[1] AMARA I, MILED W, SLAMA R B, et al. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review [J]. Environmental Toxicology and Pharmacology, 2018, 57: 115-130. doi: 10.1016/j.etap.2017.12.001
[2] ABBOTT A, ABEL P D, ARNOLD D W, et al. Cost-benefit analysis of the use of TBT: The case for a treatment approach [J]. Science of the Total Environment, 2000, 258(1/2): 5-19.
[3] XIE Q Y, PAN J S, MA C F, et al. Dynamic surface antifouling: Mechanism and systems [J]. Soft Matter, 2019, 15(6): 1087-1107. doi: 10.1039/C8SM01853G
[4] TORNERO V, HANKE G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas [J]. Marine Pollution Bulletin, 2016, 112(1/2): 17-38.
[5] ANTIZAR-LADISLAO B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review [J]. Environment International, 2008, 34(2): 292-308. doi: 10.1016/j.envint.2007.09.005
[6] DAFFORN K A, LEWIS J A, JOHNSTON E L. Antifouling strategies: History and regulation, ecological impacts and mitigation [J]. Marine Pollution Bulletin, 2011, 62(3): 453-465. doi: 10.1016/j.marpolbul.2011.01.012
[7] CASTRO Í B, MACHADO F B, de SOUSA G T, et al. How protected are marine protected areas: A case study of tributyltin in Latin America [J]. Journal of Environmental Management, 2021, 278: 111543. doi: 10.1016/j.jenvman.2020.111543
[8] BASHEERU K A, OKORO H K, ADEKOLA F A, et al. Speciation and quantification of organotin compounds in Lagos harbour, Nigeria [J]. International Journal of Environmental Analytical Chemistry, 2020: 1-20.
[9] BATISTA-ANDRADE J A, CALDAS S S, BATISTA R M, et al. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama [J]. Environmental Pollution, 2018, 234: 243-252. doi: 10.1016/j.envpol.2017.11.063
[10] VIANA J L M, DINIZ M D S, SANTOS S R V D, et al. Antifouling biocides as a continuous threat to the aquatic environment: Sources, temporal trends and ecological risk assessment in an impacted region of Brazil [J]. Science of the Total Environment, 2020, 730: 139026. doi: 10.1016/j.scitotenv.2020.139026
[11] LAM N H, JEONG H H, KANG S D, et al. Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: Contamination profiles and risk assessment [J]. Marine Pollution Bulletin, 2017, 121(1/2): 302-312.
[12] LEE S, LEE Y W. Determination of the concentrations of alternative antifouling agents on the Korean coast [J]. Marine Pollution Bulletin, 2016, 113(1/2): 253-257.
[13] ANSANELLI G, MANZO S, PARRELLA L, et al. Antifouling biocides (Irgarol, Diuron and dichlofluanid) along the Italian Tyrrhenian coast: Temporal, seasonal and spatial threats [J]. Regional Studies in Marine Science, 2017, 16: 254-266. doi: 10.1016/j.rsma.2017.09.011
[14] JUNG S M, BAE J S, KANG S G, et al. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae [J]. Marine Pollution Bulletin, 2017, 124(2): 811-818. doi: 10.1016/j.marpolbul.2016.11.047
[15] DUPRAZ V, STACHOWSKI-HABERKORN S, MÉNARD D, et al. Combined effects of antifouling biocides on the growth of three marine microalgal species [J]. Chemosphere, 2018, 209: 801-814. doi: 10.1016/j.chemosphere.2018.06.139
[16] MARTINS S E, FILLMANN G, LILLICRAP A, et al. Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems [J]. Biofouling, 2018, 34(1): 34-52. doi: 10.1080/08927014.2017.1404036
[17] GAO J M, FU P T, CHEN X L, et al. Fate simulation and risk assessment of TBT and TPhT considering water level fluctuations in the TGR before and after AFS Convention implementation in China [J]. Environmental Sciences Europe, 2020, 32(2): 23-36.
[18] HASSAN A T, QURBAN M, MANIKANDAN K, et al. Assessment of the organotin pollution in the coastal sediments of the Western Arabian Gulf, Saudi Arabia [J]. Marine Pollution Bulletin, 2019, 139: 174-180. doi: 10.1016/j.marpolbul.2018.12.041
[19] CASTRO Í B, WESTPHAL E, FILLMANN G. Third generation antifouling paints: New biocides in the aquatic environment [J]. Química Nova, 2010, 34(6): 1021-1031.
