-
全氟和多氟类化合物(per-and polyfluoroalkyl substances, PFAS)是一类分子结构中烷基上的氢原子全部(全氟)或部分(多氟)被氟原子取代的脂肪族化合物[1],具有独特的理化性质。自20世纪50年代以来,PFAS被制造并广泛应用于许多军事、工业、民用领域[2]。全氟烷基酸(perfluoroalkyl acids, PFAAs),如全氟烷基羧酸(perfluoroalkyl carboxylic acids, PFCAs)和全氟烷基磺酸(perfluoroalkane sulfonic acids, PFSAs),是应用和研究最为广泛的一类PFAS,其中又以全氟辛基羧酸(perfluorooctanoic acid, PFOA)和全氟辛基磺酸(perfluorooctane sulfonic acid, PFOS)为典型。越来越多的研究表明了PFOA和PFOS具有持久性、生物累积性、毒性和长距离迁移的特性,因此这两种物质均已列入《关于持久性有机污染物斯德哥尔摩公约》的管制范围[3-4]。许多国家和国际组织已停止生产PFOA和PFOS,并不断寻求更安全、更环保的替代品[5-8]。六氟环氧丙烷二聚体(hexafluoropropylene oxide dimer acid, HFPO-DA,其铵盐的商品名为GenX),最初作为PFOA替代品而开发,但目前由于其可能对生态和人体健康产生严重影响而正在接受审查,如荷兰通过了将HFPO-DA,其盐和酰卤作为高度关注物质的提案,并得到了欧盟的支持。含8个碳和10个碳的氯代多氟烷基醚磺酸盐(potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate, 9Cl-PF3ONS和potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate, 11Cl-PF3OUdS,又称 6∶2 Cl-PFESA和8∶2 Cl-PFESA),是PFOS替代商品F53-B的主要和次要组分,用以替代PFOS作为铬雾抑制剂,其潜在的生态和人体健康影响也受到越来越多的关注。
环境固体介质对PFAS有较强的吸附性[9],使得土壤/大气颗粒物/沉积物/污泥等成为PFAS在环境中重要的汇,并可能成为其它环境介质中该类污染物的潜在来源。极限萃取(Exhaustive extraction)是环境样品中有机污染物分析的常用技术,即利用极性有机试剂一次或多次萃取样品中的目标化合物,萃取过程中通常会存在大量的基质干扰物质与目标化合物共萃取的现象。为了减少基质干扰,需要对萃取液进行净化。在土壤/大气颗粒物/沉积物/污泥等环境固体样品PFAS的萃取过程中,净化萃取液的常用手段是固相萃取(Solid phase extraction, SPE),即利用固体吸附剂将萃取液中的目标化合物吸附使其与干扰化合物分离,然后再用洗脱液洗脱,达到分离和富集目标化合物的目的。然而,繁琐的超声、振荡、离心、转移、浓缩、复溶、净化、干燥等过程非常耗时,使得基于SPE的极限萃取法样品制备所用时间占到整个污染物分析过程所用时间的75%以上[10],这往往构成分析技术的瓶颈[11]。繁琐的萃取、净化过程同时增大了目标污染物损失的可能性,使得方法的回收率不稳定。由于步骤繁琐,消耗了较多的有机试剂、超纯水、离心管、固相萃取柱、高纯氮气等,成本较高。为了提高萃取效率,快速分析环境中PFAS的赋存水平,进而探讨其风险和管控措施,亟需完善固体环境介质中PFAS的萃取方法,发展样品制备效率和成本效益较高的处理技术。
QuEChERS技术是由美国农业部在本世纪初提出的一种提取和净化农作物中农残的样品前处理方法[12],该技术利用乙腈提取目标化合物,之后采用硫酸镁等盐析分层,再加入吸附剂进行分散固相萃取,达到净化样品的目的。该技术具有快速(Quick)、简单(Easy)、便宜(Cheap)、有效(Effective)、可靠(Rugged)和安全(Safe)的特点,但存在稀释倍数大,重复性较差等问题[13]。SinCHERS技术是在SPE、QuEChERS等技术基础上开发出的一种新型快速样品制备技术,具有一步(Single–step)、经济(Cheap)、有效(Effective)、可靠(Rugged)、安全(Safe)的特点。基于SinCHERS技术的样品制备流程如图1所示。首先在碱性条件下利用有机试剂充分浸提固体样品中的目标化合物,之后向体系中加入酸调节体系pH值,振荡、离心,使得目标化合物在该体系内分配平衡,使得有机萃取液与其他组分之间分层良好。将SinCHERS前处理净化小柱(简称SinCHERS柱)置入离心管,缓慢下压,有机萃取液通过净化填料净化,并进入储液槽,取出槽内液体,浓缩、过滤后完成样品制备。相较于传统的固相萃取净化技术,SinCHERS技术节省了样品制备时间,减少了溶剂和各类器皿的使用量,并可以减少样品转移过程中目标化合物的损失,通常具有更好的稳定性和回收率。目前,SinCHERS技术已经成功应用于植物性样品中农药残留的测定[13-17]、动物性样品中兽药残留的测定以及纺织品中偶氮染料的测定[18]。
本文主要研究内容为SinCHERS技术在土壤/大气颗粒物/沉积物/污泥等固体样品PFAS检测中的应用,包括SinCHERS柱净化填料的优选和样品萃取净化流程的确定等,其目的在于提高土壤/大气颗粒物/沉积物/污泥等固体样品PFAS的萃取效率,缩短萃取时间,降低萃取成本,从而提高这些化合物的检测效率。
