-
毒品属于精神活性物质,是一类使人体在吸收后产生生理和心理依赖的物质[1],主要包括阿片类的海洛因及吗啡(MOR)制品,可卡因、苯丙胺类的甲基苯丙胺(METH)、苯丙胺和摇头丸等[2-3],截至2020年底,联合国毒品和犯罪办公室及欧洲药物与成瘾监测中心(EMCDDA)共鉴定出1000余种精神活性物质[4-6]。根据《2021年世界毒品问题报告》的数据显示,去年全球约有2.75亿人接触过毒品,相比2010年增加了22%,在2019年,吸毒直接导致近50万人死亡,超过 5400 万人患精神障碍疾病或丧失生命[6],引发了极其严峻的全球公共卫生问题[7-9]。《2020年中国毒品形势报告》指出,由于疫情扩散蔓延,毒品泛滥态势仍然复杂但整体向好 ,截至2020年底,中国现有吸毒人员180.1万名,海洛因、冰毒等滥用品种仍维持较大规模[10],严重影响了社会治安并造成了极大的社会危害[11-15]。
毒品滥用是对公共卫生和社会安全的巨大威胁[16],并严重威胁着人体健康[17],毒品滥用趋势的实时预测和社会危害的准确评价是当前亟待解决的问题[18],基于污水流行病学发展而来的污水验毒技术恰好能够解决这一难题。冰毒和海洛因等传统毒品,经过人体吸食和代谢后,随着尿液排入各级污水处理系统并最终汇入环境。通过对环境样品的采集、处理和分析,可以直观获取环境中毒品母体及其代谢物的种类、浓度及变化趋势,结合数学模型计算,可反推目标区域的毒品滥用种类和滥用量[19]。该方法所得数据客观、时效性高,可用于不同区域横向比较,在估算传统毒品滥用量等方面发挥了巨大作用[20-24]。但在污水及河流等的传输过程中,由于本底因素复杂,目标物可能存在生物化学降解、吸附或其他转化过程[25]。不同水环境性质的差异对传统毒品及其代谢产物的稳定存在具有不同程度的影响[26]。Baker等[26]认为,中性水样中,METH具有较好的稳定性倾向[27]。但海洛因代谢产物6-单乙酰吗啡(6-MAM)非常不稳定,可进一步转化为MOR[28],在污水流行病学范畴内,海洛因的估算通常是以其代谢产物6-MAM作为标准进行的[29],但污水中,6-MAM的损失比例高达42%[26],从而该方法失效。张小寒[30]则认为pH值可通过影响水底质中悬浮物的表面电荷,使得水样中传统毒品含量测量值偏低。张春水等[31]认为,海洛因在碱性条件下会加速降解。此外,吕昱帆等[32]在其研究中发现盐析剂NaCl的使用对6-MAM及MOR的回收率具有不同程度的影响。
为明确水环境对METH、6-MAM和MOR的基质效应,本研究选取了山东省潍坊市11条不同河流的实际水样,测定相关水质参数,采用内标法和主成分分析法探讨基本水质参数对3种精神活性物质METH、6-MAM和MOR定量分析准确度的影响;设计不同梯度pH及氯离子浓度的模拟水样,加入定量METH、6-MAM和MOR并储存不同时间,测试分析其中目标物含量,验证pH、氯离子浓度及存储时间对3种精神活性物质检出浓度的影响。
河流水质参数对甲基苯丙胺、吗啡及6-单乙酰吗啡定量分析的影响
Effects of river water quality parameters on quantitative analysis of methamphetamine, morphine and 6-monoacetylmorphine
-
摘要: 近年来,起源于污水流行病学的污水验毒技术逐渐成为涉毒评估的主流技术,但是该方法也存在一定的局限性。由于水样本底因素的复杂性使得目标物存在吸附、降解等过程,从而导致其定量分析不准确。本文通过固相萃取-液相色谱-多级质谱(SPE-LC-MS/MS)联用技术,检测了山东省潍坊市11条河流中甲基苯丙胺、吗啡和6-单乙酰吗啡等3种精神活性物质加标前后的质量浓度及水质参数,主成分分析法(PCA)评估了基本水质参数对这3种目标物的定量分析的影响,并设计单因素实验验证了pH、氯离子浓度和存储时间的影响。结果表明:甲基苯丙胺在低氯离子浓度、中性及酸性条件下具有较好的稳定性;吗啡在中性条件下较稳定,6-单乙酰吗啡在高氯离子浓度和中性环境中稳定性较差。因此水质参数的影响在传统精神活性物质的分析过程中不能忽略,这可为相关精神活性物质的定量分析提供参考。Abstract: In recent years, the sewage drug detection technology originating from sewage epidemiology has gradually become the mainstream technology of drug assessment, but it has some limitations. Due to the complexity of water sample background factors, the target substance maybe undergoes adsorption, degradation, etc., resulting in inaccurate quantitative analysis. In this paper, the mass concentrations of methamphetamine, morphine and 6-monoacetylmorphine in 11 rivers and water quality parameters in Weifang City, Shandong Province were detected by SPE-LC-MS/MS before and after methamphetamine, morphine and 6-monoacetylmorphine standards were added; and the effects of basic water quality parameters on the quantitative analysis of these three target substances were evaluated by principal component analysis (PCA), and single factor experiments were designed to verify the effects of pH, Cl- concentration and storage time. The results show that methamphetamine has good stability at low Cl- concentration and under neutral and acidic conditions; morphine has stability under neutral condition, and 6-monoacetylmorphine has poor stability at high Cl- concentration and under neutral condition. Therefore, the influences of water quality parameters can not be ignored during analysis of traditional psychoactive substances, which can provide a reference for quantitative analysis of relevant psychoactive substances.
