(摩尔比≤30%)有利于UiO-66-BA保持良好的晶体结构,提高对LTL的吸附性能和吸附剂的再生能力. CPBA的摩尔比为20%时制得的UiO-66-BA-2在pH = 8.5、温度为35℃时对LTL的最大吸附量达到42.509 mg·g−1,吸附过程更符合Langmuir等温吸附模型和准二级动力学模型,吸附再生结果表明,UiO-66-BA-2具有良好的可重用性,经5次吸附-解吸附后吸附量下降8.28%. 由于存在硼酸识别位点,UiO-66-BA-2相比于UiO-66具有更高的吸附容量以及更快的吸附效率,为吸附分离木犀草素提供了一种新的思路.
-
关键词:
- 木犀草素 /
- 金属有机框架(MOFs) /
- UiO-66 /
- 硼亲和 /
- 吸附
Abstract: In this study, the boronate affinity functionalized MOFs (UiO-66-BA) was prepared by introducing 4-carboxyphenyboronic (CPBA) acid as a functional component through the metal–ligand–fragment coassembly (MLFC) strategy. The framework crystallinity and Luteolin (LTL) adsorption properties of the MOFs with different molar ratios of CPBA/1,4-dicarboxybenzene (BDC) were studied. The results showed that when the molar proportion of CPBA was greater than 30% of the total molarity of CPBA/BDC, the frame crystallinity and the Brunauer-Emmett-Teller (BET) specific surface area of the UiO-66-BA adsorbent were reduced. The adsorption performance and the regeneration performance of the UiO-66-BA were poor. The addition of an appropriate amount of CPBA (≤ 30%) was conducive to the UiO-66-BA to maintain a good crystal structure. The adsorption performance and regenerative capacity of the MOFs were improved. Among them, the equilibrium adsorption capacity of UiO-66-BA-2 reached 42.509 mg·g−1 when pH = 8.5 and the temperature was 35℃. The adsorption process of UiO-66-BA-2 was well fitted by the Langmuir equation and quasi-second-order kinetic equation. The results of regeneration experiment showed that UiO-66-BA-2 had excellent reusability and the adsorption amount drops by 8.28% after 5 adsorption-desorption. Compared with UiO-66, UiO-66-BA-2 has enhanced the binding properties to LTL due to the introduction of boronic acid, which provides a new idea for the adsorption and separation of LTL.-
Key words:
- luteolin /
- metal–organic frameworks (MOFs) /
- UiO-66 /
- boronate affinity /
- adsorption
-
表 1 不同样品所用原材料的质量
Table 1. Mass of the raw materials used in the different samples
序号
No.ZrCl4/g BDC/g CPBA/g ZrCl4:BDC:CPBA摩尔比
(ZrCl4:BDC:CPBA)样品
Samples1 0.699 0.498 0 1:1:0 UiO-66 2 0.699 0.448 0.050 1:0.9:0.1 UiO-66-BA-1 3 0.699 0.398 0.099 1:0.8:0.2 UiO-66-BA-2 4 0.699 0.349 0.149 1:0.7:0.3 UiO-66-BA-3 5 0.699 0.298 0.199 1:0.6:0.4 UiO-66-BA-4 6 0.699 0.249 0.249 1:0.5:0.5 UiO-66-BA-5 表 2 样品的BET比表面积和BJH孔结构参数
Table 2. BET surface area and BJH porous structure parameters of the samples
样品
SamplesBET比表面积/ (m2·g−1)
SABET总孔容/(m3·g−1)
Total pore volume平均孔径/nm
Mean pore diameterUiO-66 734.35 0.39 1.93 UiO-66-BA-1 728.01 0.37 1.82 UiO-66-BA-2 743.59 0.38 1.82 UiO-66-BA-3 727.42 0.37 1.84 UiO-66-BA-4 643.74 0.38 2.13 UiO-66-BA-5 624.69 0.30 1.72 表 3 吸附等温线拟合参数
Table 3. Isotherm parameters for adsorption
温度/℃
T吸附剂
AdsorbentLangmuir Freundlich Qm/(mg·g−1) KL/(L·mg−1) RL R2 KF/(L·mg−1) 1/n R2 25 UiO-66 33.075 0.114 0.081 0.975 8.114 0.315 0.912 UiO-66-BA-2 40.397 0.162 0.058 0.984 11.070 0.308 0.907 UiO-66-BA-4 28.808 0.045 0.182 0.994 3.540 0.432 0.947 35 UiO-66 36.363 0.123 0.075 0.959 8.962 0.319 0.865 UiO-66-BA-2 42.509 0.209 0.046 0.987 13.226 0.282 0.899 UiO-66-BA-4 33.432 0.051 0.164 0.996 4.373 0.426 0.951 表 4 UiO-66、UiO-66-BA-2和UiO-66-BA-4吸附动力学拟合参数
Table 4. Correlation parameters of UiO-66、UiO-66-BA-2 and UiO-66-BA-4 adsorption kinetics
吸附剂
Adsorbent实验值/(mg·g−1)