SinCHERS-HPLC-MS/MS法检测环境固体样品中20种全氟和多氟类化合物
Analysis of 20 per- and polyfluoroalkyl substances in environmental solid samples by SinCHERS-high performance liquid chromatography-electrospray ionization-mass spectrometry
-
摘要: 建立了SinCHERS-高效液相色谱串联质谱(HPLC-MS/MS)技术的土壤样品中20种全氟和多氟类化合物(Per- and polyfluoroalkyl substances, PFAS)的萃取、净化和检测方法。采用无水硫酸镁、层间距为20 nm的石墨化碳黑、HLB离子交换材料的组合作为SinCHERS前处理净化小柱的净化填料,使用HPLC-MS/MS检测,内标法定量。目标化合物的方法检出限在0.48—2.31 ng·g−1 dw(干重)之间,方法回收率在71.0%—110.6%之间,标准偏差在2.7%—13.4%之间。相较于固相萃取(SPE)样品前处理流程,SinCHERS净化方法大大缩短了样品中污染物萃取净化的时间,降低了经济成本,优化了某些长链PFAS的萃取效率,且具有相对较高的稳定性。提高了在16 min内同时检测20种PFAS的检测效率,为环境中PFAS评估提供更为方便的检测方法以得到有效的基础数据。
-
关键词:
- SinCHERS /
- 高效液相色谱串联质谱 /
- 全氟和多氟类化合物
Abstract: A method for the extraction, purification, and determination of 20 per- and polyfluoroalkyl substances (PFAS) in environmental solid samples by SinCHERS-high liquid chromatography-electrospray ionization-mass spectrometry (HPLC-MS/MS) was established. The combination of anhydrous magnesium sulfate, graphitized carbon black with interlayer spacing of 20 nm, and HLB ion exchange material was used as the cleanup sorbents in SinCHERS cartridge. 20 PFAS were determined by HPLC-MS/MS using internal standard method. The method detection limit of the target compounds were 0.48—2.31 ng·g−1 dw, the recoveries were 71.0%—110.6%, and the standard deviations were 2.7%—13.4%. Compared with SPE sample pretreatment, this method is more time saving, more economical, and more stable. It also improves the recoveries of some long-chain PFAS. It provides a more convenient detection method for PFAS evaluation in the environment to obtain effective basic data. -
表 1 20种PFAS目标化合物及10种内标物的质谱相关参数
Table 1. MS conditions for 20 PFASs and 10 Internal standards
目标化合物
Compound母离子(m/z)→子离子(m/z)
Precursor ion (m/z)→Production (m/z)裂解电压/V
Fragmentor碰撞能量/eV
Collision energy内标
Internal standard目标化合物 PFBA 213.0 → 169.1 57 1 MPFBA PFPeA 263.0 → 218.9 68 2 MPFBA PFHxA 313.0 → 269.0 68 3 MPFHxA PFHpA 363.0 → 318.9 68 4 MPFOA PFOA 413.0 → 368.9 82 4 MPFOA PFNA 463.0 → 419.0 82 3 MPFNA PFDA 513.0 → 468.9 86 3 MPFDA PFUnDA 563.0 → 519.0 90 5 MPFUnDA 目标化合物 PFDoDA 613.0 → 569.0 90 5 MPFDoDA PFTrDA 662.9 → 619.0 80 5 MPFDoDA PFTeDA 713.1 → 669.0 100 7 MPFDoDA PFHxDA 813.0 → 769.0 100 9 MPFDoDA PFODA 913.0 → 869.0 118 10 MPFDA PFBS 299.0 → 80.0 135 32 MPFHxS PFHxS 399.0 → 80.0 150 40 MPFHxS PFOS 498.9 → 80.0 154 47 MPFOS PFDS 599.0 → 79.9 160 65 MPFOS HFPO-DA 329.0 → 169.0 49 5 M3HFPO-DA 9Cl-PF3ONS 530.8 → 350.9 120 22 MPFOS 11Cl-PF3OUdS 630.7 → 450.9 123 25 MPFOS 内标 MPFBA 217.0 → 172.0 57 1 MPFHxA 315.0 → 270.0 68 3 MPFOA 417.0 → 372.0 82 4 MPFNA 468.0 → 423.0 82 3 MPFDA 515.0 → 470.0 86 3 MPFUnDA 565.0 → 520.0 90 5 MPFDoDA 615.0 → 570.0 90 5 MPFHxS 403.0 → 103.0 150 40 MPFOS 503.0 → 80.0 154 47 M3HFPO-DA 331.2 → 169.0 44 5 表 2 20种PFAS目标化合物的方法检出限(MDL, n=10)
Table 2. Method detection limit (MDL) of 20 PFASs
目标化合物
Compound方法检出限/(ng·g−1 dw)
MDL目标化合物
Compound方法检出限/ (ng·g−1 dw)
MDLPFBA 0.95 PFTeDA 1.03 PFPeA 0.75 PFHxDA 1.44 PFHxA 0.97 PFODA 1.07 PFHpA 0.70 PFBS 0.80 PFOA 0.48 PFHxS 1.27 PFNA 0.64 PFOS 0.58 PFDA 0.75 PFDS 0.46 PFUnDA 0.62 HFPO-DA 2.31 PFDoDA 1.06 9Cl-PF3ONS 0.55 PFTrDA 0.95 11Cl-PF3OUdS 0.68 表 3 20种PFAS目标化合物的方法回收率(平均值±标准偏差), n=6
Table 3. Method recoveries of 20 PFASs (average±sd), n=6.
目标化合物
Compound方法回收率/%
Recovery rate目标化合物
Compound方法回收率/%
Recovery ratePFBA 110.2±6.9 PFTeDA 88±6.6 PFPeA 103.2±5.5 PFHxDA 95.3±10.1 PFHxA 98±6.6 PFODA 71.0±3 PFHpA 84.1±6.2 PFBS 78.4±7.7 PFOA 107.7±3.1 PFHxS 100.3±10.8 PFNA 110.6±3.8 PFOS 108.3±6.1 PFDA 99.2±4.7 PFDS 96.1±2.7 PFUnDA 103.8±5.5 HFPO-DA 91.3±13.4 PFDoDA 104.1±7.6 9Cl-PF3ONS 89.7±3.8 PFTrDA 101.5±5.9 11Cl-PF3OUdS 93.8±5.3 表 4 河套灌区土壤20种PFAS目标化合物的样品加标回收率(平均值±标准偏差, n=6)和浓度(范围)
Table 4. Spiked recoveries (average ± sd, n=6) and concentrations (range) of 20 PFASs in soils from Hetao Irrigation District
目标化合物
Compound浓度/(ng·g−1 dw)
Concentration加标回收率/%
Spiked recovery目标化合物
Compound浓度/(ng·g−1 dw)
Concentration加标回收率/%
Spiked recoveryPFBA <MDL—5.21 104.6±5.2 PFTeDA <MDL 107.7±6.9 PFPeA <MDL—3.09 87.0±2.9 PFHxDA <MDL 98.4±7.6 PFHxA <MDL 98.4±3.9 PFODA <MDL 71.9±2.1 PFHpA <MDL 88.1±3.5 PFBS <MDL 90.0±9.7 PFOA <MDL—2.62 99.6±2.4 PFHxS <MDL 92.5±10.9 PFNA <MDL—0.92 91.4±3.7 PFOS <MDL 110.5±7.3 PFDA <MDL—5.63 94.0±5.5 PFDS <MDL 100.7±4.5 PFUnDA <MDL 103.7±5.2 HFPO-DA <MDL 93.1±12.1 PFDoDA <MDL—1.23 99.4±4.3 9Cl-PF3ONS <MDL 102.5±5.3 PFTrDA <MDL 99.6±5.0 11Cl-PF3OUdS <MDL 106.7±5.7 -