[20] ARRHENIUS A, BACKHAUS T, GRÖNVALL F, et al. Effects of three antifouling agents on algal communities and algal reproduction: Mixture toxicity studies with TBT, Irgarol, and Sea-Nine [J]. Archives of Environmental Contamination and Toxicology, 2006, 50(3): 335-345. doi: 10.1007/s00244-005-1057-9
[21] ALI H R, ARIFIN M M, SHEIKH M A, et al. Contamination of diuron in coastal waters around Malaysian Peninsular [J]. Marine Pollution Bulletin, 2014, 85(1): 287-291. doi: 10.1016/j.marpolbul.2014.05.049
[22] CHEN L G, LAM J C W. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern [J]. Journal of Environmental Sciences, 2017, 61: 68-79. doi: 10.1016/j.jes.2017.03.040
[23] LEE S, LEE D, LEE Y W. Determination of five alternative antifouling agents found along the Korean coasts [J]. Water Environment Research, 2017, 89(7): 622-628. doi: 10.2175/106143017X14902968254511
[24] CIMA F, BRAGADIN M, BALLARIN L. Toxic effects of new antifouling compounds on tunicate haemocytes: I. Sea-Nine 211™ and chlorothalonil [J]. Aquatic Toxicology, 2008, 86(2): 299-312. doi: 10.1016/j.aquatox.2007.11.010
[25] van WEZEL A P, van VLAARDINGEN P. Environmental risk limits for antifouling substances [J]. Aquatic Toxicology, 2004, 66(4): 427-444. doi: 10.1016/j.aquatox.2003.11.003
[26] THOMAS K V, MCHUGH M, HILTON M, et al. Increased persistence of antifouling paint biocides when associated with paint particles [J]. Environmental Pollution, 2003, 123(1): 153-161. doi: 10.1016/S0269-7491(02)00343-3
[27] KARLSSON J, BREITHOLTZ M, EKLUND B. A practical ranking system to compare toxicity of anti-fouling paints [J]. Marine Pollution Bulletin, 2006, 52(12): 1661-1667. doi: 10.1016/j.marpolbul.2006.06.007
[28] DIMITRIOU P, CASTRITSI-CATHARIOS J, MILIOU H. Acute toxicity effects of tributyltin chloride and triphenyltin chloride on gilthead seabream, Sparus aurata L., embryos [J]. Ecotoxicology and Environmental Safety, 2003, 54(1): 30-35. doi: 10.1016/S0147-6513(02)00008-8
[29] de CASTRO Í B, de MEIRELLES C A O, MATTHEWS-CASCON H, et al. Imposex in endemic volutid from northeast Brazil (Mollusca: Gastropoda) [J]. Brazilian Archives of Biology and Technology, 2008, 51(5): 1065-1069. doi: 10.1590/S1516-89132008000500024
[30] CHOI M, MOON H B, AN Y R, et al. Accumulation of butyltin compounds in cetaceans from Korean coastal waters [J]. Marine Pollution Bulletin, 2011, 62(5): 1120-1123. doi: 10.1016/j.marpolbul.2011.03.013
[31] MEADOR J P, SOMMERS F C, COOPER K A, et al. Tributyltin and the obesogen metabolic syndrome in a salmonid [J]. Environmental Research, 2011, 111(1): 50-56. doi: 10.1016/j.envres.2010.11.012
[32] PARMENTIER K F V, VERHAEGEN Y, de WITTE B P, et al. Tributyltin: A bottom–up regulator of the Crangon crangon population? [J]. Frontiers in Marine Science, 2019, 6: 633. doi: 10.3389/fmars.2019.00633
[33] QUINTAS P Y, ARIAS A H, OLIVA A L, et al. Organotin compounds in Brachidontes rodriguezii mussels from the bahía Blanca Estuary, Argentina [J]. Ecotoxicology and Environmental Safety, 2017, 145: 518-527. doi: 10.1016/j.ecoenv.2017.07.052
[34] OLUSHOLA SUNDAY A, ABDULLAHI ALAFARA B, GODWIN OLADELE O. Toxicity and speciation analysis of organotin compounds [J]. Chemical Speciation & Bioavailability, 2012, 24(4): 216-226.