-
表 1 HPLC-MS流动相洗脱梯度
Table 1. HPLC-MS mobile phase elution gradient
时间/min
TimeA/% B/% 0.0 95 5 3.0 70 30 6.0 20 80 6.5 10 90 8.0 10 90 8.5 95 5 11.0 95 5 表 2 目标物测试质谱参数
Table 2. Mass spectral parameters of the target compound
化合物
Compound母离子
Parent ion定量离子
Quantitative ion定性离子
Qualitative ion保留时间/min
Retention timem/z m/z DP/V CE/V m/z DP/V CE/V MOR 286 152.1 82 55 165 82 32 2.73 MOR-D3 289.2 152.1 80 55 165 80 41 2.72 METH 150.1 91.1 30 16 119.1 30 16 4.62 METH-D8 158.2 93.2 40 19 124.2 40 10.3 4.59 6-MAM 328.1 165.3 90 36 211.3 90 36 4.35 6-MAM-D3 331.1 165.1 90 38.3 211.2 90 25 4.36 表 3 实验方法回收率、检出限及定量限
Table 3. Experimental methods Recovery rate, detection limit and quantitation limit
化合物
Compound加标浓度/(ng·L−1)
Added检出浓度/ (ng·L−1)
Found方法回收率/%
Method recovery检出限/(ng·mL−1) 定量限/(ng·mL−1) ILOD MLOD ILOQ MLOQ METH 400 377.0 94.25 0.2 0.0008 0.8 0.0032 300 304.9 101.63 100 102.6 102.60 6-MAM 400 384.2 96.05 0.2 0.0008 0.8 0.0032 300 283.7 94.57 100 101.4 101.4 MOR 400 418.0 104.50 0.2 0.0008 0.8 0.0032 300 294.8 98.27 100 102.3 102.3 表 4 样品水质参数
Table 4. Water quality parameters of the samples
样品名称
Sample name温度/℃
TemperaturepH 氯离子浓度/
(mg·L−1)
Chloride ion化学需氧量/
(mg·L−1)
COD氨氮/(mg·L−1)
NH4+-N高锰酸盐指数/
(mg·L−1)
Permanganate Index溶解氧/(mg·L−1)
DOYX 3.6 8.02 1.10×104 94.0 6.67 9.30 10.1 WS 7.0 8.27 9.09×102 9.50 3.81 11.6 9.50 BQ 2.6 8.34 2.25×102 24.0 1.22 6.70 13.1 GS 4.1 8.49 5.60×102 34.0 0.87 9.40 10.8 DH 2.6 8.50 1.30×103 41.0 0.89 10.0 11.6 BX 4.4 8.56 1.26×103 40.0 1.20 7.90 15.5 CZ 3.6 8.60 1.77×103 53.0 1.30 11.4 11.8 LZ -0.3 8.62 1.29×104 141 1.09 5.10 10.1 LX 0.6 8.64 1.24×104 126 0.88 10.5 14.0 XC 3.7 8.66 1.02×103 47.0 2.22 12.7 13.7 DX 4.3 8.68 1.13×103 39.0 1.08 10.5 14.2 表 5 样品加标前后三种毒品目标物的检出浓度
Table 5. Detected concentrations of three drug targets before and after labeling
样品名称
Sample nameMETH/(ng·L−1) MOR/(ng·L−1) 6-MAM/(ng·L−1) c1 c2 c1 c2 c1 c2 YX 3.19 90.61 n.d. 6.99 n.d. 1.67 WS 2.15 98.73 1.97 25.15 1.25 23.85 BQ 1.13 103.19 3.05 44.63 n.d. 47.25 GS 3.35 99.54 n.d. 42.98 3.29 42.25 DH n.d. 91.70 n.d. 21.36 n.d. 7.37 BX 2.73 94.57 n.d. 19.41 3.12 11.03 CZ n.d. 90.50 3.26 20.41 n.d. 3.34 LZ n.d. 90.27 2.91 7.13 n.d n.d LX 1.59 92.11 2.29 4.59 n.d. 1.91 XC 3.41 95.85 n.d. 24.33 n.d. 26.29 DX 1.28 94.95 3.01 23.97 n.d. 4.01 表 6 不同条件下模拟样品中目标物的检出浓度(ng·L−1)