[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins [J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258 [2] ITRC. PFAS — Per- and Polyfluoroalkyl Substances [EB/OL]. [2021-7-1]. https: //pfas-1. itrcweb. org/.https://pfas-1.itrcweb.org/ [3] UNEP. Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty [EB/OL]. [2021-07-01]. http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/language/en-US/Default.aspx. [4] UNEP. The new POPs under the Stockholm Convention [EB/OL]. [2021-07-01]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx. [5] EESC. Opinion of the European Economic and Social Committee on the Proposal for a Directive of the European Parliament and of the Council relating to restrictions on the marketing and use of perfluorooctane sulfonates (amendment of Council Directive 76/769/EEC)[J]. Official Journal of the European Union, 2006(C 195): 10-13. [6] OECD. Organisation for Economic Co-operation and Development. Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts [R/OL]. [2021-07-01].https://www.oecd.org/chemicalsafety/risk-assessment/2382880.pdf. [7] USEPA. Risk Management for Per- and Polyfluoroalkyl Substances (PFAS) under TSCA [EB/OL].[2021-07-01]. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-and-polyfluoroalkyl-substances-pfass. [8] EC. Perfluorooctane sulfonate and its salts and certain other compounds regulations (PFOS regulations) [M/OL]. [2021-07-01].https://publications.gc.ca/site/eng/430879/publication.html. [9] GELLRICH V, STAHL T, KNEPPER T P. Behavior of perfluorinated compounds in soils during leaching experiments [J]. Chemosphere, 2012, 87(9): 1052-1056. doi: 10.1016/j.chemosphere.2012.02.011 [10] PETROVIC M, FARRÉ M, de ALDA M L, et al. Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples [J]. Journal of Chromatography A, 2010, 1217(25): 4004-4017. doi: 10.1016/j.chroma.2010.02.059 [11] BOYACı E, RODRÍGUEZ-LAFUENTE Á, GORYNSKI K, et al. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases [J]. Analytica Chimica Acta, 2015, 873: 14-30. doi: 10.1016/j.aca.2014.12.051 [12] ANASTASSIADES M, LEHOTAY S J, ŠTAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce [J]. Journal of AOAC INTERNATIONAL, 2003, 86(2): 412-431. doi: 10.1093/jaoac/86.2.412 [13] 陈瑞. 通过式净化UPLC-MS/MS法测定植物性食品中苯脲类、苯甲酰脲类和磺酰脲类农药残留[D]. 杭州: 浙江工业大学, 2018. CHEN R. Pass through purification-UPLC-MS/MS for the determination of phenylurea, benzoylurea and sulfonylurea pesticide residues in plant food[D]. Hangzhou: Zhejiang University of Technology, 2018 (in Chinese).
