-
海洋生物污损是指海洋微生物、海洋植物和海洋动物大量附着生长在船舶、人工岛等海洋人工设施上,并对人类的经济活动造成危害的现象[1]。为防止或减少船舶生物污损,一般对船舶采取防污损处理技术,即在船体接触海水的表面涂上含防污杀生剂的涂料[2-3]。这些防污杀生剂会在海水中缓慢而均匀释放出来,从而抑制海洋污损生物的附着和生长[4]。
有机锡化合物是20世纪世界范围内使用最多的防污杀生剂。然而,这类化合物在水环境中持久性很强并对多种海洋非靶标生物具有严重毒性影响,甚至会威胁人类的健康[5-7]。因此,国际海事组织通过了《国际控制船舶有害防污底系统公约》,从而禁止了有机锡的使用[6]。公约已于2008年9月17日正式生效,成为强制性标准[8]。尽管有机锡已经被禁止了十多年,但由于其在全球禁令之前被广泛用于船舶,海洋中大量累积该类物质,并能在海洋中持久存在。此外,一些老旧船舶仍有可能将该类物质释放到海洋环境中。因此,有机锡化合物对水体的污染以及对水生生态环境的危害仍然是全球关注的问题[6].
随着有机锡的禁用,新型的船舶防污杀生剂如Irgarol 1051、敌草隆(diuron)、DCOIT、百菌清(chlorothalonil)和苯氟磺氨(dichlofluanid)等[7, 9-13] 在全球范围内大量使用。而新型的船舶生物杀伤剂对非靶标水生生物的毒性问题仍然存在,已有研究证明Irgarol 1051和敌草隆即使在ng·L−1浓度水平上亦会对海洋生物造成危害[14-15],这给海洋环境带来了新的威胁。因此,美国和欧盟已禁止将Irgarol 1051和敌草隆用于船舶防污涂料。
近年来随着航海事业的迅速发展,船舶防污杀生剂被广泛使用已导致在世界范围内的许多港口和码头的水、沉积物和生物体中都检出了较高的浓度。然而,水环境中微量船舶防污杀生剂浓度就会在许多非靶标生物中引发毒性影响[1, 16],并对当地的水生生态环境产生潜在的危害。基于此,本文全面综述了三丁基锡、Irgarol 1051、敌草隆、DCOIT、百菌清和苯氟磺胺等6种典型船舶防污杀生剂的基本性质、对非靶标水生生物的毒性效应、以及在全球水环境中的分布特征。
船舶防污杀生剂的水生生物毒性和近海海域分布特征研究进展
Occurrence and aquatic organism toxicity of antifouling biocides in coastal environment
-
摘要: 近年来,有关船舶防污杀生剂在水环境中的分布及生态影响已经引起了人们的广泛关注。本文对2005—2020年间全球水环境中6种典型船舶防污杀生剂(三丁基锡、Irgarol 1051、DCOIT、敌草隆、百菌清、苯氟磺胺)研究工作进行了调研和梳理,总结了典型船舶防污杀生剂的基本性质、非靶标水生生物的毒性效应、以及在水体环境中的分布特征。毒性作用结果显示,三丁基锡(TBT)是一种毒性很强的内分泌干扰化合物,会影响所有营养级的水生生物,并可能通过饮食摄入受污染的海产品进而对人体健康产生影响。Irgarol 1051、敌草隆、百菌清和DCOIT仅对生产者具有较强的毒性,而苯氟磺胺对水生生物的毒性则相对较小。对水生生物毒性的敏感性可归纳为TBT > Irgarol 1051 > DCOIT > 敌草隆 > 百菌清 > 苯氟磺胺。水环境中主要的船舶防污杀生剂为TBT、Irgarol 1051和敌草隆。亚洲和南美洲沿海地区的污染最为严重,并主要集中在港口、造船厂、渔港和码头等船舶活动频繁地区。尽管TBT已经禁止使用了10多年,但在韩国造船厂附近的沉积物中浓度高达2304 ng·g−1。在水环境中和选定的海洋生物中检测到较高的船舶防污杀生剂证明了这些化合物在航运系统的广泛应用,并对海洋生态系统造成威胁。因此,未来的工作中需要对船舶防污杀生剂进行持续的调查并结合各地区水生生物毒性特性,进行系统的生态风险评价,为制定切实可行的海洋生态环境保护措施提供科学依据。Abstract: In recent years, the distribution and ecological effects of marine antifouling biocides in the aquatic environment have attracted a lot of attention. In this paper, we investigated and reviewed six typical marine antifouling biocides in the global water environment during 2005—2020, and summarized the basic properties, toxic effects on non-target aquatic organisms, and distribution characteristics of typical marine antifouling biocides in the water environment. The toxicological effects showed that tributyltin (TBT) is a highly toxic endocrine-disrupting compound that affects aquatic organisms at all trophic levels and may affect human health through dietary intake of contaminated seafood. Irgarol 1051, diuron, chlorothalonil and DCOIT are only highly toxic to producers, while dichlofluanid is relatively less toxic to aquatic organisms. The sensitivity of toxicity to aquatic organisms can be summarized as TBT > Irgarol 1051 > DCOIT > diuron > chlorothalonil > dichlofluanid. The major marine antifouling biocides in the aquatic environment are TBT, Irgarol 1051 and diuron. The pollutions in Asia and South America are most serious, especilly in the ports, shipyards, and docks with frequently ship activities. Although TBT has been banned for more than 10 years, the level in the shipyards sediment were as high as 2304 ng·g−1 in Korea. The detection of high levels of ship antifouling biocides in the aquatic environment and in selected marine organisms attests to the widespread use of these compounds in shipping systems and the threat they pose to marine ecosystems. Therefore, future work is needed to conduct a systematic ecological risk evaluation by continuously investigating ship antifouling biocides and combining them with the toxicity characteristics of aquatic organisms in each region, so as to provide a scientific basis for developing practical marine ecological protection measures.