Table 6. Detected concentration of target in simulated samples under different conditions (ng ·L−1)
条件梯度
Condition GradientMETH/
(ng·L−1)回收率/%
RecoveryMOR/
(ng·L−1)6-MAM/
(ng·L−1)MOR与6-MAM回收率/%
RecoverypH 2 84.05±10.21 81.92±9.95 42.44±2.52 150.35±3.86 94.88±3.13 4 85.45±16.65 83.28±16.23 50.71±16.99 136.71±6.03 92.19±11.27 7 85.88±3.03 83.7±2.95 63.87±1.22 117.78±5.75 89.3±3.44 10 68.32±9.19 66.59±8.96 54.42±3.62 150.78±11.71 100.95±7.54 氯化钠浓度/(g·L−1) 0 57.33±1.71 55.88±1.67 34.57±0.04 81.45±0.26 57.06±0.15 1 66.99±5.53 65.29±5.39 46.97±0.77 17.49±1.13 31.58±0.94 2 54.11±1.22 52.74±1.19 33.16±1.22 0 16.21±0.6 3 53.39±1.86 52.04±1.81 38.10±0.74 0 18.62±0.36 4 50.96±3.76 49.67±3.66 35.46±1.04 0 17.33±0.51 5 55.85±0.94 54.43±0.92 37.54±2.25 0 18.35±1.1 存储时间/h 12 102.60±4.29 100±4.18 73.26±6.35 202.54±2.87 135.68±4.52 24 79.59±6.29 77.57±6.13 61.15±4.24 137.83±5.43 97.85±4.75 36 67.29±4.10 65.58±4 47.47±3.05 128.44±9.03 86.53±5.94 48 62.64±2.80 61.05±2.73 49.65±2.60 115.97±7.38 81.45±4.91 72 61.85±2.92 60.28±2.85 27.12±1.24 97.78±6.17 61.47±3.65 120 57.89±3.23 56.42±3.15 29.93±3.72 92.24±4.47 60.11±4.02 -
[1] 魏英, 周波. 我国精神活性物质依赖治疗的现状及相关对策 [J]. 保健医学研究与实践, 2018, 15(6): 91-96. doi: 10.11986/j.issn.1673-873X.2018.06.025 WEI Y, ZHOU B. Current status and related countermeasures of psychoactive substance dependence treatment in my country [J]. Health Medicine Research and Practice, 2018, 15(6): 91-96(in Chinese). doi: 10.11986/j.issn.1673-873X.2018.06.025
[2] 李龙辉, 张建兵, 沈雯雯, 等. 苯丙胺类兴奋剂成瘾和成瘾严重认定标准的制订 [J]. 中国药物滥用防治杂志, 2015, 21(3): 125-128,132. doi: 10.15900/j.cnki.zylf1995.2015.03.001 LI L H, ZHANG J B, SHEN W W, et al. Establishment of Standards for Amphetamine-type Stimulant Addiction and Serious Addiction [J]. Chinese Journal of Drug Abuse Prevention and Treatment, 2015, 21(3): 125-128,132(in Chinese). doi: 10.15900/j.cnki.zylf1995.2015.03.001
[3] MEAD J, PARROTT A. Mephedrone and MDMA: A comparative review [J]. Brain Research, 2020, 1735: 146740. doi: 10.1016/j.brainres.2020.146740 [4] SALOUROS H. Illicit drug chemical profiling: Current and future state [J]. Australian Journal of Forensic Sciences, 2018, 50(6): 689-696. [5] 陈祥勇. 我国毒品违法犯罪综合治理对策研究[D]. 大连: 大连理工大学, 2016. CHEN X Y. Study on the comprehensive treatment of drug crimes in China[D]. Dalian: Dalian University of Technology, 2016 (in Chinese).
