硼亲和功能化MOFs的制备及其吸附木犀草素性能研究

周东升, 欧红香, 李凯佳, 孙伟凯. 硼亲和功能化MOFs的制备及其吸附木犀草素性能研究[J]. 环境化学, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702
引用本文: 周东升, 欧红香, 李凯佳, 孙伟凯. 硼亲和功能化MOFs的制备及其吸附木犀草素性能研究[J]. 环境化学, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702
ZHOU Dongsheng, OU Hongxiang, LI Kaijia, SUN Weikai. Construction of boronate affinity functionalized MOFs for the adsorption and separation of Luteolin[J]. Environmental Chemistry, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702
Citation: ZHOU Dongsheng, OU Hongxiang, LI Kaijia, SUN Weikai. Construction of boronate affinity functionalized MOFs for the adsorption and separation of Luteolin[J]. Environmental Chemistry, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702

硼亲和功能化MOFs的制备及其吸附木犀草素性能研究

    通讯作者: Tel:13915836386,E-mail:ouhongxiang@cczu.edu.cn
  • 基金项目:
    国家自然科学基金(21878026)资助

Construction of boronate affinity functionalized MOFs for the adsorption and separation of Luteolin

    Corresponding author: OU Hongxiang, ouhongxiang@cczu.edu.cn
  • Fund Project: the National Natural Science Foundation of China (21878026)
  • 摘要: 本研究通过金属配体片段共组装(MLFC)策略引入4-羧基苯硼酸(CPBA)作为硼亲和功能成分,和1,4-对苯二甲酸(BDC)作为混合有机配体,制备了硼酸亲和功能化MOFs(UiO-66-BA). 研究了不同CPBA/BDC的摩尔比对UiO-66-BA框架结晶度和对木犀草素(LTL)吸附性能的影响. 结果表明,当CPBA的摩尔比大于CPBA/BDC总摩尔量的30%时,会导致UiO-66-BA吸附剂的框架结晶度降低,BET比表面积减小,吸附性能下降,再生性能较差. 适量CPBA的添加(摩尔比≤30%)有利于UiO-66-BA保持良好的晶体结构,提高对LTL的吸附性能和吸附剂的再生能力. CPBA的摩尔比为20%时制得的UiO-66-BA-2在pH = 8.5、温度为35℃时对LTL的最大吸附量达到42.509 mg·g−1,吸附过程更符合Langmuir等温吸附模型和准二级动力学模型,吸附再生结果表明,UiO-66-BA-2具有良好的可重用性,经5次吸附-解吸附后吸附量下降8.28%. 由于存在硼酸识别位点,UiO-66-BA-2相比于UiO-66具有更高的吸附容量以及更快的吸附效率,为吸附分离木犀草素提供了一种新的思路.
  • 目前,我国的能源结构仍然是以煤炭为主[1]。煤炭燃烧会产生大量温室气体破坏环境。煤炭的清洁高效利用是未来发展的必然趋势。煤气化是煤炭清洁高效利用的核心技术之一[2],也是现代煤化工产业的基础。但煤气化过程中会产生大量的废渣和高盐废水。目前,气化渣的处理方式主要为堆存和填埋,尚未实现大规模综合利用,造成了严重的环境污染和土地资源浪费[2]。高盐废水则主要是通过闪蒸去除水分后,富集盐分再统一固化填埋处置。这种处理方式能耗高、成本大,还容易产生二次污染。因此,实现煤气化渣和高盐废水的高效安全处置与资源化利用是煤化工产业可持续发展必须要解决的关键问题。

    目前,较多学者对煤气化渣进行了深入研究。赵永彬等[3]研究了宁煤集团3种煤气化炉粗渣的化学组成及矿物相构成,发现其化学组成主要包括SiO2、Al2O3、CaO、Fe2O3。其中,矿物组成主要以非晶态玻璃体和晶相矿物为主;非晶态玻璃体的含量达到67%以上,晶相则以石英、莫来石、方铁矿和方解石为主。煤气化渣分为细渣和粗渣。粗渣具有较高的火山灰性,可作为一种辅助性胶凝材料应用于水泥混凝土中[4-7]。冀文明等[8]以矿渣微粉为胶凝材料的主要成分,将CaSO4、水玻璃、NaOH、CaCl2制成复合激发剂,得到新型复合激发矿渣胶凝材料的最优配比,复合激发剂对矿渣的火山灰性具有一定的激发效果。吴波波等[9]以低品位粉煤灰混凝土为研究对象,加入石灰、硅酸盐水泥、水玻璃激发粉煤灰,发现石灰与激发剂共同作用,可加速粉煤灰地质聚合反应,促使N-A-S-H和C-A-S-H、C-S-H等凝胶生成,从而提高混凝土强度。此外,煤化工产生的高盐废水由有机物和无机盐2大类组成,有机物种类多,同时还含有氰化物、芳香族及杂环化合物等有毒物质且处理困难[10]。高盐废水COD较高,一般在500~5 000 mg·L−1;其次,高盐废水中盐分质量浓度高,通常在3 000~15 000 mg·L−1,主要含有K+、Na+、Mg2+、Ca2+等阳离子,CO32−、NO3、Cl、SO42−等阴离子。其中,Na+、Cl和SO42−占到无机离子质量分数的90%以上[11]。KABOOSI等[12]曾尝试将工业废水作为混凝土的拌合水,以节约水资源。目前,利用工业废弃物制备胶凝材料是研究的热点,但多利用粉煤灰及矿渣制备胶凝材料。这是由于煤气化渣活性低等原因,故导致针对煤气化渣直接制备胶凝材料的研究较少。

    本研究以煤气化渣为原料,利用高盐废水、水玻璃及石灰复合激发剂,制备化学激发胶凝材料;研究石灰掺量、水玻璃模数与掺量及高盐废水掺量,对煤气化渣胶凝材料力学性能的影响;探讨胶凝材料水化产物的作用机制,并讨论其对环境的安全性。拟为煤化工废渣、废水的综合利用探索一条新途径。

    所用煤气化渣为宁煤集团提供的粗渣,将其烘干后,用球磨机粉磨,比表面积为413 m2·kg−1、平均粒径为21.58 µm,其化学组成见表1。所用高盐废水也来自宁煤集团,含有高浓度的氯盐、硫酸盐、有机物,重金属质量浓度低,为淡黄色液体,其水质见表2。高盐废水中重金属的质量浓度见表3。水玻璃(Na2SiO3)利用NaOH调整其到所需模数,所用氢氧化钠(NaOH)为分析纯,生石灰(CaO)纯度大于95%。

    表 1  煤气化渣的化学成分组成
    Table 1.  Chemical composition of coal gasification slag %
    SiO2Al2O3CaOFe2O3MgONa2OK2OTiO2SO3LOI
    49.8517.413.439.983.181.951.680.830.652.39
     | Show Table
    DownLoad: CSV
    表 2  高盐废水水质
    Table 2.  High-salt wastewater quality mg·L−1
    COD硫酸盐氯盐磷酸盐总磷硝氮亚硝氮氨氮总氨
    13 153.507 650.8024 060.8021.1025.961 145.0092.3425.581 283.00
     | Show Table
    DownLoad: CSV
    表 3  高盐废水中重金属的质量浓度
    Table 3.  Mass concentration of heavy metals in high-salt wastewater mg·L−1
    CrNiCuZnAsCdPb
    0.120.330.470.170.560.02
     | Show Table
    DownLoad: CSV

