[1] |
LIU S C, LU G H, OU H X, et al. Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin [J]. Journal of Colloid and Interface Science, 2021, 601: 782-792. doi: 10.1016/j.jcis.2021.05.165
|
[2] |
XIE Y, ZHANG T, CHEN Y L, et al. Fabrication of core-shell magnetic covalent organic frameworks composites and their application for highly sensitive detection of luteolin [J]. Talanta, 2020, 213: 120843. doi: 10.1016/j.talanta.2020.120843
|
[3] |
DEAN L L. Extracts of peanut skins as a source of bioactive compounds: Methodology and applications [J]. Applied Sciences, 2020, 10(23): 8546. doi: 10.3390/app10238546
|
[4] |
JIANG Z B, WANG W J, XU C, et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer [J]. Cancer Letters, 2021, 515: 36-48. doi: 10.1016/j.canlet.2021.05.019
|
[5] |
ATTIQ A, JALIL J, HUSAIN K, et al. Luteolin and apigenin derived glycosides from Alphonsea elliptica abrogate LPS-induced inflammatory responses in human plasma [J]. Journal of Ethnopharmacology, 2021, 275: 114120. doi: 10.1016/j.jep.2021.114120
|
[6] |
DONG H, YANG X C, HE J P, et al. Enhanced antioxidant activity, antibacterial activity and hypoglycemic effect of luteolin by complexation with manganese(ii) and its inhibition kinetics on xanthine oxidase [J]. RSC Advances, 2017, 7(84): 53385-53395. doi: 10.1039/C7RA11036G
|
[7] |
GUO B L, TONG Y K, ZHANG B Y, et al. Double affinity based molecularly imprinted polymers for selective extraction of luteolin: A combination of synergistic metal chelating and boronate affinity [J]. Microchemical Journal, 2021, 160: 105670. doi: 10.1016/j.microc.2020.105670
|
[8] |
LI D J, WANG N, WANG F F, et al. Boronate affinity-based surface-imprinted quantum dots as novel fluorescent nanosensors for the rapid and efficient detection of rutin [J]. Analytical Methods, 2019, 11(25): 3212-3220. doi: 10.1039/C9AY00787C
|
[9] |
MOMPÓ-ROSELLÓ Ó, VERGARA-BARBERÁN M, LERMA-GARCÍA M J, et al. Boronate affinity sorbents based on thiol-functionalized polysiloxane-polymethacrylate composite materials in syringe format for selective extraction of glycopeptides [J]. Microchemical Journal, 2021, 164: 106018. doi: 10.1016/j.microc.2021.106018
|
[10] |
EKTIRICI S, GÖKTÜRK I, YıLMAZ F, et al. Selective recognition of nucleosides by boronate affinity organic-inorganic hybrid monolithic column [J]. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 2021, 1162: 122477. doi: 10.1016/j.jchromb.2020.122477
|
[11] |
WANG H Y, BIE Z J, LÜ C, et al. Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins [J]. Chemical Science, 2013, 4(11): 4298. doi: 10.1039/c3sc51623g
|
[12] |
KIP Ç, DEMIR M C, YıLDıRıM D, et al. Highly porous, molecularly imprinted core–shell type boronate affinity sorbent with a large surface area for enrichment and detection of sialic acid isomers [J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(7): 2806-2817. doi: 10.1007/s10904-021-01890-w
|
[13] |
CHEN Y, ZHAO W M, QING C, et al. Boronate affinity mesoporous silica nanoparticle based selective enrichment for highly efficient analysis of ginsenosides [J]. Analytical Methods, 2019, 11(44): 5673-5679. doi: 10.1039/C9AY01913H
|
[14] |
LIU C, WANG J, WAN J J, et al. MOF-on-MOF hybrids: Synthesis and applications [J]. Coordination Chemistry Reviews, 2021, 432: 213743. doi: 10.1016/j.ccr.2020.213743
|
[15] |
HONG D H, SHIM H S, HA J S, et al. MOF-on-MOF architectures: Applications in separation, catalysis, and sensing [J]. Bulletin of the Korean Chemical Society, 2021, 42(7): 956-969. doi: 10.1002/bkcs.12335
|
[16] |
ZHU X Y, GU J L, ZHU J Y, et al. Metal-organic frameworks with boronic acid suspended and their implication forcis-diol moieties binding [J]. Advanced Functional Materials, 2015, 25(25): 3847-3854. doi: 10.1002/adfm.201500587
|
[17] |
BAI Y, DOU Y B, XIE L H, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. doi: 10.1039/C5CS00837A
|
[18] |
CHENG Y F, LAI O M, TAN C P, et al. Proline-modified UIO-66 as nanocarriers to enhance Candida rugosa lipase catalytic activity and stability for electrochemical detection of nitrofen [J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4146-4155.
|
[19] |
ZHUANG S T, CHENG R, WANG J L. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks [J]. Chemical Engineering Journal, 2019, 359: 354-362. doi: 10.1016/j.cej.2018.11.150
|
[20] |
ERKARTAL M, SEN U. Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 787-795.
|
[21] |
EDIATI R, AULIA W, NIKMATIN B A, et al. Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution [J]. Materials Today Chemistry, 2021, 21: 100533. doi: 10.1016/j.mtchem.2021.100533
|
[22] |
REGO R M, SRIRAM G, AJEYA K V, et al. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification [J]. Journal of Hazardous Materials, 2021, 416: 125941. doi: 10.1016/j.jhazmat.2021.125941
|
[23] |
MOHAMMADI A A, ALINEJAD A, KAMAREHIE B, et al. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions [J]. International Journal of Environmental Science and Technology, 2017, 14(9): 1959-1968. doi: 10.1007/s13762-017-1289-z
|
[24] |
CHAVAN S M, SHEARER G C, SVELLE S, et al. Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology [J]. Inorganic Chemistry, 2014, 53(18): 9509-9515. doi: 10.1021/ic500607a
|
[25] |
WANG Y C, LUO J, LIU X Y. Fluorescent molecularly imprinted nanoparticles with boronate affinity for selective glycoprotein detection [J]. Journal of Materials Chemistry B, 2020, 8(30): 6469-6480. doi: 10.1039/C9TB02648G
|
[26] |
曹小聪, 熊曾恒, 张鸣珊, 等. 锆基金属有机框架材料对酸性水中甲萘威的吸附 [J]. 环境化学, 2021, 40(11): 3627-3630.
CAO X C, XIONG Z H, ZHANG M S, et al. Generated zirconium based metal organic framework materials for carbaryl adsorption in acidic aqueous solutions [J]. Environmental Chemistry, 2021, 40(11): 3627-3630(in Chinese).
|
[27] |
杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789.
DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese).
|
[28] |
ZHAO Y F, WANG D F, WEI W, et al. Effective adsorption of mercury by Zr(IV)-based metal-organic frameworks of UiO-66-NH2 from aqueous solution [J]. Environmental Science and Pollution Research, 2021, 28(6): 7068-7075. doi: 10.1007/s11356-020-11080-9
|
[29] |
AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks [J]. Journal of Hazardous Materials, 2016, 301: 259-276. doi: 10.1016/j.jhazmat.2015.08.045
|
[30] |
YAO X, ZHANG S F, QIAN L W, et al. Dendrimer-assisted boronate affinity cellulose foams for the efficient and selective separation of glycoproteins [J]. Carbohydrate Polymers, 2021, 265: 118082. doi: 10.1016/j.carbpol.2021.118082
|