Qe, exp准一级动力学模型
Quasi-first-order dynamic model准二级动力学模型
Quasi-second-order dynamic modelQe, cal/
(mg·g−1)k1/
(L min−1)R2 Qe, cal/
(mg·g−1)k2/
(g·mg−1·min−1)h R2 UiO-66 15.213 14.769 0.0303 0.975 16.698 0.0022 0.613 0.987 UiO-66-BA-2 17.948 17.259 0.0302 0.974 19.675 0.0019 0.736 0.987 UiO-66-BA-4 11.472 10.359 0.0200 0.917 12.097 0.0020 0.293 0.960 -
[1] LIU S C, LU G H, OU H X, et al. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin [J]. Journal of Colloid and Interface Science, 2021, 601: 782-792. doi: 10.1016/j.jcis.2021.05.165 [2] XIE Y, ZHANG T, CHEN Y L, et al. Fabrication of core-shell magnetic covalent organic frameworks composites and their application for highly sensitive detection of luteolin [J]. Talanta, 2020, 213: 120843. doi: 10.1016/j.talanta.2020.120843 [3] DEAN L L. Extracts of peanut skins as a source of bioactive compounds: Methodology and applications [J]. Applied Sciences, 2020, 10(23): 8546. doi: 10.3390/app10238546 [4] JIANG Z B, WANG W J, XU C, et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer [J]. Cancer Letters, 2021, 515: 36-48. doi: 10.1016/j.canlet.2021.05.019 [5] ATTIQ A, JALIL J, HUSAIN K, et al. Luteolin and apigenin derived glycosides from Alphonsea elliptica abrogate LPS-induced inflammatory responses in human plasma [J]. Journal of Ethnopharmacology, 2021, 275: 114120. doi: 10.1016/j.jep.2021.114120 [6] DONG H, YANG X C, HE J P, et al. Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese(ii) and its inhibition kinetics on xanthine oxidase [J]. RSC Advances, 2017, 7(84): 53385-53395. doi: 10.1039/C7RA11036G [7] GUO B L, TONG Y K, ZHANG B Y, et al. Double affinity based molecularly imprinted polymers for selective extraction of luteolin: A combination of synergistic metal chelating and boronate affinity [J]. Microchemical Journal, 2021, 160: 105670. doi: 10.1016/j.microc.2020.105670 [8] LI D J, WANG N, WANG F F, et al. Boronate affinity-based surface-imprinted quantum dots as novel fluorescent nanosensors for the rapid and efficient detection of rutin [J]. Analytical Methods, 2019, 11(25): 3212-3220. doi: 10.1039/C9AY00787C [9] MOMPÓ-ROSELLÓ Ó, VERGARA-BARBERÁN M, LERMA-GARCÍA M J, et al. Boronate affinity sorbents based on thiol-functionalized polysiloxane-polymethacrylate composite materials in syringe format for selective extraction of glycopeptides [J]. Microchemical Journal, 2021, 164: 106018. doi: 10.1016/j.microc.2021.106018 [10] EKTIRICI S, GÖKTÜRK I, YıLMAZ F, et al. Selective recognition of nucleosides by boronate affinity organic-inorganic hybrid monolithic column [J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1162: 122477. doi: 10.1016/j.jchromb.2020.122477 [11] WANG H Y, BIE Z J, LÜ C, et al. Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins [J]. Chemical Science, 2013, 4(11): 4298. doi: 10.1039/c3sc51623g [12] KIP Ç, DEMIR M C, YıLDıRıM D, et al. Highly porous, molecularly imprinted core–shell type boronate affinity sorbent with a large surface area for enrichment and detection of sialic acid isomers [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(7): 2806-2817. doi: 10.1007/s10904-021-01890-w [13] CHEN Y, ZHAO W M, QING C, et al. Boronate affinity mesoporous silica nanoparticle based selective enrichment for highly efficient analysis of ginsenosides [J]. Analytical Methods, 2019, 11(44): 5673-5679. doi: 