    确定基准配合比为:煤气化渣100%、水玻璃掺量9%、水玻璃模数1.2、石灰掺量11%、高盐废水掺量25%。在此基础上,改变石灰掺量分别为0、7%、9%、11%、13%、15%、17%,编号为A1~A7;水玻璃模数分别为0.6、0.8、1.0、1.2、1.4、1.6、1.8,编号为B1~B7;水玻璃掺量分别为0、5%、7%、9%、11%、13%、15%,编号为C1~C7;高盐废水掺量分别为0、25%、50%、75%、100%,编号为D1~D5。按配合比称取相应的原料混合,成型尺寸为20×20×20 mm的6联试块,以研究不同因素对试样性能的影响。试块在80 ℃蒸汽养护条件下养护24 h后拆模,然后置于温度为(20±3) ℃、湿度为90%以上的养护箱中,养护3、7、28 d后进行抗压强度等测试。

    根据《建筑砂浆基本性能试验方法标准》(JGJ/T70-2009)[13],在3、7、28 d时测量立方体样品的抗压强度,每个龄期压碎3个样品,并取平均值为抗压强度。通过X射线衍射仪(D-MAX/2500PC型,日本理学公司)对养护28 d试样的物相组成进行分析。采用扫描电子显微镜(Quanta 200,美国FEI公司)对养护28 d试样的微观形貌进行分析。采用MIP(Auto pore IV 9500,美国麦克公司)测定试样的孔分布和总孔隙率。重金属浸出试验按照国家标准《固体废弃物浸出毒性浸出方法水平振荡法》(HJ 557-2010)[14]进行,采用ICP-AES(OPTIMA,美国珀金埃尔默公司)测定滤液中重金属的质量浓度。

    1)石灰掺量对胶凝材料强度的影响。石灰掺量对试样抗压强度的影响见图1。由图1可以看出,随石灰掺量增加,试样抗压强度呈先增大后减小的趋势。在石灰掺量为15%时,试样28 d抗压强度达到23.8 MPa,比不加石灰的A1组,抗压强度提高了930%。气化渣中CaO较少,Ca2+还不足以满足其需求,只加入水玻璃仅能提高气化渣中活性硅铝的溶解,而无法形成较多的水化产物,因此强度较低。加入石灰后,为水化体系补充了Ca2+,在水玻璃-石灰-高盐废水的复合激发下,使气化渣在钠-钙-硫-氯共同作用下,形成的强碱环境能使气化渣活性物质溶出,加速活化,又提供了形成胶凝材料必要的条件Ca2+。通过共同激发所得的高活性小分子SiO2和Al2O3,与Ca( OH)2、SO42−及Cl,生成水化硅酸钙、钙矾石及水化氯铝酸钙等水化产物,进而提高胶凝材料强度。当石灰掺量较低时,其水化生成的Ca(OH)2,虽然对气化渣颗粒内部的Al-O键和Si-O键造成一定破坏,生成活性Al2O3和SiO2,反应生成少量类沸石水化产物[15]。但是,产生的Ca(OH)2较少,且大部分气化渣还处于未活化的状态,所以石灰掺量较少时,试样强度较低。随石灰掺量提高,Ca(OH)2生成量增加,提高了OH的浓度,使得较多气化渣颗粒释放活性成分,因此试样强度提高。直至石灰掺量在15%时,强度达到最大值。随着石灰掺量的增加,生成了过量的Ca(OH)2,然而Ca(OH)2具有膨胀性,标准养护条件下导致试件发生膨胀[16]。因此,随着石灰掺量从15%增加到17%,试样强度反而下降。

    图 1  石灰掺量对煤气化渣胶凝材料抗压强度的影响
    Figure 1.  Effect of lime content on the compressive strength of coal gasification slag cementitious material

    2)水玻璃模数对胶凝材料强度的影响。图2为水玻璃模数对试样抗压强度的影响,可以看出,随水玻璃模数的增加,抗压强度成先增大后减小,再增大后减小的趋势。水玻璃模数为1.4时,试样28 d抗压强度可达到26.5 MPa。随水玻璃模数的升高,Na2O质量分数降低,SiO2质量分数增加。其中,Na2O质量分数在反应过程中有2方面作用:一方面,激发剂中的Na2O的质量分数越高,pH值越大,气化渣释放出硅、铝四面单体数量越多,有利于发生生成凝胶的聚合反应,使得体系抗压强度提高;另一方面,当激发剂中碱过多时,Na+会在气化渣颗粒表面发生钝化反应,阻碍原材料的进一步溶解,导致样品强度降低[17]。激发剂中的SiO2质量分数,在反应过程中也有2方面作用:一方面,由于气化渣中Si的溶解速度较慢,激发剂掺入的SiO2能解决反应初期,灰体难以释放出足够的[SiO4]4−四面体,参与后续反应的问题,使得体系的聚合反应更充分,有效提高胶凝材料的早期强度[18];另一方面,增加激发剂中SiO2的质量分数,会导致激发剂中SiO2的聚合度大大提高,降低SiO2的反应活性,同时部分多余的SiO2,将在反应后期发生水解,生成无定型硅酸以及碱类物质,导致材料的泛碱现象[19],进而影响胶凝材料抗压强度的发展。因此,当水玻璃掺量一定时,水玻璃最佳模数值为1.4。这能够使得体系中Na2O和SiO2的质量分数对试样强度发展作用最优,制得强度最优的胶凝材料。

    图 2  水玻璃模数对煤气化渣胶凝材料抗压强度的影响
    Figure 2.  Effect of sodium silicate modulus on the compressive strength of coal gasification slag cementitious material

    3)水玻璃掺量对胶凝材料强度的影响。图3为水玻璃掺量对试样抗压强度的影响,可以看出,随水玻璃掺量的增加,试样抗压强度成先增大后减小的趋势。水玻璃掺量为13%时,试样28 d抗压强度达到27 MPa,相对于不加水玻璃的C1组强度提高了260%。水玻璃的引入,促进了激发剂对煤气化渣的激发效果。仅掺石灰与高盐废水使浆体中碱度有限,大量气化渣中活性硅铝没有溶出。水玻璃可水解生成NaOH,使液相的OH增多。同时,水玻璃还能水解生成硅胶,这些硅胶可与Ca2+反应生成C-S-H凝胶[20],进而加速气化渣与Ca(OH)2的反应,生成较多的水化产物,使得试样更加密实。不加水玻璃的C1试样,28 d强度较7 d强度增长了10.3%;加入水玻璃掺量为9%时,试样28 d强度较7 d强度增长了34.2%。水玻璃的加入,使得试样后期强度发展快。在反应初期,气化渣玻璃体中的Al-O、Si-O键发生断裂,[AlO4]5−、[SiO4]4−四面体被快速溶出形成低聚体,会在低于150 ℃的条件下发生缩聚反应,生成-Si-O-Al-O-为骨架的三维网络结构的无机高分子地质聚合物,硬化后发挥作用提高强度。随着养护龄期的增长,当试样养护到28 d时,气化渣中的氧化物原料大部分被溶解,随着解聚-缩聚反应的发生,生成了大量具有胶结作用的凝胶物质(N-A-S-H),使试样的28 d抗压强度发展较快。

    图 3  水玻璃掺量对煤气化渣胶凝材料抗压强度的影响
    Figure 3.  Effect of sodium silicate content on the compressive strength of coal gasification slag cementitious material

    4)高盐废水掺量对胶凝材料强度的影响。高盐废水掺量对试样抗压强度的影响见图4,可以看出,随高盐废水掺量的增加,试样抗压强度有不同程度的提高。当高盐废水掺量从0增加至100%时,试样28 d抗压强度,由11.6 MPa提高至38.8 MPa,提高了234%。高盐废水中含有大量SO42−、Cl,随着高盐废水掺量的增加,SO42−浓度不断增加。一方面,SO42−在Ca2+作用下,与夹杂在颗粒表面的凝胶,及溶解于液相中的活性Al2O3,反应生成水化硫铝酸钙,即钙矾石(AFt)[21]。钙矾石具有一定的膨胀性,可以填补结构空隙,使试样密实度提高。另一方面,废水中的SO42−,能够与Na+反应生成Na2SO4,与石灰产生的Ca(OH)2反应生成NaOH,消耗其中的Ca2+,增加体系的碱度,这有助于活性SiO2、Al2O3的溶出,加速水化反应进程,从而提高试样强度[20]。其次,高盐废水中的Cl与Ca2+,有较强扩散能力,能够穿过气化渣颗粒表面的水化层,与内部被激发后释放的活性Al2O3反应,生成水化氯铝酸钙[22];Cl还可以与Ca(OH)2反应,生成氧氯化钙复盐,不溶于水,使得试样中固相增多,从而试样的抗压强度得到了提高。因此,随高盐废水掺量增加,试样强度不断增加,高盐废水有利于激发煤气化渣胶凝材料的活性。