[6] BRIAN H. UNODC World Drug Report 2021[EB/OL]. [2021-06-24/2021-08-13].https://www.unodc.org/unodc/data-and-analysis/wdr2021. [7] RÖNKÄ S, KARJALAINEN K, VUORI E, et al. Personally prescribed psychoactive drugs in overdose deaths among drug abusers: A retrospective register study [J]. Drug and Alcohol Review, 2015, 34(1): 82-89. doi: 10.1111/dar.12182 [8] WODAK A. From failed global drug prohibition to regulating the drug market [J]. Addiction (Abingdon, England), 2018, 113(7): 1225-1226. doi: 10.1111/add.14111 [9] DAMIEN D A, THOMAS N, HÉLÈNE P, et al. First evaluation of illicit and licit drug consumption based on wastewater analysis in Fort de France urban area (Martinique, Caribbean), a transit area for drug smuggling [J]. Science of the Total Environment, 2014, 490: 970-978. doi: 10.1016/j.scitotenv.2014.05.090 [10] 马家佳. 2020年中国毒情形势报告[EB/OL]. [2021-07-16/2021-08-13]. http://www.nncc626.com/2021-07/16/c_1211244064.htm. MA J W. 2020 report on China’s drug situation [EB/OL]. [2021-07-16/2021-08-13]. http://www.nncc626.com/2021-07/16/c_1211244064.htm.
[11] 中国毒品问题治理的创新性举措[N]. 人民公安报, 2019-04-02(1). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CCND&filename=RMGA201904020012 [12] 刘志民, 贾振军, 贾忠伟, 等. 全国七地区14城市毒品问题评估报告 [J]. 中国药物依赖性杂志, 2017, 26(4): 309-318,324. doi: 10.13936/j.cnki.cjdd1992.2017.04.013 LIU Z M, JIA Z J, JIA Z W, et al. Investigation of the situation of drug abuse and evaluation of the scale of drug users in 14 cities in China [J]. Chinese Journal of Drug Dependence, 2017, 26(4): 309-318,324(in Chinese). doi: 10.13936/j.cnki.cjdd1992.2017.04.013
[13] 解启文, 黄墩, 李婧, 等. 毒品形势分析及检测方法研究 [J]. 自然杂志, 2017, 39(6): 437-444. doi: 10.3969/j.issn.0253-9608.2017.06.006 XIE Q W, HUANG D, LI J, et al. Study on drug situation analysis and detection methods [J]. Chinese Journal of Nature, 2017, 39(6): 437-444(in Chinese). doi: 10.3969/j.issn.0253-9608.2017.06.006
[14] 周帅. 我国毒品犯罪的研究热点及趋势分析 [J]. 云南警官学院学报, 2021(2): 32-37. doi: 10.3969/j.issn.1672-6057.2021.02.004 ZHOU S. Hotspots and trend of research on drug crimes in China [J]. The Journal of Yunnan Police College, 2021(2): 32-37(in Chinese). doi: 10.3969/j.issn.1672-6057.2021.02.004
[15] 张永礼. 我国防治合成毒品工作中面临的主要问题及对策 [J]. 湖北警官学院学报, 2015, 28(7): 127-131. doi: 10.3969/j.issn.1673-2391.2015.07.033 ZHANG Y L. he main problems and countermeasures in the prevention and control of synthetic drugs in my country [J]. Journal of Hubei University of Police, 2015, 28(7): 127-131(in Chinese). doi: 10.3969/j.issn.1673-2391.2015.07.033
[16] CHOU L W, CHANG K M, PUSPITASARI I. Drug abuse research trend investigation with text mining [J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 1030815. [17] HERNÁNDEZ F, CASTIGLIONI S, COVACI A, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater [J]. Mass Spectrometry Reviews, 2018, 37(3): 258-280. doi: 10.1002/mas.21525 [18] RINALDI R, BERSANI G, MARINELLI E, et al. The rise of new psychoactive substances and psychiatric implications: A wide-ranging, multifaceted challenge that needs far-reaching common legislative strategies [J]. Human Psychopharmacology, 2020, 35(3): e2727. [19] 郑晓雨, 袁明俊, 王德高, 等. 基于污水流行病学的毒情研判技术研究进展 [J]. 生态毒理学报, 2020, 15(4): 79-87. ZHENG X Y, YUAN M J, WANG D G, et al. Sewage epidemiology for drug situation assessment [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 79-87(in Chinese).