[14] 孟志娟, 黄云霞, 赵丽敏, 等. 气相色谱-串联质谱法测定水果中50种农药残留 [J]. 色谱, 2018, 36(9): 917-924. doi: 10.3724/SP.J.1123.2018.04011 MENG Z J, HUANG Y X, ZHAO L M, et al. Determination of 50 pesticide residues in fruits by gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(9): 917-924(in Chinese). doi: 10.3724/SP.J.1123.2018.04011
[15] 兰韬, 初侨, 郝东宇, 等. Sin-QuEChERS结合UPLC-MS/MS同时检测茶叶中10种有机磷农药残留 [J]. 质谱学报, 2019, 40(3): 268-279. doi: 10.7538/zpxb.2018.0123 LAN T, CHU Q, HAO D Y, et al. Simultaneously detection of 10 organophosphorus pesticides residues in tea by sin-QuEChERS with UPLC-MS/MS [J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(3): 268-279(in Chinese). doi: 10.7538/zpxb.2018.0123
[16] 郭丽丽, 赵悠悠, 花锦, 等. SinChERS-液质联用分析远志与葛根药材中的农药残留 [J]. 中药材, 2019, 42(4): 747-753. doi: 10.13863/j.issn1001-4454.2019.04.009 GUO L L, ZHAO Y Y, HUA J, et al. Analysis of pesticide residues in polygala tenuifolia and pueraria lobata by the technology of SinChERS combined with LC-MS [J]. Journal of Chinese Medicinal Materials, 2019, 42(4): 747-753(in Chinese). doi: 10.13863/j.issn1001-4454.2019.04.009
[17] CHEN J N, LIAN Y J, ZHOU Y R, et al. Determination of 107 pesticide residues in wolfberry with acetate-buffered salt extraction and sin-QuEChERS nano column purification coupled with ultra performance liquid chromatography tandem mass spectrometry [J]. Molecules, 2019, 24(16): 2918. doi: 10.3390/molecules24162918 [18] 中国纺织工业联合会. 纺织品禁用偶氮染料快速测定方法: T/CNTAC 20—2018[S]. 中国纺织工业联合会, 2018. CNTAC. Textile—Rapid determination method of the banned azo colorants: T/CNTAC 20—2018[S]. China National Textile And Apparel Council. 2018 (in Chinese).
[19] ZHANG Q X. Extraction structure, extraction module, and liquid pretreatment device: US10150065[P]. [2018-12-11].https://patents.justia.com/patent/10150065 [20] USEPA. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2[EB/OL].[2021-07-01].https://www.epa.gov/sites/default/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf/. [21] WANG P, LU Y L, WANG T Y, et al. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities [J]. Environmental Pollution, 2014, 190: 115-122. doi: 10.1016/j.envpol.2014.03.030 [22] ZHOU Y Q, MENG J, ZHANG M, et al. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? [J]. Environment International, 2019, 131: 104982. doi: 10.1016/j.envint.2019.104982 [23] HIGGINS C P, FIELD J A, CRIDDLE C S, et al. Quantitative determination of perfluorochemicals in sediments and domestic sludge [J]. Environmental Science & Technology, 2005, 39(11): 3946-3956. [24] HU A L, QIU M, LIU H, et al. Simultaneous determination of phthalate diesters and monoesters in soil using accelerated solvent extraction and ultra-performance liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2020, 1626: 461347. doi: 10.1016/j.chroma.2020.461347 [25] WANG C C, LU Y L, LI Q F, et al. Assessing the contribution of atmospheric transport and tourism activities to the occurrence of perfluoroalkyl acids (PFAAs) in an Alpine Nature Reserve [J]. Science of the Total Environment, 2019, 697: 133851. doi: 10.1016/j.scitotenv.2019.133851 [26] WANG P, WANG T Y, GIESY J P, et al. Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry Parks in China [J]. Chemosphere, 2013, 91(6): 751-757. doi: 10.1016/j.chemosphere.2013.02.017 [27] WANG P, LU Y L, WANG T Y, et al. Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China [J]. Journal of Hazardous Materials, 2016, 307: 55-63. doi: 10.1016/j.jhazmat.2015.12.059 [28] ZHANG M, WANG P, LU Y L, et al. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China [J]. Environment International, 2020, 135: 105347. doi: 10.1016/j.envint.2019.105347 [29] SONG L, HAN Y T, YANG J, et al. Rapid single-step cleanup method for analyzing 47 pesticide residues in pepper, chili peppers and its sauce product by high performance liquid and gas chromatography-tandem mass spectrometry [J]. Food Chemistry, 2019, 279: 237-245. doi: 10.1016/j.foodchem.2018.12.017 [30] GHISI R, VAMERALI T, MANZETTI S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review [J]. Environmental Research, 2019, 169: 326-341. doi: 10.1016/j.envres.2018.10.023