    图 4  高盐废水掺量对煤气化渣胶凝材料抗压强度的影响
    Figure 4.  Effect of high salt wastewater content on the compressive strength of coal gasification slag cementitious material

    图5为复合激发剂激发煤气化渣水化28 d的XRD图。由图5(a)可以看出,加石灰的D2中,有C-S-H和N-A-S-H的特征峰的出现。这与刘江等[23]的研究结果一致。不加石灰的A1中,C-S-H的特征峰几乎没有,因此,试样强度最低。由图5(b)可以看出,加入水玻璃的D2试样,与不加水玻璃的C1试样相比,C-S-H和N-A-S-H的特征峰增强。不加水玻璃的C1试样,有Ca(OH)2与水化氯铝酸钙(3CaO·Al2O3·CaCl2·10H2O)的特征峰出现。D2试样中无水化氯铝酸钙的特征峰出现。这可能是由于水玻璃的加入,使胶凝材料中形成很多的N-A-S-H,消耗了活性Al2O3。因此,活性Al2O3剩余量少,生成的水化氯铝酸钙的量就变少。首先,水玻璃中的Na2O为体系提供了更多的OH,使硅铝玻璃体迅速溶解,产生大量[SiO4]4−、[AlO4]5−,使水化产物增多。其次,水玻璃中SiO2可降低水化产物的钙硅比,使水化产物的聚合度升高,体系的后期强度明显增大。此外,不加水玻璃的C1试样,生成了过量的Ca(OH)2,导致试样体积膨胀,强度降低。C1试样中没有出现氧氯化钙复盐的特征峰。这可能是,氯离子浓度低,因此其生成量少。由图5(c)可以看出,加高盐废水的D2试样,相比于不加高盐废水的D1试样,C-S-H特征峰增强。高盐废水的加入,促进了水化反应的进行,使水化产物种类增加,复合激发剂激发效果明显。邱轶兵等[21]发现,水化产物中有一定量的钙矾石,但图5(c)中没有发现钙矾石的衍射峰。这可能是由于高盐废水中硫酸根离子浓度低,故导致钙矾石的生成量较少。此外,加入高盐废水的D2试样中,有NaCl的特征峰出现,氯离子在胶凝材料中会发生迁移,这可能会对胶凝材料的耐久性产生不利影响,后续研究应考虑胶凝材料的抗冻融性等。综上,煤气化渣在复合激发剂作用下,生成较多的Ca(OH)2参与反应,促进煤气化渣中的Si-O和Al-O发生解聚-缩聚反应,形成化学激发胶凝材料。其中,生成C-S-H、N-A-S-H、水化氯铝酸钙等产物,这些产物胶结在一起,有利于提高试样结构的密实度。

    图 5  复合激发剂激发煤气化渣水化28 d的XRD图
    Figure 5.  XRD diagram of 28 d hydration of coal gasification slag activated by composite activator

    为进一步分析复合激发剂对气化渣激发机理,分别对A1、C1、D1、D2试样的28 d水化产物进行微观分析,结果如图6所示。从图6(a)、图6(b)、图6(d)可以看出,D2试样中有较多的水化产物,堆积在被激发的气化渣颗粒表面以及颗粒间,有絮状C-S-H及网状N-A-S-H等凝胶生成。相比于A1、C1试样,D2试样中水化产物更加密集且孔隙较少,A1、C1中有较多的气化渣颗粒未被激发。D2中水玻璃水解后生成OH,使气化渣中活性硅铝溶出。并且,水玻璃为体系提供了较多的活性SiO2,使水化产物聚合度提高,生成了较多的水化产物,使得结构更加密实。C1中未加水玻璃,气化渣中活性物质溶出较少,没有足够的SiO2参与水化反应,使得水化产物聚合度低,且生成量较少,导致试样强度较低。因此,水玻璃的加入,可明显增加水化产物种类及数量,进而提高复合激发剂对煤气化渣的激发效果。

    图 6  复合激发剂激发煤气化渣28 d水化产物的SEM图
    Figure 6.  SEM images of 28 d hydration products of coal gasification slag activated by composite activator

    此外,从图6(c)、图6(d)中可以看出,D2试样中有少量针棒状的钙矾石产生,水化产物之间黏结紧,结构密实度较好。相比于D1,加入了高盐废水的D2试样,废水中SO42−、Cl,使气化渣中更多的活性物质溶出,促进水化产物的生成。并且,生成的钙矾石等产物,能够填充结构中的孔隙,使试样密实度提高。

    图7为复合激发剂激发煤气化渣水化28 d孔结构的测试结果。由图7可以看出,加水玻璃的D2试样,孔径分布的峰值明显向孔径小的方向移动,且总孔隙率由不加水玻璃的C1试样35.6%,降低至22.1%。水玻璃中的Na2O水解后,产生的OH能够与水及CaO反应生成Ca(OH)2,提高体系的碱度,促进了煤气化渣中活性硅铝的溶出。生成较多的C-S-H、N-A-S-H等物质,可填充于试样的孔结构,进而提高其力学性能。不加高盐废水的D1试样,孔径分布明显向孔径大的方向移动,且孔隙率相比于加高盐废水的D2有所提高。不加高盐废水的试样中没有SO42−及Cl的作用。因此,水化产物生成量少,试样孔径大、孔隙率高。这导致试样结构不够密实,强度较低。A1试样的孔隙率最高,强度最低。

    图 7  复合激发剂激发煤气化渣水化28 d孔结构
    Figure 7.  28 d pore structure of coal gasification slag hydration activated by composite activator

    对不同高盐废水掺量下,制备的煤气化渣胶凝材料试样(D1、D3、D5),进行了浸出毒性检测。通过判断其是否满足《危险废物鉴别标准浸出毒性鉴别》(GB 5085.3-2007)[24]中规定的限值,来判断高盐废水加入煤气化渣胶凝材料中,对环境有无污染。各试样重金属的毒性浸出结果如表4所示。

    表 4  各试样重金属的毒性浸出
    Table 4.  Toxic leaching of heavy metals for each sample mg·L−1
    高盐废水掺量CrNiCuZnAsCdPb
    00.0080.0240.0110.0180.0060.013
    50%0.0080.0250.0130.0280.0050.019
    100%0.0080.0270.0140.0310.0040.033
     | Show Table
    DownLoad: CSV

    国家标准中规定,Cr、Ni、Cu、Zn、As、Cd、Pb的浸出限值,分别不能高于5、5、100、100、5、1、5 mg·L−1。由表4可以看出,各试样中各重金属元素浸出浓度,远低于标准中的限值。利用高盐废水制备煤气化渣胶凝材料的浸出液,与原废水相比,Cr、Ni、Cu、Zn、As、Cd质量浓度均降低,而Pb质量浓度有所增加。随高盐废水掺量的增加,Ni、Cu、Zn、As、Pb浸出浓度增加,Cd浸出浓度降低,Cr的浸出浓度不变。利用复合激发剂激发煤气化渣制备的胶凝材料,对高盐废水中的重金属有一定的固化作用。因此,各元素浸出浓度得到降低。Pb浸出浓度增加可能是在激发剂作用下,煤气化渣中的活性物质释放的同时,Pb元素被释放出来,因此,其浸出浓度增加。随高盐废水掺量增加,胶凝材料中的重金属元素引入的就越多,因此,Ni、Cu、Zn、As、Pb浸出浓度增加。Cd浸出浓度降低,Cr的浸出浓度不变。这说明,在复合激发剂作用下,胶凝材料对Cd、Cr元素的固化效果好。此外,高盐废水中还存在一些铵盐,在碱性环境下会生成氨气,后续研究应考虑挥发出的氨会对大气产生的二次污染。综上所述,利用复合激发剂激发煤气化渣制备的胶凝材料,对高盐废水中的重金属元素,有一定的固化作用,且所制备的胶凝材料浸出毒性均低于国家标准中的限值。