-
Key words:
- antifouling biocides /
- toxic effect /
- environmental distribution
-
表 1 船舶防污杀生剂的理化性质
Table 1. Physicochemical properties of marine antifouling biocides
船舶防污
杀生剂
Antifouling
biocidesCAS 分子量
Relative
molecular
mass分子式
Molecular
formulalg Kow 海水半
衰期/d
Half-lives
in water沉积物
半衰期/d
Half-Lives
in sediment溶解度/
(mg·L−1)
Solubility
in water毒性作用方式
Toxicity mode
of action三丁基锡 1461-22-9 290.05 C12H27ClSn 4.1 6—120 440—1500 5—50 内分泌干扰效应 Irgarol 1051 28159-98-0 253.37 C11H19N5S 2.38—4.1 100—350 100—200 6.0—7.0 抑制PSⅡ电子传递 敌草隆 330-54-1 233.09 C9H10Cl2N2O 2.82 30—365 14 35—42 抑制PSⅡ电子传递 百菌清 1897-45-6 265.91 C8Cl4N2 2.64—4.4 1.8—8 <1—8 0.6—0.9 抑制线粒体电子转运 DCOIT 64359-81-5 282.23 C11H17Cl2NOS 2.85 1—13 <1 14 抑制电子传递 苯氟磺胺 1085-98-9 333.23 C9H11Cl2FN2O2S2 2.8—3.7 0.12—0.75 7 0.006—1.3 抑制线粒体电子转运 表 2 船舶防污杀生剂对非靶标海洋生物的毒性
Table 2. Toxicity of marine antifouling biocides to non-target marine organisms
船舶防污杀生剂
Antifouling biocides生物
Organism物种
Species毒性终点
Endpoint数值/(mg·L−1)
Value参考文献
Reference三丁基锡 藻类 班氏金针菜 48 h EC50 0.00016 [20] 藻类 卵囊藻 72 h EC50 0.003 [50] 无脊椎动物 普通海胆 48 h EC50 0.000309 [5] 无脊椎动物 玻璃海鞘 48 h EC50 0.0071 [5] 甲壳类动物 凶猛片钩虾 96 h LC50 0.0094 [51] 甲壳类动物 猛水蚤 96 h LC50 0.018 [51] 甲壳类动物 长臂虾 24 h LC50 0.0223 [43] 甲壳类动物 阿玛猛水蚤 96 h LC50 0.013 [43] 甲壳类动物 宽水蚤 72 h LC50 0.0006 [5] 甲壳类动物 溞 48 h EC50 0.00001 [52] 鱼类 青鳉 96 h LC50 0.025 [51] 鱼类 罗非鱼 96 h LC50 0.0038 [28] 鱼类 金头鲷 24 h LC50 0.0283 [28] Irgarol 1051 藻类 栅藻 48 h EC50 0.00113 [1] 藻类 角毛藻 72 h EC50 0.0011 [50] 无脊椎动物 普通海胆 48 h EC50 4.021 [43] 无脊椎动物 贻贝 48 h EC50 1.54 [41] 无脊椎动物 中间球海胆 48 h EC50 1.05 [38] 无脊椎动物 黄海胆 48 h EC50 0.4125 [48] 甲壳类动物 凶猛片钩虾 96 h LC50 1 [48] 甲壳类动物 草虾 96 h LC50 1.52 [38] 鱼类 虹鳟 96 h LC50 3.22 [53] 鱼类 大海鲢 96 h LC50 0.79 [53] 鱼类 美洲原银汉鱼 96 h LC50 3.5 [1] 鱼类 蓝鳃太阳鱼 96 h LC50 1.58 [1] 鱼类 斑马鱼 96 h LC50 2.6 [1] 鱼类 栅藻 96 h LC50 4 [1] 敌草隆 藻类 赫氏圆石藻 72 h EC50 0.002 [51] 藻类 等鞭金藻 96 h EC50 0.00373 [51] 藻类 骨条藻 96 h EC51 0.0103 [51] 藻类 多毛藻 96 h EC52 0.00042 [54] 藻类 杜氏藻 24 h EC50 0.035 [54] 刺胞类动物 海月水母 10 d LC50 0.00478 [15] 甲壳类动物 剑水蚤 96 h LC50 11 [15] 甲壳类动物 锯齿长臂虾 24 h LC50 3.04 [15] 甲壳类动物 卤虫 24 h LC50 10.3 [55] 甲壳类动物 卤虫 48 h LC50 6.14 [56] 甲壳类动物 卤虫 72 h LC50 2.76 [56] 甲壳类动物 汤氏纺锤水蚤 48 h LC50 1.08 [56] 甲壳类动物 糠虾期 96 h LC50 0.589 [1] 甲壳类动物 小甲壳动物 96 h LC50 7.06 [57] 棘皮动物 普通海胆 48 h EC50 2.39 [57] 棘皮动物 喇叭海胆 24 h EC50 3.33 [57] 鱼类 青鳉鱼 96 h LC50 7.8 [57] 鱼类 大海鲢 96 h LC50 0.89 [57] DCOIT 藻类 小球藻 24 h EC50 0.089 [58] 藻类 赫氏艾密里藻 72 h EC50 0.0004 [43] 藻类 三角褐指藻 72 h EC50 0.04 [43] 藻类 球等鞭金藻 72 h EC50 0.032 [59] 双壳类 鸟蛤 96 h LC50 0.325 [59] 甲壳类动物 红虾 96 h LC50 0.016 EPA 甲壳类动物 汤氏纺锤水蚤 72 h EC50 0.038 EPA 甲壳类动物 卤虫 48 h LC50 0.318 EPA 甲壳类动物 糠虾 96 h LC50 0.005 EPA 甲壳类动物 沙蟹 96 h LC50 1.31 [57] 甲壳类动物 剑水蚤 24 h EC50 0.03 [57] 甲壳类动物 长臂虾 96 h LC50 1.31 [57] 甲壳类动物 剑水蚤 24 h LC50 0.077 [57] 甲壳类动物 拟糠虾 96 h LC50 0.008 [41] 甲壳类动物 日本对虾 96 h LC50 0.013 [41] 棘皮动物 普通海胆 48 h LC50 0.025 [41] 棘皮动物 球海胆幼虫 48 h EC50 0.012 [41] 棘皮动物 黄海胆幼虫 53 h EC50 0.001 [60] 鱼类 红鳍东方鲀 96 h LC50 0.006 [60] 鱼类 杂色鱂 96 h LC50 0.023 [60] 鱼类 真鲷 96 h LC50 0.005 [60] 鱼类 底鳉 96 h LC50 0.005 [60] 百菌清 藻类 多毛藻 96 h IC50 0.064 [1] 环节动物 华美盘管虫 48 h LC50 0.012 [1] 甲壳类动物 指虾蛄 48 h LC50 0.56 [1] 甲壳类动物 指虾蛄 96 h LC50 0.14 [51] 甲壳类动物 指虾蛄 48 h EC50 0.17 [51] 甲壳类动物 剑水蚤 24 h LC50 0.098 [51] 甲壳类动物 剑水蚤 96 h LC50 0.091 [51] 甲壳类动物 凶猛片钩虾 96 h LC50 0.067 [51] 甲壳类动物 卤虫 48 h LC50 2.68 [51] 甲壳类动物 草虾 96 h LC50 0.153 [61] 甲壳类动物 草虾 48 h LC50 0.204 [62] 甲壳类动物 桃红对虾 96 h LC50 0.162 [14] 甲壳类动物 剑水蚤 24 h EC50 0.016 [62] 甲壳类动物 日本囊对虾 96 h LC50 0.29 [62] 鱼类 青鳉 96 h LC50 0.11 [55] 鱼类 杂色鱂 96 h LC50 0.032 [57] 鱼类 三刺鱼 96 h LC50 0.027 [57] 鱼类 黄尾平口石首鱼 48 h LC50 0.032 [57] 鱼类 底鳉 96 h LC50 0.06 [57] 苯氟磺胺 藻类 三角褐指藻 72 h EC50 0.193 [57] 藻类 糖海带 3 h NOEC 0.00001 [63] 甲壳类动物 汤氏纺锤水蚤 48 h LC10 0.017 [63] 甲壳类动物 卤虫 48 h LC50 154 [63] 棘皮动物 普通海胆 48 h EC50 0.282 EPA 棘皮动物 黄海胆 53 h EC50 0.177 [14] 鱼类 舌齿鲈 96 h EC50 0.015 [48] 鱼类 黄尾平口石首鱼 24 h LC50 0.032 [48] 表 3 近海水体中船舶防污杀生剂的分布特征
Table 3. Distribution characteristics of antifouling biocides in offshore waters
船舶防污杀生剂
Antifouling biocides采样点
Sampling point采样时间
Sampling time浓度范围(中值)/ (ng·L−1)
Concentration range (median)参考文献
Reference三丁基锡 西班牙北海 2006 0.3—17.0 (4.6) [5] 印度果阿海 2006 0.5—126.2 (19) [99] 中国台湾高雄港 2006 90—480 (285) [67] 印度东海 2007 4—55 (14) [65] 日本沿海 2007 11.0—74.0 (15.5) [5] 威尼斯泻湖 2007 27.4—65.8 (46.6) [100] 希腊沿海 2007 ND.—191.9 (20.3) [70] 印度西海 2008 0.1—103 (16.2) [65] 中国厦门沿海 2008 5.28—384 (16) [101] 格丁尼亚港口 2009 12.9—110.2 (60.7) [102] 巴西南部沿海 2009—2010 ND.—175 (76) [71] 巴西东南部沿海 2009—2010 ND.—175 (54) [71] 韩国西部沿海 2010 ND.—63.4 (7.02) [64] 韩国东部沿海 2010 ND.—18.1 (3.69) [64] 韩国南部沿海 2010 ND.—51.2 (2.16) [64] 沙特沿海 2010 140—1900 [66] 中国台湾沿海 2011 16.8—273.3(52.7) [103] 意大利南亚得里亚海 2012 12—110 (50) [68] 阿尔巴尼亚沿海 2012 5—44 (24) [68] 波兰格丁尼亚港 2012 10.32—191.7 (25.9) [104] 南非开普敦港 2013 0.1—111.3 (9.7) [72] 中国台湾高雄港
德国和波罗的海中部沿海2014
201550.7—93.5 (11.6)
2.5—380(95.5)[105]
[69]韩国蔚山沿海 2014—2015 < 1—51.8 (13.3) [71] 韩国釜山沿海 2014—2015 < 1—69.9 (22) [71] 韩国光阳市沿海 2014—2015 3.25—24.6 (8.35) [71] 尼日利亚拉各斯港雨季 2016—2018 ND.—52.8 (7.8) [8] 尼日利亚拉各斯港旱季 2016—2018 ND.—6 (0.3) [8] 中国三峡 2018 21.0—222.1 (67) [106] 斯里兰卡沿海 2020 21.8—310.4 (166.1) [107] Irgarol 1051 中国香港沿海 2005 110—1620 (640) [86] 佛罗里达州 迈阿密码头 2008 20—66 (35) [73] 佛罗里达州 基拉戈港 2008 7—102 (35) [73] 美国加利福尼亚海域 2008 2—254 (67) [74] 澳大利亚沿海 2008 ND.—6 (5) [74] 西班牙大加那利亚海港 2008—2009 2.4—146.5 (51.6) [108] 巴西南部沿海 2009 <1.3—21 (4) [78] 韩国渔港 2009—2010 0.9—14.1 (4.0) [109] 意大利那不勒斯海湾 2010 0.8—134.5 (27.2) [13] 意大利拉斯佩齐亚湾 2010 <0.2—9.7 (4.1) [13] 韩国(马山、行岩、高贤)海湾 2010 ND.—11.5 (4.6) [90] 韩国西海 2010 ND.—63.37 (11.82) [64] 韩国东海 2010 ND.—51.15 (1.07) [64] 韩国南海 2010 ND.—18.06 (8.29) [64] 美国夏威夷瓦胡岛海域 2011 <17—283 (58.6) [75] 意大利南亚得里亚海 2012 0.6—16.1 (9.2) [68] 阿尔巴尼亚南亚得里亚海 2012 <0.2—9.3 (3.3) [68] 法国布列塔尼 2012 0—14 (6) [82] 马来西亚沿海 2012 ND.—2021 (471) [110] 日本库尔港 2012 ND.—740 (59) [85] 日本广岛港 2012 ND.—1050 (27) [85] 日本尾道港 2012 ND.—140 (22) [85] 日本神户港 2012 ND.—1850 (36) [85] 法国阿卡雄湾 2013 2.5—22 (12) [111] 波斯湾布什尔港口 2013 <1.0—63 (13.1) [84] 意大利阿普利亚海域 2014 0.5—18.1 (5.8) [88] 阿尔巴尼亚海域 2014 0.5—1.2 (0.8) [88] 巴西伊塔基港 2014 10—4800 (370) [77] 加拿大 五大湖流域 2016 ND.—3 (1) [76] 坦桑尼亚桑给巴尔岛海域 2016 1.35—15.44 (4.11) [80] 巴拿马沿海 2016 <0.3—5 (2.6) [79] 韩国光阳、釜山和蔚山海湾 2016 < 0.12—2.05 (0.15) [11] 日本濑户内海 2016 ND.