[20] 陈培培, 杜鹏, 周子雷, 等. 污水中新精神活性物质的分析方法优化及验证 [J]. 环境科学, 2018, 39(8): 3736-3743. doi: 10.13227/j.hjkx.201712251 CHEN P P, DU P, ZHOU Z L, et al. Optimization and validation of the analytical method to detect new psychoactive substances in wastewater [J]. Environmental Science, 2018, 39(8): 3736-3743(in Chinese). doi: 10.13227/j.hjkx.201712251
[21] LAI F Y, ORT C, GARTNER C, et al. Refining the estimation of illicit drug consumptions from wastewater analysis: Co-analysis of prescription pharmaceuticals and uncertainty assessment [J]. Water Research, 2011, 45(15): 4437-4448. doi: 10.1016/j.watres.2011.05.042 [22] LI J, HOU L L, DU P, et al. Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis [J]. Science of the Total Environment, 2014, 490: 724-732. doi: 10.1016/j.scitotenv.2014.05.042 [23] KHAN U, van NUIJS A L N, LI J, et al. Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities [J]. Science of the Total Environment, 2014, 487: 710-721. doi: 10.1016/j.scitotenv.2014.01.043 [24] ORT C, van NUIJS A L N, BERSET J D, et al. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis [J]. Addiction (Abingdon, England), 2014, 109(8): 1338-1352. doi: 10.1111/add.12570 [25] ROSI-MARSHALL E J, SNOW D, BARTELT-HUNT S L, et al. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems [J]. Journal of Hazardous Materials, 2015, 282: 18-25. doi: 10.1016/j.jhazmat.2014.06.062 [26] BAKER D R, KASPRZYK-HORDERN B. Multi-residue analysis of drugs of abuse in wastewater and surface water by solid-phase extraction and liquid chromatography-positive electrospray ionisation tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(12): 1620-1631. doi: 10.1016/j.chroma.2011.01.060 [27] LEE S, MIYAGUCHI H, HAN E, et al. Homogeneity and stability of a candidate certified reference material for the determination of methamphetamine and amphetamine in hair [J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53(4): 1037-1041. doi: 10.1016/j.jpba.2010.06.023 [28] HATTON M W, REGOECZI E. Studies of the metabolism of asialotransferrins: Nonspecific changes in the metabolic behaviour of human asialotransferrin in avians [J]. Canadian Journal of Biochemistry, 1976, 54(4): 336-340. doi: 10.1139/o76-049 [29] DU P, ZHOU Z L, BAI Y, et al. Estimating heroin abuse in major Chinese cities through wastewater-based epidemiology [J]. Science of the Total Environment, 2017, 605/606: 158-165. doi: 10.1016/j.scitotenv.2017.05.262 [30] 张小寒. 基于污水流行病学的精神活性物质消耗量计算及其在污水处理系统中的转化[D]. 广州: 华南理工大学, 2019. ZHANG X H. Consumption of psychoactive substances based on wastewater-based epidemiology and their transformation in wastewater treatment system[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
[31] 张春水, 王蔚欣, 黄星, 等. 不同pH条件下海洛因毒品的溶解性研究 [J]. 化学分析计量, 2010, 19(1): 63-64. doi: 10.3969/j.issn.1008-6145.2010.01.019 ZHANG C S, WANG W X, HUANG X, et al. Research OF heroin dissolution IN different pH condition [J]. Chemical Analysis and Meterage, 2010, 19(1): 63-64(in Chinese). doi: 10.3969/j.issn.1008-6145.2010.01.019
[32] 吕昱帆, 王继芬, 常靖, 等. 超高效液相色谱-串联质谱法检验腐败血中吗啡和6-单乙酰吗啡 [J]. 色谱, 2019, 37(1): 80-86. doi: 10.3724/SP.J.1123.2018.08004 LYU Y F, WANG J F, CHANG J, et al. Determination of morphine and 6-monoacetylmorphine in putrefied blood using ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(1): 80-86(in Chinese). doi: 10.3724/SP.J.1123.2018.08004
[33] 张春水, 王蔚昕, 黄星, 等. 海洛因毒品水解机理的探讨 [J]. 化学分析计量, 2010, 19(2): 45-47. doi: 10.3969/j.issn.1008-6145.2010.02.012 ZHANG C S, WANG W X, HUANG X, et al. Study on heroin hydrolysis mechanism [J]. Chemical Analysis and Meterage, 2010, 19(2): 45-47(in Chinese). doi: 10.3969/j.issn.1008-6145.2010.02.012