    1)复合激发剂中石灰掺量、水玻璃模数与掺量及高盐废水掺量,对煤气化渣胶凝材料的抗压强度,均有一定的影响。其中,当高盐废水掺量为100%时,试样的28 d抗压强度,最高可达38.8 MPa。

    2)水玻璃中的Na2O为体系提供了OH,使煤气化渣中活性物质溶出,产生大量[SiO4]4−、[AlO4]5−,使水化产物增多;水玻璃中的SiO2可降低水化产物的钙硅比,硅氧四面体链变长,提高产物的聚合度,生成较多C-S-H、N-A-S-H等水化产物,使试样结构更加密实,体系的后期强度明显增大。

    3)复合激发剂对煤气化渣激发效果显著。这主要因为激发剂提供了较多的SO42−、Cl及OH,使气化渣活性被激发,并且引入Ca2+,促进Ca(OH)2、C-S-H、N-A-S-H、钙矾石和水化氯铝酸钙等物质的生成,使试样孔隙率降低,故本研究所制备的胶凝材料能固化高盐废水中的部分重金属。

  • 图 1  FESEM图

    Figure 1.  FESEM images of UiO-66(a), UiO-66-BA-1(b), UiO-66-BA-2(c), UiO-66-BA-3(d), UiO-66-BA-4(e) and UiO-66-BA-5(f)

    图 2  UiO-66、UiO-66-BA-1、UiO-66-BA-2、UiO-66-BA-3、UiO-66-BA-4和UiO-66-BA-5的XRD图

    Figure 2.  XRD of UiO-66、UiO-66-BA-1、UiO-66-BA-2、UiO-66-BA-3、UiO-66-BA-4 and UiO-66-BA-5

    图 3  样品的N2吸附-脱附曲线(a);样品的BJH孔径分布图(b)

    Figure 3.  N2 adsorption–desorption isotherms of the samples(a); BJH pore size distributions of the samples(b)

    图 4  BDC和CPBA的1H NMR图谱(a)和(b);样品的1H NMR图谱(c)和(d)

    Figure 4.  1H NMR spectra of CPBA and BDC(a and b); 1H NMR spectra of the samples(c and d)

    图 5  溶液pH对LTL吸附效果的影响

    Figure 5.  Effect of pH on the adsorption of LTL

    图 6  吸附剂在25℃(a)和35℃(b)下的吸附等温线拟合曲线

    Figure 6.  Adsorption isotherms fitting curves for adsorbents at 25℃(a) and 35℃(b)

    图 7  UiO-66、UiO-66-BA-2和UiO-66-BA-4吸附动力学拟合曲线

    Figure 7.  Curve fitting of UiO-66、UiO-66-BA-2 and UiO-66-BA-4 adsorption kinetics

    图 8  UiO-66、UiO-66-BA-2和UiO-66-BA-4的再生实验

    Figure 8.  Regeneration of UiO-66、UiO-66-BA-2 and UiO-66-BA-4

    图 9  UiO-66和UiO-66-BA的制备示意图和UiO-66-BA吸附机理

    Figure 9.  Schematic diagram of the preparation of UiO-66 and UiO-66-BA and the adsorption mechanism of UiO-66-BA

    图 10  UiO-66、UiO-66-BA-2和UiO-66-BA-2(吸附后)的XPS谱图(a)以及B1s的分峰拟合图(b)

    Figure 10.  The wide scan XPS spectra of UiO-66、UiO-66-BA-2and UiO-66-BA-2(after adsorption) (a), the high resolution of B1s of UiO-66、UiO-66-BA-2and UiO-66-BA-2(after adsorption) (b)

    表 1  不同样品所用原材料的质量

    Table 1.  Mass of the raw materials used in the different samples

    序号 No.ZrCl4/gBDC/gCPBA/gZrCl4:BDC:CPBA摩尔比(ZrCl4:BDC:CPBA)样品 Samples
    10.6990.49801:1:0UiO-66
    20.6990.4480.0501:0.9:0.1UiO-66-BA-1
    30.6990.3980.0991:0.8:0.2UiO-66-BA-2
    40.6990.3490.1491:0.7:0.3UiO-66-BA-3
    50.6990.2980.1991:0.6:0.4UiO-66-BA-4
    60.6990.2490.2491:0.5:0.5UiO-66-BA-5
    序号 No.ZrCl4/gBDC/gCPBA/gZrCl4:BDC:CPBA摩尔比(ZrCl4:BDC:CPBA)样品 Samples
    10.6990.49801:1:0UiO-66
    20.6990.4480.0501:0.9:0.1UiO-66-BA-1
    30.6990.3980.0991:0.8:0.2UiO-66-BA-2
    40.6990.3490.1491:0.7:0.3UiO-66-BA-3
    50.6990.2980.1991:0.6:0.4UiO-66-BA-4
    60.6990.2490.2491:0.5:0.5UiO-66-BA-5
    下载: 导出CSV

    表 2  样品的BET比表面积和BJH孔结构参数

    Table 2.  BET surface area and BJH porous structure parameters of the samples

    样品SamplesBET比表面积/ (m2·g−1)SABET总孔容/(m3·g−1)Total pore volume平均孔径/nmMean pore diameter
    UiO-66734.350.391.93
    UiO-66-BA-1728.010.371.82
    UiO-66-BA-2743.590.381.82
    UiO-66-BA-3727.420.371.84
    UiO-66-BA-4643.740.382.13
    UiO-66-BA-5624.690.301.72
    样品SamplesBET比表面积/ (m2·g−1)SABET总孔容/(m3·g−1)Total pore volume平均孔径/nmMean pore diameter
    UiO-66734.350.391.93
    UiO-66-BA-1728.010.371.82
    UiO-66-BA-2743.590.381.82
    UiO-66-BA-3727.420.371.84
    UiO-66-BA-4643.740.382.13
    UiO-66-BA-5624.690.301.72
    下载: 导出CSV

    表 3  吸附等温线拟合参数

    Table 3.  Isotherm parameters for adsorption

    温度/℃T吸附剂AdsorbentLangmuirFreundlich
    Qm/(mg·g−1KL/(L·mg−1RLR2KF/(L·mg−11/nR2
    25UiO-6633.0750.1140.0810.9758.1140.3150.912
    UiO-66-BA-240.3970.1620.0580.98411.0700.3080.907
    UiO-66-BA-428.8080.0450.1820.9943.5400.4320.947
    35UiO-6636.3630.1230.0750.9598.9620.3190.865
    UiO-66-BA-242.5090.2090.0460.98713.2260.2820.899
    UiO-66-BA-433.4320.0510.1640.9964.3730.4260.951
    温度/℃T吸附剂AdsorbentLangmuirFreundlich
    Qm/(mg·g−1KL/(L·mg−1RLR2KF/(L·mg−11/nR2
    25UiO-6633.0750.1140.0810.9758.1140.3150.912
    UiO-66-BA-240.3970.1620.0580.98411.0700.3080.907
    UiO-66-BA-428.8080.0450.1820.9943.5400.4320.947
    35UiO-6636.3630.1230.0750.9598.9620.3190.865
    UiO-66-BA-242.5090.2090.0460.98713.2260.2820.899
    UiO-66-BA-433.4320.0510.1640.9964.3730.4260.951
    下载: 导出CSV