—9 (3) [112] 韩国沿海 2016 ND.—318.5 (13.6) [23] 瑞典沿海水域 2017 <0.2—8.0 (0.25) [83] 巴西圣马科斯湾 2018 ND.—89.5 (15.6) [10] 丹麦码头 2019 ND.—1.78 (0.66) [81] 敌草隆 加利福尼亚海域 2008 <2—68 (35) [74] 西班牙大加那利岛港口 2008—2009 2.4—203.7 (74.4) [108] 巴西里约热内卢格兰德岛沿海 2009 <1.3—6 [10] 韩国海湾、渔港和港口 2009—2010 13—1360 (200) [90] 意大利那不勒斯湾 2010 <1.0—34.8 (22.2) [13] 意大利拉斯佩齐亚湾 2010 <1.0—28.2 (11.7) [13] 巴西伊塔基港 2011 <6—7800 [77] 比利时北海 2011 ND.—263 (108) [113] 布列塔尼维莱因湾 2012 ND.—88 (35) [82] 阿尔巴尼亚南亚得里亚海 2012 1.9—93.9 (33.3) [68] 意大利南亚得里亚海 2012 12.4—583.5 (68.9) [68] 日本库尔港 2012 ND.—1780 (59) [85] 日本广岛港 2012 ND.—1700 (23) [85] 日本尾道港 2012 ND.—2120 (61) [85] 日本神户港 2012 ND.—2030 (32) [85] 马来西亚半岛沿海 2012 1—285 (43) [21] 西班牙东北部沿海 2012 2.4—818 (99.7) [89] 法国阿卡雄湾 2013 5—40 (20) [111] 波斯湾布什尔港口 2013 ND.—29.1 (13.6) [84] 意大利阿普利亚沿海 2014 ND.—160.0 (15.8) [88] 阿尔巴尼亚沿海 2014 ND.—15.0 (7.4) [88] 澳大利亚布里斯班入海口 2015 1.0—56.8 (28.9) [87] 澳大利亚亚拉入海口 2015 1—38.8 (19.9) [87] 澳大利亚悉尼入海口 2015 15.1—96.7 (55.9) [87] 中国长三角洲 2016 1.7—107.2 (14.8) [91] 巴拿马沿海 2016 <2.7—70 (35.6) [79] 巴西圣马科斯湾 2016 <1.4—22 (7.5) [10] 韩国蔚山沿海 2016 2.41—90.4 (24.1) [11] 韩国釜山沿海 2016 < 0.31—41.9 (16.3) [11] 韩国光阳市沿海 2016 11.9—96.2 (29.4) [11] 日本西部濑户内海 2016 ND.—535 (307) [112] 韩国沿海 2016 ND.—55.2 (20) [23] 西班牙巴斯克沿海 2017 4—81 (14) [114] DCOIT 英国南安普顿 2000 <1 [94] 德国沿海 2002 ND.—49 [70] 日本大阪港 2002—2003 <0.3—4 [115] 丹麦沿海 2004 <5—283 [95] 日本迈祖鲁湾 2007 <0.3 [116] 韩国沿海 2009—2010 ND.—6 [90] 日本广岛湾 2010 0.1—53 (3.2) [117] 日本沿海 2010 1—3700 [117] 韩国蔚山沿海 2016 < 0.16 [11] 韩国釜山沿海 2016 < 0.16 [11] 韩国光阳市沿海 2016 <0.16—2.44 (0.17) [11] 韩国沿海 2016 ND.—144.5 (14.3) [90] 中国长江三角洲 2016 13.73—226.23 (66.05) [91] 百菌清 希腊沿海 2002 ND.—63 (30) [70] 加拿大沿海 2007 ND.—80 (40) [98] 日本沿海 2008 ND.—1.1 (0.5) [118] 卢森堡 2010 ND.—25 (11) [96] 韩国西部沿海 2010 (29.78) [64] 韩国东部沿海 2010 (8.49) [64] 韩国南部沿海 2010 (29.77) [64] 日本沿海 2010 ND.—1380 (68) [92] 韩国沿海 2013 ND.—318.5 (13.6) [23] 泰国北部沿海 2014 20—410 (105) [97] 苯氟磺胺 英国南海 2006 <1 [119] 南加州圣地亚哥 2006 <10 [120] 美国维尔京群岛 2006 <1 [121] 澳大利亚珀斯沿海 2008 <100 [13] 意大利沿海 2010 <1.0 [13] 卢森堡 2010 ND.—45 (7) [96] 韩国西部沿海 2010 (21.77) [64] 韩国东部沿海 2010 (8.5) [64] 韩国南部沿海 2010 (78) [64] 日本沿海 2010 1—760 (110) [13] 西班牙沿海 2013 <30 [13] 韩国沿海 2013 ND.—318.5 (13.6) [23] 澳大利亚东海岸 2015 <0.1 [87] 丹麦码头 2019 ND.—19.78 [81] ND.,未检出. ND., not detected. 表 4 近海沉积物船舶防污杀生剂分布特征
Table 4. Distribution characteristics of antifouling biocides for ships in offshore sediments
船舶防污杀生剂
Antifouling biocides采样点
Sampling point采样时间
Sampling time浓度范围(中值)/(ng·g−1)
Concentration range (median)参考文献
Reference三丁基锡 葡萄牙 2005 0.2—72 (41) [130] 印度东海岸 2007 2.7—351.0 (65.8) [65] 印度西海岸 2008 11.0—943.4 (131.6) [65] 中国台湾高雄港 2009 1.4—76.8 (30.7) [125] 巴西东南部 2009—2010 ND.—279 (33) [71] 巴西东北部 2011 8.2—929.7 (150.8) [135] 中国台湾沿海 2011 9—1866.6 (23.6) [103] 撒丁岛 2011—2012 204.3 [136] 突尼斯沿海 2011—2012 16.7 [136] 葡萄牙沿海 2011—2012 7.1 [136] 秘鲁沿海 2012 143.2—469.0 (195.2) [123] 波兰格丁尼亚港 2012 134—6741 (4400) [104] 法国卡马格港 2012 13.7—1947.1 (120) [129] 印度尼西亚沿海 2012 160—3502 [131] 中国三峡水库 2012—2013 3.3—17.0 (9.2) [137] 中国近岸倾倒区 2012—2013 4.83—1334 [128] 南非开普敦港口 2013 10—829 (27) [72] 阿根廷巴伊亚布兰卡 2013 7.68—100.8 (57.1) [138] 中国南杭州湾 2013 ND.—42.2 (22.4) [126] 韩国蔚山沿海 2014—2015 < 0.1—34.5 (2.73) [127] 韩国釜山沿海 2014—2015 < 0.1—56.9 (6.54) [127] 韩国光阳市沿海 2014—2015 < 0.1—36.7 (3.41) [127] 韩国造船厂 2014—2015 < 0.1—2304 (172) [11] 委内瑞拉加勒比海 2015 156.3—1417.8 [122] 德国沿海 2015 1.97—8.3 (2.5) [69] 泼罗的海中部 2015 2.41—380 (95.5) [69] 中国台湾高雄港航道 2015 3.3—307.1 (81.4) [105] 中国长江口 2015—2016 ND.—28.8 [139] 智利沿海 2016 3.3—334.6 (4.38) [124] 尼日利亚拉各斯港雨季 2016—2018 0.01—7.56 (6.24) [8] 尼日利亚拉各斯港旱季 2016—2018 ND.—2.98 (2.230) [8] 智利北海 2017 247.9—1651.7 (531.8) [124] 波罗的海南部沿海 2018 10.1—5325.7 (334.6) [140] 南非沿海 2018 932.4 [141] 桑托斯港 2020 1.4—1886.8 (383.9) [134] 斯里兰卡沿海 2020 15.6—111.1 (63.3) [107] Irgarol 1051 美国加利福尼亚 2008 <0.3—8.9 (1.4) [74] 印度尼西亚 2012 61—76 (63) [131] 伊朗沿海 2013 ND.—35.4 (6.8) [84] 巴西帕托斯 2014 ND.—17.8 [142] 韩国沿海 2015 ND.—230 (39) [127] 巴西圣马科斯湾 2016 ND.—9.2 (1.2) [10] 韩国蔚山沿海 2016 < 0.02—1.61 (0.14) [11] 韩国釜山沿海 2016 < 0.02—5.04 (0.59) [11] 韩国光阳市沿海 2016 < 0.02—7.79 (0.68) [11] 巴拿马沿海 2016 ND.—2.8 [79] 巴拿马沿海地区 2018 0.08—2.8 (0.35) [9] 巴西东北部 2019 1.0—89.7 (12) [143] 丹麦码头 2019 20.13 ± 9.11 [81] 南美洲桑托斯港 2020 < 0.5 [134] 敌草隆 加利福尼亚游艇码头 2008 <0.3—4.2 (1.0) [74] 澳大利亚昆士兰州北部 2008 0.3—11.0 (7.8) [132] 韩国沿海 2009—2010 2.3—62.3 (31) [109] 印度尼西亚 2012 410—740 (574) [131] 阿根廷巴伊亚布兰
韩国沿海2013
20157800
6.9—46 (39)[33]
[127]巴西圣马科斯湾 2016 ND.—15.0 (5.4) [10] 韩国蔚山湾 2016 0.42—9.05 (4.01) [127] 韩国釜山湾 2016 < 0.06—60.7 (12.1) [127] 韩国光阳市沿海 2016 < 0.06—140 (17.8) [127] 日本濑户内海 2016 897 ± 215 (1280) [112] 巴拿马运河 2018 14.1 ± 1.3 [9] 巴西东北部沿海 2019 <5.0—55.2 (10.2) [143] 南美洲桑托斯港 2020 < 0.5—9.9 (2.3) [134] DCOIT 丹麦沿海 2004 <20 [95] 越南沿海 2006 0.09—2.4 (1.3) [22] 日本大田湾 2007 <0.04—150 (1.8) [92] 日本迈祖鲁湾 2007 <0.04—7.2 [117] 印度尼西亚 2012 53—110 (79) [131] 美国沿海 2013 <0.3—4.2 [74] 韩国沿海 2015 ND.—281 (61) [127] 韩国蔚山沿海 2016 < 0.03—2.17 (0.65) [11] 韩国釜山沿海 2016 < 0.03—110 (11.1) [11] 韩国光阳市 2016 < 0.03—117 (9.48) [11] 巴西西南沿海码头 2017 0.13 ± 0.03 [144] 巴拿马沿海 2018 <0.38—81.6 (5.7) [9] 南美洲桑托斯港 2020 < 0.2—74.6 (8.5) [134] 百菌清 韩国沿海 2015 1.2—1065 (22) [127] 南美洲桑托斯港 2020 < 0.1—9.2 (1.4) [134] 苯氟磺胺 印度尼西亚 2012 <0.4—80 (45) [131] 丹麦码头 2019 1.98 ± 1.77 [81] 南美洲桑托斯港 2020 < 2.1—16.0 (0.7) [134] ND.,未检出. ND., not detected. -