10.1039/C9AY01913H [14] LIU C, WANG J, WAN J J, et al. MOF-on-MOF hybrids: Synthesis and applications [J]. Coordination Chemistry Reviews, 2021, 432: 213743. doi: 10.1016/j.ccr.2020.213743 [15] HONG D H, SHIM H S, HA J S, et al. MOF-on-MOF architectures: Applications in separation, catalysis, and sensing [J]. Bulletin of the Korean Chemical Society, 2021, 42(7): 956-969. doi: 10.1002/bkcs.12335 [16] ZHU X Y, GU J L, ZHU J Y, et al. Metal-organic frameworks with boronic acid suspended and their implication forcis-diol moieties binding [J]. Advanced Functional Materials, 2015, 25(25): 3847-3854. doi: 10.1002/adfm.201500587 [17] BAI Y, DOU Y B, XIE L H, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. doi: 10.1039/C5CS00837A [18] CHENG Y F, LAI O M, TAN C P, et al. Proline-modified UIO-66 as nanocarriers to enhance Candida rugosa lipase catalytic activity and stability for electrochemical detection of nitrofen [J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4146-4155. [19] ZHUANG S T, CHENG R, WANG J L. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks [J]. Chemical Engineering Journal, 2019, 359: 354-362. doi: 10.1016/j.cej.2018.11.150 [20] ERKARTAL M, SEN U. Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 787-795. [21] EDIATI R, AULIA W, NIKMATIN B A, et al. Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution [J]. Materials Today Chemistry, 2021, 21: 100533. doi: 10.1016/j.mtchem.2021.100533 [22] REGO R M, SRIRAM G, AJEYA K V, et al. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification [J]. Journal of Hazardous Materials, 2021, 416: 125941. doi: 10.1016/j.jhazmat.2021.125941 [23] MOHAMMADI A A, ALINEJAD A, KAMAREHIE B, et al. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions [J]. International Journal of Environmental Science and Technology, 2017, 14(9): 1959-1968. doi: 10.1007/s13762-017-1289-z [24] CHAVAN S M, SHEARER G C, SVELLE S, et al. Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology [J]. Inorganic Chemistry, 2014, 53(18): 9509-9515. doi: 10.1021/ic500607a [25] WANG Y C, LUO J, LIU X Y. Fluorescent molecularly imprinted nanoparticles with boronate affinity for selective glycoprotein detection [J]. Journal of Materials Chemistry B, 2020, 8(30): 6469-6480. doi: 10.1039/C9TB02648G [26] 曹小聪, 熊曾恒, 张鸣珊, 等. 锆基金属有机框架材料对酸性水中甲萘威的吸附 [J]. 环境化学, 2021, 40(11): 3627-3630. CAO X C, XIONG Z H, ZHANG M S, et al. Generated zirconium based metal organic framework materials for carbaryl adsorption in acidic aqueous solutions [J]. Environmental Chemistry, 2021, 40(11): 3627-3630(in Chinese).
[27] 杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789. DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese).
[28] ZHAO Y F, WANG D F, WEI W, et al. Effective adsorption of mercury by Zr(IV)-based metal-organic frameworks of UiO-66-NH2 from aqueous solution [J]. Environmental Science and Pollution Research, 2021, 28(6): 7068-7075. doi: 10.1007/s11356-020-11080-9 [29] AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks [J]. Journal of Hazardous Materials, 2016, 301: 259-276. doi: 10.1016/j.jhazmat.2015.08.045 [30] YAO X, ZHANG S F, QIAN L W, et al. Dendrimer-assisted boronate affinity cellulose foams for the efficient and selective separation of glycoproteins [J]. Carbohydrate Polymers, 2021, 265: 118082. doi: 10.1016/j.carbpol.2021.118082