    表 4  UiO-66、UiO-66-BA-2和UiO-66-BA-4吸附动力学拟合参数

    Table 4.  Correlation parameters of UiO-66、UiO-66-BA-2 and UiO-66-BA-4 adsorption kinetics

    吸附剂Adsorbent实验值/(mg·g−1Qe, exp准一级动力学模型Quasi-first-order dynamic model准二级动力学模型Quasi-second-order dynamic model
    Qe, cal/(mg·g−1k1/(L min−1R2Qe, cal/ (mg·g−1k2/(g·mg−1·min−1hR2
    UiO-6615.21314.7690.03030.97516.6980.00220.6130.987
    UiO-66-BA-217.94817.2590.03020.97419.6750.00190.7360.987
    UiO-66-BA-411.47210.3590.02000.91712.0970.00200.2930.960
    吸附剂Adsorbent实验值/(mg·g−1Qe, exp准一级动力学模型Quasi-first-order dynamic model准二级动力学模型Quasi-second-order dynamic model
    Qe, cal/(mg·g−1k1/(L min−1R2Qe, cal/ (mg·g−1k2/(g·mg−1·min−1hR2
    UiO-6615.21314.7690.03030.97516.6980.00220.6130.987
    UiO-66-BA-217.94817.2590.03020.97419.6750.00190.7360.987
    UiO-66-BA-411.47210.3590.02000.91712.0970.00200.2930.960
    下载: 导出CSV
  • [1] LIU S C, LU G H, OU H X, et al. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin [J]. Journal of Colloid and Interface Science, 2021, 601: 782-792. doi: 10.1016/j.jcis.2021.05.165
    [2] XIE Y, ZHANG T, CHEN Y L, et al. Fabrication of core-shell magnetic covalent organic frameworks composites and their application for highly sensitive detection of luteolin [J]. Talanta, 2020, 213: 120843. doi: 10.1016/j.talanta.2020.120843
    [3] DEAN L L. Extracts of peanut skins as a source of bioactive compounds: Methodology and applications [J]. Applied Sciences, 2020, 10(23): 8546. doi: 10.3390/app10238546
    [4] JIANG Z B, WANG W J, XU C, et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer [J]. Cancer Letters, 2021, 515: 36-48. doi: 10.1016/j.canlet.2021.05.019
    [5] ATTIQ A, JALIL J, HUSAIN K, et al. Luteolin and apigenin derived glycosides from Alphonsea elliptica abrogate LPS-induced inflammatory responses in human plasma [J]. Journal of Ethnopharmacology, 2021, 275: 114120. doi: 10.1016/j.jep.2021.114120
    [6] DONG H, YANG X C, HE J P, et al. Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese(ii) and its inhibition kinetics on xanthine oxidase [J]. RSC Advances, 2017, 7(84): 53385-53395. doi: 10.1039/C7RA11036G
    [7] GUO B L, TONG Y K, ZHANG B Y, et al. Double affinity based molecularly imprinted polymers for selective extraction of luteolin: A combination of synergistic metal chelating and boronate affinity [J]. Microchemical Journal, 2021, 160: 105670. doi: 10.1016/j.microc.2020.105670
    [8] LI D J, WANG N, WANG F F, et al. Boronate affinity-based surface-imprinted quantum dots as novel fluorescent nanosensors for the rapid and efficient detection of rutin [J]. Analytical Methods, 2019, 11(25): 3212-3220. doi: 10.1039/C9AY00787C
    [9] MOMPÓ-ROSELLÓ Ó, VERGARA-BARBERÁN M, LERMA-GARCÍA M J, et al. Boronate affinity sorbents based on thiol-functionalized polysiloxane-polymethacrylate composite materials in syringe format for selective extraction of glycopeptides [J]. Microchemical Journal, 2021, 164: 106018. doi: 10.1016/j.microc.2021.106018
    [10] EKTIRICI S, GÖKTÜRK I, YıLMAZ F, et al. Selective recognition of nucleosides by boronate affinity organic-inorganic hybrid monolithic column [J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1162: 122477. doi: 10.1016/j.jchromb.2020.122477
    [11] WANG H Y, BIE Z J, LÜ C, et al. Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins [J]. Chemical Science, 2013, 4(11): 4298. doi: 10.1039/c3sc51623g
    [12] KIP Ç, DEMIR M C, YıLDıRıM D, et al. Highly porous, molecularly imprinted core–shell type boronate affinity sorbent with a large surface area for enrichment and detection of sialic acid isomers [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(7): 2806-2817. doi: 10.1007/s10904-021-01890-w
    [13] CHEN Y, ZHAO W M, QING C, et al. Boronate affinity mesoporous silica nanoparticle based selective enrichment for highly efficient analysis of ginsenosides [J]. Analytical Methods, 2019, 11(44): 5673-5679. doi: 10.1039/C9AY01913H
    [14] LIU C, WANG J, WAN J J, et al. MOF-on-MOF hybrids: Synthesis and applications [J]. Coordination Chemistry Reviews, 2021, 432: 213743. doi: 10.1016/j.ccr.2020.213743
    [15] HONG D H, SHIM H S, HA J S, et al. MOF-on-MOF architectures: Applications in separation, catalysis, and sensing [J]. Bulletin of the Korean Chemical Society, 2021, 42(7): 956-969. doi: 10.1002/bkcs.12335
    [16] ZHU X Y, GU J L, ZHU J Y, et al. Metal-organic frameworks with boronic acid suspended and their implication forcis-diol moieties binding [J]. Advanced Functional Materials, 2015, 25(25): 3847-3854. doi: 10.1002/adfm.201500587
    [17] BAI Y, DOU Y B, XIE L H, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. doi: 10.1039/C5CS00837A
    [18] CHENG Y F, LAI O M, TAN C P, et al. Proline-modified UIO-66 as nanocarriers to enhance Candida rugosa lipase catalytic activity and stability for electrochemical detection of nitrofen [J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4146-4155.
    [19] ZHUANG S T, CHENG R, WANG J L. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks [J]. Chemical Engineering Journal, 2019, 359: 354-362. doi: 10.1016/j.cej.2018.11.150
    [20] ERKARTAL M, SEN U. Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 787-795.
    [21] EDIATI R, AULIA W, NIKMATIN B A, et al. Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution [J]. Materials Today Chemistry, 2021, 21: 100533. doi: 10.1016/j.mtchem.2021.100533
    [22] REGO R M, SRIRAM G, AJEYA K V, et al. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification [J]. Journal of Hazardous Materials, 2021, 416: 125941. doi: 10.1016/j.jhazmat.2021.125941
    [23] MOHAMMADI A A, ALINEJAD A, KAMAREHIE B, et al. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions [J]. International Journal of Environmental Science and Technology, 2017, 14(9): 1959-1968. doi: 10.1007/s13762-017-1289-z
    [24] CHAVAN S M, SHEARER G C, SVELLE S, et al. Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology [J]. Inorganic Chemistry, 2014, 53(18): 9509-9515. doi: 10.1021/ic500607a
    [25] WANG Y C, LUO J, LIU X Y. Fluorescent molecularly imprinted nanoparticles with boronate affinity for selective glycoprotein detection [J]. Journal of Materials Chemistry B, 2020, 8(30): 6469-6480. doi: 10.1039/C9TB02648G
    [26] 曹小聪, 熊曾恒, 张鸣珊, 等. 锆基金属有机框架材料对酸性水中甲萘威的吸附 [J]. 环境化学, 2021, 40(11): 3627-3630.

    CAO X C, XIONG Z H, ZHANG M S, et al. Generated zirconium based metal organic framework materials for carbaryl adsorption in acidic aqueous solutions [J]. Environmental Chemistry, 2021, 40(11): 3627-3630(in Chinese).