[1] AMARA I, MILED W, SLAMA R B, et al. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review [J]. Environmental Toxicology and Pharmacology, 2018, 57: 115-130. doi: 10.1016/j.etap.2017.12.001 [2] ABBOTT A, ABEL P D, ARNOLD D W, et al. Cost-benefit analysis of the use of TBT: The case for a treatment approach [J]. Science of the Total Environment, 2000, 258(1/2): 5-19. [3] XIE Q Y, PAN J S, MA C F, et al. Dynamic surface antifouling: Mechanism and systems [J]. Soft Matter, 2019, 15(6): 1087-1107. doi: 10.1039/C8SM01853G [4] TORNERO V, HANKE G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas [J]. Marine Pollution Bulletin, 2016, 112(1/2): 17-38. [5] ANTIZAR-LADISLAO B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review [J]. Environment International, 2008, 34(2): 292-308. doi: 10.1016/j.envint.2007.09.005 [6] DAFFORN K A, LEWIS J A, JOHNSTON E L. Antifouling strategies: History and regulation, ecological impacts and mitigation [J]. Marine Pollution Bulletin, 2011, 62(3): 453-465. doi: 10.1016/j.marpolbul.2011.01.012 [7] CASTRO Í B, MACHADO F B, de SOUSA G T, et al. How protected are marine protected areas: A case study of tributyltin in Latin America [J]. Journal of Environmental Management, 2021, 278: 111543. doi: 10.1016/j.jenvman.2020.111543 [8] BASHEERU K A, OKORO H K, ADEKOLA F A, et al. Speciation and quantification of organotin compounds in Lagos harbour, Nigeria [J]. International Journal of Environmental Analytical Chemistry, 2020: 1-20. [9] BATISTA-ANDRADE J A, CALDAS S S, BATISTA R M, et al. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama [J]. Environmental Pollution, 2018, 234: 243-252. doi: 10.1016/j.envpol.2017.11.063 [10] VIANA J L M, DINIZ M D S, SANTOS S R V D, et al. Antifouling biocides as a continuous threat to the aquatic environment: Sources, temporal trends and ecological risk assessment in an impacted region of Brazil [J]. Science of the Total Environment, 2020, 730: 139026. doi: 10.1016/j.scitotenv.2020.139026 [11] LAM N H, JEONG H H, KANG S D, et al. Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: Contamination profiles and risk assessment [J]. Marine Pollution Bulletin, 2017, 121(1/2): 302-312. [12] LEE S, LEE Y W. Determination of the concentrations of alternative antifouling agents on the Korean coast [J]. Marine Pollution Bulletin, 2016, 113(1/2): 253-257. [13] ANSANELLI G, MANZO S, PARRELLA L, et al. Antifouling biocides (Irgarol, Diuron and dichlofluanid) along the Italian Tyrrhenian coast: Temporal, seasonal and spatial threats [J]. Regional Studies in Marine Science, 2017, 16: 254-266. doi: 10.1016/j.rsma.2017.09.011 [14] JUNG S M, BAE J S, KANG S G, et al. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae [J]. Marine Pollution Bulletin, 2017, 124(2): 811-818. doi: 10.1016/j.marpolbul.2016.11.047 [15] DUPRAZ V, STACHOWSKI-HABERKORN S, MÉNARD D, et al. Combined effects of antifouling biocides on the growth of three marine microalgal species [J]. Chemosphere, 2018, 209: 801-814. doi: 10.1016/j.chemosphere.2018.06.139 [16] MARTINS S E, FILLMANN G, LILLICRAP A, et al. Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems [J]. Biofouling, 2018, 34(1): 34-52. doi: 10.1080/08927014.2017.1404036 [17] GAO J M, FU P T, CHEN X L, et al. Fate simulation and risk assessment of TBT and TPhT considering water level fluctuations in the TGR before and after AFS Convention implementation in China [J]. Environmental Sciences Europe, 2020, 32(2): 23-36. [18] HASSAN A T, QURBAN M, MANIKANDAN K, et al. Assessment of the organotin pollution in the coastal sediments of the Western Arabian Gulf, Saudi Arabia [J]. Marine Pollution Bulletin, 2019, 139: 174-180. doi: 10.1016/j.marpolbul.2018.12.041 [19] CASTRO Í B, WESTPHAL E, FILLMANN G. Third generation antifouling paints: New biocides in the aquatic environment [J]. Química Nova, 2010, 34(6): 1021-1031. [20] ARRHENIUS A, BACKHAUS T, GRÖNVALL F, et al. Effects of three antifouling agents on algal communities and algal reproduction: Mixture toxicity studies with TBT, Irgarol, and Sea-Nine [J]. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 335-345. doi: 10.1007/s00244-005-1057-9 [21] ALI H R, ARIFIN M M, SHEIKH M A, et al. Contamination of diuron in coastal waters around Malaysian Peninsular [J]. Marine Pollution Bulletin, 2014, 85(1): 287-291. doi: 10.1016/j.marpolbul.2014.05.049 [22] CHEN L G, LAM J C W. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern [J]. Journal of Environmental Sciences, 2017, 61: 68-79. doi: 10.1016/j.jes.2017.03.040 [23] LEE S, LEE D, LEE Y W. Determination of five alternative antifouling agents found along the Korean coasts [J]. Water Environment Research, 2017, 89(7): 622-628. doi: 10.2175/106143017X14902968254511 [24] CIMA F, BRAGADIN M, BALLARIN L. Toxic effects of new antifouling compounds on tunicate haemocytes: I. Sea-Nine 211™ and chlorothalonil [J]. Aquatic Toxicology, 2008, 86(2): 299-312. doi: 10.1016/j.aquatox.2007.11.010 [25] van WEZEL A P, van VLAARDINGEN P. Environmental risk limits for antifouling substances [J]. Aquatic Toxicology, 2004, 66(4): 427-444. doi: 10.1016/j.aquatox.2003.11.003 [26] THOMAS K V, MCHUGH M, HILTON M, et al. Increased persistence of antifouling paint biocides when associated with paint particles [J]. Environmental Pollution, 2003, 123(1): 153-161. doi: 10.1016/S0269-7491(02)00343-3 [27] KARLSSON J, BREITHOLTZ M, EKLUND B. A practical ranking system to compare toxicity of anti-fouling paints [J]. Marine Pollution Bulletin, 2006, 52(12): 1661-1667. doi: 10.1016/j.marpolbul.2006.06.007 [28] DIMITRIOU P, CASTRITSI-CATHARIOS J, MILIOU H. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, Sparus aurata L., embryos [J]. Ecotoxicology and Environmental Safety, 2003, 54(1): 30-35. doi: 10.1016/S0147-6513(02)00008-8 [29] de CASTRO Í B, de MEIRELLES C A O, MATTHEWS-CASCON H, et al. Imposex in endemic volutid from northeast Brazil (Mollusca: Gastropoda) [J]. Brazilian Archives of Biology and Technology, 2008, 51(5): 1065-1069. doi: 10.1590/S1516-89132008000500024 [30] CHOI M, MOON H B, AN Y R, et al. Accumulation of butyltin compounds in cetaceans from Korean coastal waters [J]. Marine Pollution Bulletin, 2011, 62(5): 1120-1123. doi: 10.1016/j.marpolbul.2011.03.013 [31] MEADOR J P, SOMMERS F C, COOPER K A, et al. Tributyltin and the obesogen metabolic syndrome in a salmonid [J]. Environmental Research, 2011, 111(1): 50-56. doi: 10.1016/j.envres.2010.11.012 [32] PARMENTIER K F V, VERHAEGEN Y, de WITTE B P, et al. Tributyltin: A bottom–up regulator of the Crangon crangon population? [J]. Frontiers in Marine Science, 2019, 6: 633. doi: 10.3389/fmars.2019.00633 [33] QUINTAS P Y, ARIAS A H, OLIVA A L, et al. Organotin compounds in Brachidontes rodriguezii mussels from the bahía Blanca Estuary, Argentina [J]. Ecotoxicology and Environmental Safety, 2017, 145: 518-527. doi: 10.1016/j.ecoenv.2017.07.052 [34] OLUSHOLA SUNDAY A, ABDULLAHI ALAFARA B, GODWIN OLADELE O. Toxicity and speciation analysis of organotin compounds [J]. Chemical Speciation & Bioavailability, 2012, 24(4): 216-226. [35] ZHANG A Q, ZHOU G J, LAM M H W, et al. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109455. doi: 10.1016/j.ecoenv.2019.109455 [36] HALL L W Jr, ANDERSON R D, KILLEN W D, et al. The relationship of Irgarol and its major metabolite to resident phytoplankton communities in a Maryland Marina, river and reference area [J]. Marine Pollution Bulletin, 2009, 58(6): 803-811. doi: 10.1016/j.marpolbul.2009.02.002 [37] HALL L W Jr, KILLEN W D, ANDERSON R D, et al. Ecological risk of Irgarol 1051 and its major metabolite in coastal California marinas and reference areas [J]. Marine Pollution Bulletin, 2009, 58(5): 702-710. doi: 10.1016/j.marpolbul.2008.12.019 [38] KEY P B, CHUNG K W, HOGUET J, et al. Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemonetes pugio [J]. Journal of Environmental Science and Health, Part B, 2008, 43(1): 50-55. doi: 10.1080/03601230701734865 [39] DELORENZO M E, FULTON M H. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal aquatic species [J]. Marine Pollution Bulletin, 2012, 64(7): 1291-1299. doi: 10.1016/j.marpolbul.2012.05.011 [40] TEKIN Z, ÖZTÜRK ER E, GÜNKARA Ö T, et al. A novel determination method for diuron in seaweed samples: Combination of quadruple isotope dilution strategy with liquid chromatography - quadrupole time of flight - tandem mass spectrometry for superior accuracy and precision [J]. Journal of Chromatography A, 2020, 1611: 460612. doi: 10.1016/j.chroma.2019.460612 [41] WANG H, LI Y, HUANG H H, et al. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test [J]. Environmental Toxicology and Chemistry, 2011, 30(3): 692-703. doi: 10.1002/etc.440 [42] CHEN L G, ZHANG W P, YE R, et al. Chronic exposure of marine medaka (Oryzias melastigma) to 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) reveals its mechanism of action in endocrine disruption via the hypothalamus-pituitary-gonadal-liver (HPGL) axis [J]. Environmental Science & Technology, 2016, 50(8): 4492-4501. [43] BELLAS J. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates [J]. Science of the Total Environment, 2006, 367(2/3): 573-585. [44] KEY P B, MEYER S L, CHUNG K W. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio [J]. Journal of Environmental Science and Health, Part B, 2003, 38(5): 539-549. doi: 10.1081/PFC-120023512 [45] GALLO A, TOSTI E. Reprotoxicity of the antifoulant chlorothalonil in ascidians: An ecological risk assessment [J]. PLoS One, 2015, 10(4): e0123074. doi: 10.1371/journal.pone.0123074 [46] van SCOY A R, TJEERDEMA R S. Environmental fate and toxicology of chlorothalonil [J]. Reviews of Environmental Contamination and Toxicology, 2014, 232: 89-105. [47] LOPES F C, VARELA A S Jr, CORCINI C D, et al. Impacts of the biocide chlorothalonil on biomarkers of oxidative stress, genotoxicity, and sperm quality in guppy Poecilia vivipara [J]. Ecotoxicology and Environmental Safety, 2020, 188: 109847. doi: 10.1016/j.ecoenv.2019.109847 [48] XU X, WANG X, LI Y, et al. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis [J]. Human & Experimental Toxicology, 2011, 30(8): 1009-1021. [49] HAMWIJK C, SCHOUTEN A, FOEKEMA E M, et al. Monitoring of the booster biocide dichlofluanid in water and marine sediment of Greek marinas [J]. Chemosphere, 2005, 60(9): 1316-1324. doi: 10.1016/j.chemosphere.2005.01.072 [50] FERNANDEZ-ALBA A R, PIEDRA L, MEZCUA M, et al. Toxicity of single and mixed contaminants in seawater measured with acute toxicity bioassays [J]. TheScientificWorldJOURNAL, 2002, 2: 686157. [51] BAO V W W, LEUNG K M Y, QIU J W, et al. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species [J]. Marine Pollution Bulletin, 2011, 62(5): 1147-1151. doi: 10.1016/j.marpolbul.2011.02.041 [52] HERNANDO M D, EJERHOON M, FERNÁNDEZ-ALBA A R, et al. Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays [J]. Water Research, 2003, 37(17): 4091-4098. doi: 10.1016/S0043-1354(03)00348-8 [53] KEY P B, HOGUET J, CHUNG K W, et al. Lethal and sublethal effects of simvastatin, irgarol, and PBDE-47 on the estuarine fish, Fundulus heteroclitus [J]. Journal of Environmental Science and Health, Part B, 2009, 44(4): 379-382. doi: 10.1080/03601230902801083 [54] BELLAS J, BEIRAS R, MARIÑO-BALSA J C, et al. Toxicity of organic compounds to marine invertebrate embryos and larvae: A comparison between the sea urchin embryogenesis bioassay and alternative test species [J]. Ecotoxicology (London, England), 2005, 14(3): 337-353. doi: 10.1007/s10646-004-6370-y [55] KOUTSAFTIS A, AOYAMA I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina [J]. Science of the Total Environment, 2007, 387(1/2/3): 166-174. [56] AVELELAS F, MARTINS R, OLIVEIRA T, et al. Efficacy and ecotoxicity of novel anti-fouling nanomaterials in target and non-target marine species [J]. Marine Biotechnology (New York, N. Y. ), 2017, 19(2): 164-174. doi: 10.1007/s10126-017-9740-1 [57] de CAMPOS B G, FIGUEIREDO J, PERINA F, et al. Occurrence, effects and environmental risk of antifouling biocides (EU PT21): Are marine ecosystems threatened? [J]. Critical Reviews in Environmental Science and Technology, 2021: 1-32. [58] ARRHENIUS Å, BACKHAUS T, HILVARSSON A, et al. A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms [J]. Marine Pollution Bulletin, 2014, 87(1/2): 292-299. [59] BELLAS J. Toxicity of the booster biocide Sea-Nine to the early developmental stages of the sea urchin Paracentrotus lividus [J]. Aquatic Toxicology, 2007, 83(1): 52-61. doi: 10.1016/j.aquatox.2007.03.011 [60] FIGUEIREDO J, OLIVEIRA T, FERREIRA V, et al. Toxicity of innovative anti-fouling nano-based solutions to marine species [J]. Environmental Science:Nano, 2019, 6(5): 1418-1429. doi: 10.1039/C9EN00011A [61] BELLAS J. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay [J]. Aquatic Toxicology, 2008, 88(4): 308-315. doi: 10.1016/j.aquatox.2008.05.011 [62] DELORENZO M E, SERRANO L. Individual and mixture toxicity of three pesticides;atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta [J]. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38(5): 529-538. [63] CARTEAU D, VALLÉE-RÉHEL K, LINOSSIER I, et al. Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances [J]. Progress in Organic Coatings, 2014, 77(2): 485-493. doi: 10.1016/j.porgcoat.2013.11.012 [64] LEE S, CHUNG J, WON H, et al. Analysis of antifouling agents after regulation of tributyltin compounds in Korea [J]. Journal of Hazardous Materials, 2011, 185(2/3): 1318-1325. [65] GARG A, MEENA R M, JADHAV S, et al. Distribution of butyltins in the waters and sediments along the coast of India [J]. Marine Pollution Bulletin, 2011, 62(2): 423-431. doi: 10.1016/j.marpolbul.2010.12.003 [66] AL-SHATRI M A, NUHU A A, BASHEER C, et al. Assessment of tributyltin and triphenyltin compounds and their main degradation products in Saudi coastal waters [J]. Arabian Journal for Science and Engineering, 2015, 40(10): 2959-2967. doi: 10.1007/s13369-015-1673-2 [67] MENG P J, LIN J D, LIU L L. Aquatic organotin pollution in Taiwan [J]. Journal of Environmental Management, 2009, 90: S8-S15. doi: 10.1016/j.jenvman.2008.06.008 [68] MANZO S, ANSANELLI G, PARRELLA L, et al. First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea [J]. Environmental Science. Processes & Impacts, 2014, 16(8): 1981-1993. [69] ABRAHAM M, WESTPHAL L, HAND I, et al. TBT and its metabolites in sediments: Survey at a German coastal site and the central Baltic Sea [J]. Marine Pollution Bulletin, 2017, 121(1/2): 404-410. [70] SAKKAS V A, KONSTANTINOU I K, LAMBROPOULOU D A, et al. Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece [J]. Environmental Science and Pollution Research International, 2002, 9(5): 327-332. doi: 10.1007/BF02987576 [71] dos SANTOS D M, TURRA A, de MARCHI M R R, et al. Distribution of butyltin compounds in Brazil's southern and southeastern estuarine ecosystems: Assessment of spatial scale and compartments [J]. Environmental Science and Pollution Research International, 2016, 23(16): 16152-16163. doi: 10.1007/s11356-016-6720-3 [72] OKORO H K, FATOKI O S, ADEKOLA F A, et al. Spatio-temporal variation of organotin compounds in seawater and sediments from Cape Town harbour, South Africa using gas chromatography with flame photometric detector (GC-FPD) [J]. Arabian Journal of Chemistry, 2016, 9(1): 95-104. doi: 10.1016/j.arabjc.2013.05.014 [73] FERNANDEZ M V, GARDINALI P R. Risk assessment of triazine herbicides in surface waters and bioaccumulation of Irgarol and M1 by submerged aquatic vegetation in Southeast Florida [J]. Science of the Total Environment, 2016, 541: 1556-1571. doi: 10.1016/j.scitotenv.2015.09.035 [74] SAPOZHNIKOVA Y, WIRTH E, SCHIFF K, et al. Antifouling biocides in water and sediments from California marinas [J]. Marine Pollution Bulletin, 2013, 69(1/2): 189-194. [75] KNUTSON S, DOWNS C A, RICHMOND R H. Concentrations of Irgarol in selected marinas of Oahu, Hawaii and effects on settlement of coral larval [J]. Ecotoxicology (London, England), 2012, 21(1): 1-8. doi: 10.1007/s10646-011-0752-8 [76] METCALFE C D, HELM P, PATERSON G, et al. Pesticides related to land use in watersheds of the Great Lakes Basin [J]. Science of the Total Environment, 2019, 648: 681-692. doi: 10.1016/j.scitotenv.2018.08.169 [77] DINIZ L G R, JESUS M S, DOMINGUEZ L A E, et al. First appraisal of water contamination by antifouling booster biocide of 3rdGeneration at itaqui harbor (são luiz - maranhão - Brazil) [J]. Journal of the Brazilian Chemical Society, 2014, 25(2): 380-388. [78] DOMINGUEZ L A E, CALDAS S S, PRIMEL E G, et al. The influence of salinity and matrix effect in the determination of antifouling biocides in estuarine waters of Patos lagoon (southern Brazil) [J]. Journal of the Brazilian Chemical Society, 2014, 25(7): 1302-1310. [79] BATISTA-ANDRADE J A, CALDAS S S, de OLIVEIRA ARIAS J L, et al. Antifouling booster biocides in coastal waters of Panama: First appraisal in one of the busiest shipping zones [J]. Marine Pollution Bulletin, 2016, 112(1/2): 415-419. [80] SHEIKH M A, JUMA F S, STAEHR P, et al. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar [J]. Marine Pollution Bulletin, 2016, 109(1): 586-590. doi: 10.1016/j.marpolbul.2016.05.035 [81] KONING J T, BOLLMANN U E, BESTER K. The occurrence of modern organic antifouling biocides in Danish marinas [J]. Marine Pollution Bulletin, 2020, 158: 111402. doi: 10.1016/j.marpolbul.2020.111402 [82] CAQUET T, ROUCAUTE M, MAZZELLA N, et al. Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France) [J]. Environmental Science and Pollution Research International, 2013, 20(2): 651-666. doi: 10.1007/s11356-012-1171-y [83] GUSTAVSSON B M, MAGNÉR J, CARNEY ALMROTH B, et al. Chemical monitoring of Swedish coastal waters indicates common exceedances of environmental thresholds, both for individual substances as well as their mixtures [J]. Marine Pollution Bulletin, 2017, 122(1/2): 409-419. [84] SALEH A, MOLAEI S, SHEIJOONI FUMANI N, et al. Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf [J]. Marine Pollution Bulletin, 2016, 105(1): 367-372. doi: 10.1016/j.marpolbul.2016.02.037 [85] BALAKRISHNAN S, TAKEDA K, SAKUGAWA H. Occurrence of diuron and irgarol in seawater, sediments and planktons of seto inland sea, Japan [J]. Geochemical Journal, 2012, 46(3): 169-177. doi: 10.2343/geochemj.1.0163 [86] LAM K H, CAI Z W, WAI H Y, et al. Identification of a new Irgarol-1051 related s-triazine species in coastal waters [J]. Environmental Pollution, 2005, 136(2): 221-230. doi: 10.1016/j.envpol.2005.01.014 [87] ANSANELLI G, PARRELLA L, di LANDA G, et al. Risk assessment of selected priority pollutants coming from boating activities [J]. Environmental Monitoring and Assessment, 2016, 188(7): 435. doi: 10.1007/s10661-016-5419-8 [88] KÖCK-SCHULMEYER M, GINEBREDA A, GONZÁLEZ S, et al. Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain) [J]. Chemosphere, 2012, 86(1): 8-16. doi: 10.1016/j.chemosphere.2011.08.034 [89] ANIM A K, THOMPSON K, DUODU G O, et al. Pharmaceuticals, personal care products, food additive and pesticides in surface waters from three Australian east coast estuaries (Sydney, Yarra and Brisbane) [J]. Marine Pollution Bulletin, 2020, 153: 111014. doi: 10.1016/j.marpolbul.2020.111014 [90] PENG Y, FANG W D, KRAUSS M, et al. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk [J]. Environmental Pollution, 2018, 241: 484-493. doi: 10.1016/j.envpol.2018.05.061 [91] KIM N S, SHIM W J, YIM U H, et al. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea [J]. Marine Pollution Bulletin, 2014, 78(1/2): 201-208. [92] HARINO H, YAMAMOTO Y, EGUCHI S, et al. Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan [J]. Archives of Environmental Contamination and Toxicology, 2007, 52(2): 179-188. doi: 10.1007/s00244-006-0087-2 [93] DOLORES HERNANDO M, PIEDRA L, BELMONTE Á, et al. Determination of traces of five antifouling agents in water by gas chromatography with positive/negative chemical ionisation and tandem mass spectrometric detection [J]. Journal of Chromatography A, 2001, 938(1/2): 103-111. [94] THOMAS K V, BROOKS S. The environmental fate and effects of antifouling paint biocides [J]. Biofouling, 2010, 26(1): 73-88. doi: 10.1080/08927010903216564 [95] STEEN R J C A, ARIESE F, van HATTUM B, et al. Monitoring and evaluation of the environmental dissipation of the marine antifoulant 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in a Danish Harbor [J]. Chemosphere, 2004, 57(6): 513-521. doi: 10.1016/j.chemosphere.2004.06.043 [96] MEYER B, PAILLER J Y, GUIGNARD C, et al. Concentrations of dissolved herbicides and pharmaceuticals in a small river in Luxembourg [J]. Environmental Monitoring and Assessment, 2011, 180(1/2/3/4): 127-146. [97] SANGCHAN W, BANNWARTH M, INGWERSEN J, et al. Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand [J]. Environmental Monitoring and Assessment, 2014, 186(2): 1083-1099. doi: 10.1007/s10661-013-3440-8 [98] XING Z S, CHOW L, COOK A, et al. Pesticide application and detection in variable agricultural intensity watersheds and their river systems in the maritime region of Canada [J]. Archives of Environmental Contamination and Toxicology, 2012, 63(4): 471-483. doi: 10.1007/s00244-012-9789-9 [99] GARG A, MEENA R M, BHOSLE N B. Distribution of butyltins in waters and sediments of the Mandovi and Zuari estuaries, west coast of India [J]. Environmental Monitoring and Assessment, 2010, 165(1/2/3/4): 643-651. [100] BERTO D, GIANI M, BOSCOLO R, et al. Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy) [J]. Marine Pollution Bulletin, 2007, 55(10/11/12): 425-435. [101] WANG X H, HONG H S, ZHAO D M, et al. Environmental behavior of organotin compounds in the coastal environment of Xiamen, China[J]. Marine Pollution Bulletin, 2008, 57(6/7/8/9/10/11/12): 419-424. [102] RADKE B, WASIK A, JEWELL L L, et al. The speciation of organotin compounds in sediment and water samples from the port of Gdynia [J]. Soil and Sediment Contamination:an International Journal, 2013, 22(6): 614-630. doi: 10.1080/15320383.2013.756448 [103] LIU L L, WANG J T, CHUNG K N, et al. Distribution and accumulation of organotin species in seawater, sediments and organisms collected from a Taiwan mariculture area[J]. Marine Pollution Bulletin, 2011, 63(5/6/7/8/9/10/11/12): 535-540. [104] RADKE B, WASIK A, JEWELL L L, et al. Seasonal changes in organotin compounds in water and sediment samples from the semi-closed Port of Gdynia [J]. Science of the Total Environment, 2012, 441: 57-66. doi: 10.1016/j.scitotenv.2012.09.006 [105] SHUE M F, CHEN T C, BELLOTINDOS L M, et al. Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle [J]. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49(6): 432-438. [106] GAO J M, CHEN X L, REN C R, et al. Organotins in the aquatic media of secondary anabranches in the Three Gorges Reservoir Region, China [J]. Chemosphere, 2019, 217: 232-242. doi: 10.1016/j.chemosphere.2018.10.204 [107] BANDARA K R V, CHINTHAKA S D M, YASAWARDENE S G, et al. Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka [J]. Marine Pollution Bulletin, 2021, 166: 112202. doi: 10.1016/j.marpolbul.2021.112202 [108] SÁNCHEZ-RODRÍGUEZ Á, SOSA-FERRERA Z, SANTANA-DEL PINO Á, et al. Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain) [J]. Marine Pollution Bulletin, 2011, 62(5): 985-991. doi: 10.1016/j.marpolbul.2011.02.038 [109] KIM N S, HONG S H, AN J G, et al. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea [J]. Marine Pollution Bulletin, 2015, 95(1): 484-490. doi: 10.1016/j.marpolbul.2015.03.010 [110] ALI H R, ARIFIN M M, SHEIKH M A, et al. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia [J]. Marine Pollution Bulletin, 2013, 70(1/2): 253-257. [111] MAI H, MORIN B, PARDON P, et al. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas [J]. Marine Environmental Research, 2013, 89: 1-8. doi: 10.1016/j.marenvres.2013.04.003 [112] KAONGA C C, TAKEDA K, SAKUGAWA H. Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclosed sea, Japan [J]. Chemosphere, 2016, 145: 256-264. doi: 10.1016/j.chemosphere.2015.11.100 [113] WILLE K, CLAESSENS M, RAPPÉ K, et al. Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(51): 9162-9173. doi: 10.1016/j.chroma.2011.10.039 [114] MIJANGOS L, ZIARRUSTA H, ROS O, et al. Occurrence of emerging pollutants in estuaries of the Basque Country: Analysis of sources and distribution, and assessment of the environmental risk [J]. Water Research, 2018, 147: 152-163. doi: 10.1016/j.watres.2018.09.033 [115] KONSTANTINOU I K, ALBANIS T A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review [J]. Environment International, 2004, 30(2): 235-248. doi: 10.1016/S0160-4120(03)00176-4 [116] EGUCHI S, HARINO H, YAMAMOTO Y. Assessment of antifouling biocides contaminations in maizuru bay, Japan [J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 684-693. doi: 10.1007/s00244-009-9394-8 [117] MOCHIDA K, HANO T, ONDUKA T, et al. Spatial analysis of 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (Sea-Nine 211) concentrations and probabilistic risk to marine organisms in Hiroshima Bay, Japan [J]. Environmental Pollution, 2015, 204: 233-240. doi: 10.1016/j.envpol.2015.05.012 [118] YAMAMOTO A, MIYAMOTO I, KITAGAWA M, et al. Analysis of chlorothalonil by liquid chromatography/mass spectrometry using negative-ion atmospheric pressure photoionization [J]. Analytical Sciences, 2009, 25(5): 693-697. doi: 10.2116/analsci.25.693 [119] CRESSWELL T, RICHARDS J P, GLEGG G A, et al. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters [J]. Marine Pollution Bulletin, 2006, 52(10): 1169-1175. doi: 10.1016/j.marpolbul.2006.01.014 [120] SAPOZHNIKOVA Y, WIRTH E, SCHIFF K, et al. Antifouling pesticides in the coastal waters of Southern California [J]. Marine Pollution Bulletin, 2007, 54(12): 1972-1978. doi: 10.1016/j.marpolbul.2007.09.026 [121] CARBERY K, OWEN R, FRICKERS T, et al. Contamination of Caribbean coastal waters by the antifouling herbicide Irgarol 1051 [J]. Marine Pollution Bulletin, 2006, 52(6): 635-644. doi: 10.1016/j.marpolbul.2005.10.013 [122] PAZ-VILLARRAGA C A, CASTRO Í B, MILOSLAVICH P, et al. Venezuelan Caribbean Sea under the threat of TBT [J]. Chemosphere, 2015, 119: 704-710. doi: 10.1016/j.chemosphere.2014.07.068 [123] CASTRO Í B, IANNACONE J, SANTOS S, et al. TBT is still a matter of concern in Peru [J]. Chemosphere, 2018, 205: 253-259. doi: 10.1016/j.chemosphere.2018.04.097 [124] BATISTA R M, CASTRO I B, FILLMANN G. Imposex and butyltin contamination still evident in Chile after TBT global ban [J]. Science of the Total Environment, 2016, 566/567: 446-453. doi: 10.1016/j.scitotenv.2016.05.039 [125] DONG C D, CHEN C F, CHEN C W. Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan [J]. Estuarine, Coastal and Shelf Science, 2015, 156: 134-143. doi: 10.1016/j.ecss.2014.08.002 [126] CHEN C Z, CHEN L, LI F P, et al. Urgent caution to trace organometal pollution: Occurrence, distribution and sources of methyltins, butyltins and phenyltins in sediments from South Hangzhou Bay, China [J]. Environmental Pollution, 2019, 246: 571-577. doi: 10.1016/j.envpol.2018.12.037 [127] LEE M R N, KIM U J, LEE I S, et al. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area [J]. Marine Pollution Bulletin, 2015, 99(1/2): 157-165. [128] WANG X M, KONG L N, CHENG J Y, et al. Distribution of butyltins at dredged material dumping sites around the coast of China and the potential ecological risk [J]. Marine Pollution Bulletin, 2019, 138: 491-500. doi: 10.1016/j.marpolbul.2018.11.043 [129] BRIANT N, BANCON-MONTIGNY C, ELBAZ-POULICHET F, et al. Trace elements in the sediments of a large Mediterranean Marina (Port Camargue, France): Levels and contamination history [J]. Marine Pollution Bulletin, 2013, 73(1): 78-85. doi: 10.1016/j.marpolbul.2013.05.038 [130] SOUSA A C A, OLIVEIRA I B, LARANJEIRO F, et al. Organotin levels in Nazaré canyon (west Iberian Margin, NE Atlantic) and adjacent coastal area [J]. Marine Pollution Bulletin, 2012, 64(2): 422-426. doi: 10.1016/j.marpolbul.2011.11.013 [131] MAGNUSSON M, HEIMANN K, RIDD M, et al. Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae [J]. Water Research, 2013, 47(14): 5211-5221. doi: 10.1016/j.watres.2013.06.003 [132] HARINO H, ARIFIN Z, RUMENGAN I F M, et al. Distribution of antifouling biocides and perfluoroalkyl compounds in sediments from selected locations in Indonesian coastal waters [J]. Archives of Environmental Contamination and Toxicology, 2012, 63(1): 13-21. doi: 10.1007/s00244-011-9747-y [133] SOROLDONI S, VIEIRA da SILVA S, CASTRO Í B, et al. Antifouling paint particles cause toxicity to benthic organisms: Effects on two species with different feeding modes [J]. Chemosphere, 2020, 238: 124610. doi: 10.1016/j.chemosphere.2019.124610 [134] ABREU F E L, LIMA da SILVA J N, CASTRO Í B, et al. Are antifouling residues a matter of concern in the largest South American Port? [J]. Journal of Hazardous Materials, 2020, 398: 122937. doi: 10.1016/j.jhazmat.2020.122937 [135] MACIEL D C, CASTRO Í B, de SOUZA J R B, et al. Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast [J]. Marine Pollution Bulletin, 2018, 126: 473-478. doi: 10.1016/j.marpolbul.2017.11.061 [136] ANASTASIOU T I, CHATZINIKOLAOU E, MANDALAKIS M, et al. Imposex and organotin compounds in ports of the Mediterranean and the Atlantic: Is the story over? [J]. Science of the Total Environment, 2016, 569/570: 1315-1329. doi: 10.1016/j.scitotenv.2016.06.209 [137] GAO J M, ZHANG K, CHEN Y P, et al. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China [J]. Environmental Science and Pollution Research International, 2015, 22(11): 8375-8385. doi: 10.1007/s11356-014-3986-1 [138] QUINTAS P Y, OLIVA A L, ARIAS A, et al. Seasonal changes in organotin compounds in sediments from the Bahía Blanca Estuary [J]. Environmental Earth Sciences, 2016, 75(8): 1-13. [139] CHEN C Z, CHEN L, XUE R, et al. Correction to: Spatiotemporal variation and source apportionment of organotin compounds in sediments in the Yangtze Estuary [J]. Environmental Sciences Europe, 2019, 31: 43. doi: 10.1186/s12302-019-0224-y [140] FILIPKOWSKA A, KOWALEWSKA G. Butyltins in sediments from the Southern Baltic coastal zone: Is it still a matter of concern, 10 years after implementation of the total ban? [J]. Marine Pollution Bulletin, 2019, 146: 343-348. doi: 10.1016/j.marpolbul.2019.06.050 [141] van GESSELLEN N, BOUWMAN H, AVERBUJ A. Imposex assessment and tributyltin levels in sediments along the Atlantic coast of South Africa [J]. Marine Environmental Research, 2018, 142: 32-39. doi: 10.1016/j.marenvres.2018.09.016 [142] SOROLDONI S, CASTRO Í B, ABREU F, et al. Antifouling paint particles: Sources, occurrence, composition and dynamics [J]. Water Research, 2018, 137: 47-56. doi: 10.1016/j.watres.2018.02.064 [143] VIANA J L M, dos SANTOS S R V, dos SANTOS FRANCO T C R, et al. Occurrence and partitioning of antifouling booster biocides in sediments and porewaters from Brazilian northeast [J]. Environmental Pollution, 2019, 255: 112988. doi: 10.1016/j.envpol.2019.112988 [144] SOROLDONI S, ABREU F, CASTRO Í B, et al. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? [J]. Journal of Hazardous Materials, 2017, 330: 76-82. doi: 10.1016/j.jhazmat.2017.02.001 [145] MUKHTAR A, ZULKIFLI S Z, MOHAMAT-YUSUFF F, et al. Distribution of biocides in selected marine organisms from South of Johor, Malaysia [J]. Regional Studies in Marine Science, 2020, 38: 101384. doi: 10.1016/j.rsma.2020.101384