    [27] 杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789.

    DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese).

    [28] ZHAO Y F, WANG D F, WEI W, et al. Effective adsorption of mercury by Zr(IV)-based metal-organic frameworks of UiO-66-NH2 from aqueous solution [J]. Environmental Science and Pollution Research, 2021, 28(6): 7068-7075. doi: 10.1007/s11356-020-11080-9
    [29] AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks [J]. Journal of Hazardous Materials, 2016, 301: 259-276. doi: 10.1016/j.jhazmat.2015.08.045
    [30] YAO X, ZHANG S F, QIAN L W, et al. Dendrimer-assisted boronate affinity cellulose foams for the efficient and selective separation of glycoproteins [J]. Carbohydrate Polymers, 2021, 265: 118082. doi: 10.1016/j.carbpol.2021.118082
  • 期刊类型引用(4)

    1. 蔡灿,许佳琦,杨聪仁,刘维,焦芬,覃文庆,蒋善钦. FR4环氧树脂覆铜板热解动力学及产物组成. 中国有色金属学报. 2023(07): 2284-2294 . 百度学术
    2. 杨远坤,马甜,谌书. 中空纤维膜传质H_2对氧化亚铁硫杆菌还原溶解黄钾铁矾类矿物的影响. 环境工程学报. 2022(09): 2982-2991 . 本站查看
    3. 李强,杨必文,章小兵,郑朝振,刘三平. 废线路板自热熔炼渣物化性能研究. 有色金属工程. 2021(07): 114-120 . 百度学术
    4. 王振银,高文成,温建康,甘永刚,武彪,尚鹤. 锌浸出渣有价金属回收及全质化利用研究进展. 工程科学学报. 2020(11): 1400-1410 . 百度学术

    其他类型引用(5)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.1 %DOWNLOAD: 8.1 %HTML全文: 50.8 %HTML全文: 50.8 %摘要: 41.1 %摘要: 41.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 82.3 %其他: 82.3 %Ashburn: 2.4 %Ashburn: 2.4 %Beijing: 2.4 %Beijing: 2.4 %Fuling: 0.8 %Fuling: 0.8 %Shijiazhuang: 0.8 %Shijiazhuang: 0.8 %Suzhou: 0.8 %Suzhou: 0.8 %Wuhan: 0.8 %Wuhan: 0.8 %XX: 8.9 %XX: 8.9 %深圳: 0.8 %深圳: 0.8 %其他AshburnBeijingFulingShijiazhuangSuzhouWuhanXX深圳Highcharts.com
图( 10) 表( 4)
计量
  • 文章访问数:  2961
  • HTML全文浏览数:  2961
  • PDF下载数:  149
  • 施引文献:  9
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-04-18
  • 刊出日期:  2023-06-27
周东升, 欧红香, 李凯佳, 孙伟凯. 硼亲和功能化MOFs的制备及其吸附木犀草素性能研究[J]. 环境化学, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702
引用本文: 周东升, 欧红香, 李凯佳, 孙伟凯. 硼亲和功能化MOFs的制备及其吸附木犀草素性能研究[J]. 环境化学, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702
ZHOU Dongsheng, OU Hongxiang, LI Kaijia, SUN Weikai. Construction of boronate affinity functionalized MOFs for the adsorption and separation of Luteolin[J]. Environmental Chemistry, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702
Citation: ZHOU Dongsheng, OU Hongxiang, LI Kaijia, SUN Weikai. Construction of boronate affinity functionalized MOFs for the adsorption and separation of Luteolin[J]. Environmental Chemistry, 2023, 42(6): 2096-2106. doi: 10.7524/j.issn.0254-6108.2022011702

硼亲和功能化MOFs的制备及其吸附木犀草素性能研究

    通讯作者: Tel:13915836386,E-mail:ouhongxiang@cczu.edu.cn
  • 常州大学环境与安全工程学院,常州,213164
基金项目:
国家自然科学基金(21878026)资助

摘要: 本研究通过金属配体片段共组装(MLFC)策略引入4-羧基苯硼酸(CPBA)作为硼亲和功能成分,和1,4-对苯二甲酸(BDC)作为混合有机配体,制备了硼酸亲和功能化MOFs(UiO-66-BA). 研究了不同CPBA/BDC的摩尔比对UiO-66-BA框架结晶度和对木犀草素(LTL)吸附性能的影响. 结果表明,当CPBA的摩尔比大于CPBA/BDC总摩尔量的30%时,会导致UiO-66-BA吸附剂的框架结晶度降低,BET比表面积减小,吸附性能下降,再生性能较差. 适量CPBA的添加(摩尔比≤30%)有利于UiO-66-BA保持良好的晶体结构,提高对LTL的吸附性能和吸附剂的再生能力. CPBA的摩尔比为20%时制得的UiO-66-BA-2在pH = 8.5、温度为35℃时对LTL的最大吸附量达到42.509 mg·g−1,吸附过程更符合Langmuir等温吸附模型和准二级动力学模型,吸附再生结果表明,UiO-66-BA-2具有良好的可重用性,经5次吸附-解吸附后吸附量下降8.28%. 由于存在硼酸识别位点,UiO-66-BA-2相比于UiO-66具有更高的吸附容量以及更快的吸附效率,为吸附分离木犀草素提供了一种新的思路.

English Abstract

  • 木犀草素(luteolin,LTL)是一种含有顺式二羟基结构的黄酮类化合物,广泛存在于植物、蔬菜和水果中,在废弃花生壳中具有较高的含量[1-2],花生壳作为一种常见的农业固体废弃物,通常被直接焚烧或者掩埋处理,从而导致资源浪费和环境污染[3]. LTL具有多种药理作用,如抗炎、抗癌、抗氧化等,对人体神经有一定的保护作用[4-6]. LTL的高医疗价值使其分离和提取具有重要意义. 硼亲和(boronate affinity,BA)材料是一种可以选择性地分离和富集顺式二羟基生物分子的功能材料,因硼酸配体可以在碱性溶液中与顺式二羟基形成稳定的共价五元或六元环状酯,而共价键可以在酸性溶液中可逆解离[7],被广泛应用于食品检测,生物分离等领域[8-10]. 但单个硼酸单体与含有顺式二羟基的化合物的结合强度相对较弱[11]. 因此,诸多学者在构建硼亲和功能化材料投入了相当大的努力[12-13].

    由无机节点和有机配体组成的金属有机骨架材料(metal–organic frameworks,MOFs)具有高比表面积和可调孔径的特性,在分离领域具有广阔的前景[14-15]. 顾金楼课题组[16]通过金属配体片段共组装(MLFC)策略将3,5-二羧基苯硼酸作为配体片段引入了硼亲和功能组分,制备了MIL-100-B MOFs. 通过改变3,5-二羧基苯硼酸和1,3,5-苯三甲酸的配比调节MIL-100-B上硼酸的含量. UiO-66是一种典型的三维微孔金属有机骨架材料,以1,4-苯二甲酸(BDC)为有机配体,锆(Zr)为无机节点,具有优异的物理、化学和水热稳定性,其较大的比表面积也让UiO-66成为吸附分离材料研究热点之一[17-19].

    本研究采用MLFC策略制备了硼亲和功能化UiO-66(UiO-66-BA)并用于对LTL的吸附分离. 引入与BDC结构相似的4-羧基苯硼酸(CPBA)作为硼亲和功能组分,与BDC作为混合有机配体. 研究改变CPBA/BDC的摩尔比对UiO-66-BA的晶体骨架结构和硼酸基团数量的影响. 结合场发射扫描电子显微镜(Field Emission Scanning Electron Microscope, FESEM)、X-射线粉末衍射图谱(X-ray diffraction, XRD)、Brunauer-Emmett-Teller (BET) 比表面积、孔容孔径和核磁共振等考查UiO-66-BA的理化性能,考察了溶液pH、初始浓度、吸附时间和吸附温度对UiO-66-BA吸附LTL性能的影响.

    • 木犀草素(LTL,97%)购自上海安耐吉化学试剂有限公司;1,4-对苯二甲酸(BDC,99%)、4-羧基苯硼酸(CPBA,97%)、乙酸和N,N-二甲基甲酰胺(DMF)购自上海阿拉丁试剂有限公司;四氯化锆(ZrCl4,98%)、盐酸(HCl,37 %)、甲醇、乙醇和氢氧化钠(NaOH)购自国药集团化学试剂有限公司. 实验所用水均为去离子水.

    • 采用MLFC策略,参考Erkartal等的方法并进行改进[20]:首先称取0.699 g ZrCl4,不同质量的BDC和CPBA(保证BDC和CPBA总摩尔量与ZrCl4摩尔量之比为1:1,具体质量与摩尔比见表1),然后将其加入到70 mL DMF中,滴加5 mL 乙酸,超声分散处理30 min后,将混合溶液放入聚四氟乙烯高压反应釜中,150℃下反应24 h. 待产物冷却至室温,离心收集固体产物,用DMF和乙醇分别清洗数次并在150℃真空烘箱内烘干24 h,得到的UiO-66和UiO-66-BA样品密封保存备用.

    • 使用蔡司SUPRA-55场发射扫描电子显微镜(FESEM)对样品表面形貌进行分析;使用Bruker APEX II DUO X射线粉末衍射仪(XRD)对样品的晶体结构进行测定;使用Tristar3020气体吸附仪进行N2吸附-脱附研究,测定BET比表面积以及孔容孔径,其中样品在120℃条件下脱气24 h;使用Bruker 400M数字化核磁共振谱仪测定样品的1H NMR光谱,所用溶剂为1 mol·L−1 NaOH/D2O溶液;使用Thermo Scientific K-Alpha 测定样品的X-ray photoelectron spectroscopy (XPS)光谱.

    • 实验用所制得的样品作为吸附剂吸附溶液中LTL,系统考察pH、溶液初始浓度、吸附温度以及吸附时间对吸附剂的吸附特性的影响. 通过紫外分光光度计(UV-2450,日本-岛津)在352 nm 处测定LTL的浓度,吸附量(Qe, mg·g−1)的计算公式如下所示:

      其中,C0 (mg·L−1)为LTL的初始浓度;Ce (mg·L−1)为吸附后LTL的剩余浓度;V (mL)为LTL溶液体积,m (mg)为吸附剂的质量.

      具体实验步骤如下:

      (1)溶液初始pH的影响:首先分别称取10.0 mg 吸附剂加入到10 mL离心管中,随后加入10 mL pH 分别为5.5、7.0、8.5和10.0的初始浓度为20 mg·L−1 的LTL溶液,置于25℃恒温振荡器中吸附120 min.

      (2)吸附等温线实验:分别称取10.0 mg UiO-66、UiO-66-BA-2、UiO-66-BA-4 加入到10 mL 离心管中,随后加入10 mL pH 为8.5、初始浓度分别为10、20、30、40、50、100 mg·L−1的LTL溶液,置于25℃和35℃恒温振荡器中吸附120 min.

      (3)吸附动力学实验:分别称取10.0 mg UiO-66、UiO-66-BA-2、UiO-66-BA-4 加入到10 mL 离心管中,随后加入10 mL pH 为8.5、初始浓度为20 mg·L−1的LTL溶液,置于25℃恒温振荡器中分别吸附5、10、15、30、60、120、180、240、360 min.

      (4)吸附再生实验:分别称取10.0 mg UiO-66、UiO-66-BA-2、UiO-66-BA-4 加入到10 mL 离心管中,随后加入10 mL pH 为8.5、浓度为20 mg·L−1的LTL溶液,置于25℃恒温振荡器中吸附120 min,过滤,通过紫外分光光度计测定吸附后剩余LTL浓度. 将吸附后的材料分散在体积比为1:1的甲醇/乙酸溶液中进行洗脱,然后用去离子水洗涤数次后收集,重复上述吸附实验4次,利用公式(1)计算材料的吸附容量,研究材料的吸附再生性能.

    • 试验所制备样品的FESEM分析结果如图1所示. 从图1(a)可以看出,UiO-66颗粒边缘结构明显,形状规则,分散程度较好,具有均匀的尺寸和良好的晶体结构. 从图1(b)到(d)中可以发现,当CPBA的摩尔比在CPBA/BDC总摩尔量的30%以内时,所制备的UiO-66-BA-1、UiO-66-BA-2和UiO-66-BA-3有较明显的晶体结构,但伴随着轻微的团聚现象. 随着CPBA用量的增加,如图1(e)和(f)所示,UiO-66-BA-4和UiO-66-BA-5的晶体结构逐渐破坏,形貌逐渐变化为不规则的球形,尺寸大小不一,颗粒之间团聚现象加重.

    • 为在不改变UiO-66晶体结构的前提下,将尽可能多的硼酸单体引入框架中,以不同的摩尔比例向材料中加入BDC和CPBA,不同比例样品的XRD分析结果如图2所示. UiO-66的XRD图谱上在2θ为7.25°和8.39°处显示出特征峰,这与Ediati等的研究结果一致[21]. 从分析结果可见,UiO-66-BA-1,UiO-66-BA-2和UiO-66-BA-3也保持了良好的晶体结构,表明适量的硼酸单体CPBA的引入使UiO-66仍可以很好地保持其晶体结构. 当CPBA/BDC的摩尔比达到0.4:0.6和0.5:0.5时,XRD的衍射峰变宽且减弱,分析可能是由于硼酸部分的不协调位点的增加导致材料的结晶度降低.

    • 样品的BET和孔容孔径分析结果如图3表2所示. 图3(a)所示制备样品的的氮气吸附-脱附曲线均为IUPAC分类的I型曲线,其吸附量在相对较低的压力下迅速增加,表明所制备样品均存在微孔结构[22]. 样品的孔容孔径分析结果如图3(b)所示,所制备UiO-66及UiO-66-BA样品含有大量的微孔. 表明CPBA的引入并没有消除UiO-66的骨架结构,且CPBA成功地被纳入到骨架中,而不是封闭在孔隙中. UiO-66的BET比表面积为734.35 m2·g−1,与Mohammadi的报告相似[23]. UiO-66-BA-1、UiO-66-BA-2和UiO-66-BA-3的BET比表面积与UiO-66相近,但是UiO-66-BA-4和UiO-66-BA-5的BET比表面积显著下降,这可能是由于CPBA缺陷配体的增加使它们无法支撑整个框架[24],这与XRD的表征结果一致.

    • 图4为所制备样品的1H NMR图谱. 从图4(a)和(b)中可以看出,BDC苯环上4个H的1H NMR特征峰为7.63 ppm,而CPBA含有7.48 ppm和 7.35 ppm两个特征峰,分别对应于CPBA苯环上两个不对称的H(标记为Ha和Hb). 从图4(c)和(d)中可以发现,UiO-66-BA均含有BDC和CPBA的特征峰,且CPBA的特征峰的相对强度随着CPBA摩尔比例的增加而增强,表明了CPBA被成功地引入所制备的金属-有机骨架材料中去.

    • 作为硼亲和作用最重要的参数之一,可以通过调控pH值来实现吸附/解吸. 本实验研究了在pH分别为5.5,7.0,8.5和10.0对所制备样品吸附能力的影响. 如图5所示,UiO-66在酸碱条件下对LTL的吸附都有着良好的效果,当pH=8.5时,UiO-66-BA-1、UiO-66-BA-2和UiO-66-BA-3的吸附能力达到最大,且相比较于UiO-66,吸附效果有着明显提升,分析是由于CPBA硼酸配体的引入与氢氧根发生络合反应,从而与LTL中顺式二羟基发生共价作用形成五元或者六元环酯,有利于其对LTL的吸附. 在酸性条件下,UiO-66-BA-1、UiO-66-BA-2和UiO-66-BA-3的吸附能力下降,分析是由于pH值低于硼酸基团的pKa,形成的五元环酯被解离[25]. 当pH = 10.0时,溶液中过多的氢氧根使得LTL的顺式二羟基不够稳定,导致其结合能力变弱[1]. 同时,UiO-66-BA-4和UiO-66-BA-5也遵循相同的规律,但由于自身框架结晶度的降低和BET比表面积的减小,导致它们的吸附能力降低.

    • 结合理化表征和pH实验结果,选择UiO-66、UiO-66-BA-2和UiO-66-BA-4作为吸附剂,采用不同溶液初始浓度进一步研究其吸附LTL的性能. 利用Langmuir和Freundlich等温吸附模型[26]对所得实验数据进行拟合,两个模型的拟合方程如式(2)、(3)所示.

      其中,Qm (mg·g−1)表示Langmuir方程拟合的吸附剂最大吸附量;KL (L·mg−1)表示Langmuir等温模型的亲和常数;KF (mg·g−1)表示Freundlich等温模型的吸附能力常数,1/n是吸附强度常数. 此外,使用分离因子RL来判断实验条件是否有利,其表达式如(4)所示:

      其中,Cm (mg·g−1)表示LTL的最大初始浓度.

      等温吸附实验及拟合结果如图6表3所示. 图6中UiO-66、UiO-66-BA-2和UiO-66-BA-4的吸附平衡曲线表明,吸附剂的吸附能力在初始阶段均急剧增加,随后缓慢达到吸附平衡. UiO-66-BA-2的吸附能力明显优于UiO-66和UiO-66-BA-4,表明硼亲和吸附位点的增加可以有效提高UiO-66对LTL的吸附能力. 但是过量的硼酸基团使UiO-66的骨架结构受到影响,UiO-66-BA-4的吸附性能下降. 从表3中可以看出,Langmuir等温模型的相关系数(R2)高于Freundlich等温模型,表明吸附过程以单分子层吸附为主. 同时,RL值都在0—1之间,表明吸附条件都是有利的. 此外,吸附剂在35℃时的吸附能力大于25℃时的吸附能力,表明吸附剂对LTL的吸附属于吸热反应[27].

    • UiO-66、UiO-66-BA-2和UiO-66-BA-4在25℃ 时对LTL的吸附动力学实验结果如图7所示,在最初的60 min 内,吸附剂的吸附能力均迅速增加. 120 min 后,动力学曲线逐渐趋于平缓,吸附进入内层扩散阶段,基本达到吸附平衡. 从图7可见,UiO-66-BA-2的吸附能力优于UiO-66,表明pH = 8.5 时硼酸基团可以与LTL的顺式二羟基结合,从而增强吸附剂对LTL的吸附性能. 虽然UiO-66-BA-4含有较多的硼酸基团,但其骨架结构较差比表面降低,且单一的硼酸单体与顺式二羟基化合物结合能力较差[11],导致UiO-66-BA-4的吸附能力低于UiO-66.

      采用准一级和准二级动力学方程对所得数据进行拟合,两个模型的方程如(5)和(6)所示,初始吸附速率h (mg ·g−1· min−1)的计算公式如(7)所示:

      其中,Qt (mg g−1)表示在 t 时刻LTL的吸附量,k1 (L·min−1)和k2 (g·mg−1·min−1)分别表示准一级和准二级动力学模型的吸附速率常数.

      表4列出了准一级和准二级动力学模型计算的相关参数,UiO-66-BA-2的初始吸附速率h值最高,意味着LTL溶液与UiO-66-BA-2之间的传质阻力最低[28]. 模型拟合相关系数(R2)表明准一级和准二级动力学模型都能很好地拟合UiO-66和UiO-66-BA-2的吸附过程,可见,UiO-66和UiO-66-BA-2对LTL的吸附过程包括物理吸附和化学吸附,其物理吸附主要为扩散作用和范德华力[29]. 但是更主要的速率控制步骤是LTL与硼酸有机配体之间的硼亲和力. UiO-66-BA-4对LTL的吸附过程更符合准二级动力学模型,表明吸附过程主要是化学吸附,即硼亲和作用.

    • UiO-66,UiO-66-BA-2和UiO-66-BA-4的5次吸附-解吸再生实验结果如图8所示. 吸附在pH = 8.5条件下进行,解吸的洗脱液为体积比为1:1的甲醇/乙酸溶液. UiO-66-BA与LTL的结合的示意图如图9所示,在碱性条件下,LTL的顺式二羟基与UiO-66-BA的四面体硼离子形成五元或六元环酯(sp3),在酸性条件下,硼原子从sp3杂化状态转变为sp2杂化,从而使得形成的共价键解离,LTL释放到溶液中[30]. 图10为UiO-66,UiO-66-BA-2和吸附后UiO-66-BA-2的XPS谱图,由于B 1s (182.2 eV/184.8 eV) 的特征峰与Zr 3d (183.5 eV/185.9 eV)的重叠,且B 1s特征峰的灵敏度特别低[16],在图10(a)中无法很好地显示出B 1s的特征峰. 图10(b)中,UiO-66-BA-2以及吸附后的UiO-66-BA-2谱图中B元素特征峰的出现表明了CPBA成功地引入到了材料中,且图10(a)中可以发现,吸附后的UiO-66-BA-2谱图中的O和C元素的特征峰均明显变强,表明LTL与UiO-66-BA-2成功地结合.

      经5次吸附-解吸后,UiO-66-BA-2的吸附能力降低8.28%. 而这种轻微的下降可能是由于UiO-66-BA-2的质量损失,且化学吸附导致了一些不可再生或无用的吸附位点的产生. 同时,UiO-66-BA-4的吸附能力损失较大(30.37%),是由于其框架结构不稳定和吸附位点的损失. 总体而言,UiO-66-BA-2具有良好的再生循环能力.

    • 本研究选用了与BDC结构相似的CPBA作为硼亲和功能组分引入到UiO-66晶体骨架中,采用MLFC策略制备了硼亲和功能化MOFs,即UiO-66-BA. 研究不同的CPBA/BDC摩尔比对UiO-66的晶体骨架和吸附性能的影响,主要结论如下:

      (1)不引入CPBA时,所制备的UiO-66具有良好的晶体结构,BET比表面积为734.35 m2·g−1,由于UiO-66在酸性或碱性溶液中较为稳定,使得pH对LTL的吸附性能影响较小. 经5次吸附循环后,UiO-66对LTL的吸附能力下降了9.62%,再生性能较好.

      (2)当CPBA的摩尔比在CPBA/BDC总摩尔量的30%以内时,所制备的UiO-66-BA能保持良好的晶体骨架结构,其BET比表面积与UiO-66相近,对LTL的吸附性能显著提高. 当pH = 8.5,温度为35℃时,UiO-66-BA-2的吸附能力最大理论值为42.509 mg g−1;UiO-66-BA-2对LTL的吸附过程符合Langmuir等温模型,以单分子层吸附为主;吸附过程属于吸热反应;动力学实验表明最主要的速率控制步骤是LTL与硼酸有机配体之间的硼亲和力;且UiO-66-BA-2具有良好的再利用性能.

      (3)当CPBA的摩尔量占比达到CPBA/BDC总摩尔量的40%和50%时,所制备的UiO-66-BA-4和UiO-66-BA-5的结晶度降低,BET比表面积减小,对LTL的吸附性能显著降低,再生性能也下降. 过量的CPBA不利于UiO-66骨架结构的稳定性.

    参考文献 (30)

返回顶部

目录

/

返回文章
返回