[35] ZHANG A Q, ZHOU G J, LAM M H W, et al. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species [J]. Ecotoxicology and Environmental Safety, 2019, 182: 109455. doi: 10.1016/j.ecoenv.2019.109455
[36] HALL L W Jr, ANDERSON R D, KILLEN W D, et al. The relationship of Irgarol and its major metabolite to resident phytoplankton communities in a Maryland Marina, river and reference area [J]. Marine Pollution Bulletin, 2009, 58(6): 803-811. doi: 10.1016/j.marpolbul.2009.02.002
[37] HALL L W Jr, KILLEN W D, ANDERSON R D, et al. Ecological risk of Irgarol 1051 and its major metabolite in coastal California marinas and reference areas [J]. Marine Pollution Bulletin, 2009, 58(5): 702-710. doi: 10.1016/j.marpolbul.2008.12.019
[38] KEY P B, CHUNG K W, HOGUET J, et al. Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemonetes pugio [J]. Journal of Environmental Science and Health, Part B, 2008, 43(1): 50-55. doi: 10.1080/03601230701734865
[39] DELORENZO M E, FULTON M H. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal aquatic species [J]. Marine Pollution Bulletin, 2012, 64(7): 1291-1299. doi: 10.1016/j.marpolbul.2012.05.011
[40] TEKIN Z, ÖZTÜRK ER E, GÜNKARA Ö T, et al. A novel determination method for diuron in seaweed samples: Combination of quadruple isotope dilution strategy with liquid chromatography - quadrupole time of flight - tandem mass spectrometry for superior accuracy and precision [J]. Journal of Chromatography A, 2020, 1611: 460612. doi: 10.1016/j.chroma.2019.460612
[41] WANG H, LI Y, HUANG H H, et al. Toxicity evaluation of single and mixed antifouling biocides using the Strongylocentrotus intermedius sea urchin embryo test [J]. Environmental Toxicology and Chemistry, 2011, 30(3): 692-703. doi: 10.1002/etc.440
[42] CHEN L G, ZHANG W P, YE R, et al. Chronic exposure of marine medaka (Oryzias melastigma) to 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) reveals its mechanism of action in endocrine disruption via the hypothalamus-pituitary-gonadal-liver (HPGL) axis [J]. Environmental Science & Technology, 2016, 50(8): 4492-4501.
[43] BELLAS J. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates [J]. Science of the Total Environment, 2006, 367(2/3): 573-585.
[44] KEY P B, MEYER S L, CHUNG K W. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio [J]. Journal of Environmental Science and Health, Part B, 2003, 38(5): 539-549. doi: 10.1081/PFC-120023512
[45] GALLO A, TOSTI E. Reprotoxicity of the antifoulant chlorothalonil in ascidians: An ecological risk assessment [J]. PLoS One, 2015, 10(4): e0123074. doi: 10.1371/journal.pone.0123074
[46] van SCOY A R, TJEERDEMA R S. Environmental fate and toxicology of chlorothalonil [J]. Reviews of Environmental Contamination and Toxicology, 2014, 232: 89-105.
[47] LOPES F C, VARELA A S Jr, CORCINI C D, et al. Impacts of the biocide chlorothalonil on biomarkers of oxidative stress, genotoxicity, and sperm quality in guppy Poecilia vivipara [J]. Ecotoxicology and Environmental Safety, 2020, 188: 109847. doi: 10.1016/j.ecoenv.2019.109847
[48] XU X, WANG X, LI Y, et al. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis [J]. Human & Experimental Toxicology, 2011, 30(8): 1009-1021.
[49] HAMWIJK C, SCHOUTEN A, FOEKEMA E M, et al. Monitoring of the booster biocide dichlofluanid in water and marine sediment of Greek marinas [J]. Chemosphere, 2005, 60(9): 1316-1324. doi: 10.1016/j.chemosphere.2005.01.072
[50] FERNANDEZ-ALBA A R, PIEDRA L, MEZCUA M, et al. Toxicity of single and mixed contaminants in seawater measured with acute toxicity bioassays [J]. TheScientificWorldJOURNAL, 2002, 2: 686157.
[51] BAO V W W, LEUNG K M Y, QIU J W, et al. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species [J]. Marine Pollution Bulletin, 2011, 62(5): 1147-1151. doi: 10.1016/j.marpolbul.2011.02.041
[52] HERNANDO M D, EJERHOON M, FERNÁNDEZ-ALBA A R, et al. Combined toxicity effects of MTBE and pesticides measured with Vibrio fischeri and Daphnia magna bioassays [J]. Water Research, 2003, 37(17): 4091-4098. doi: 10.1016/S0043-1354(03)00348-8
[53] KEY P B, HOGUET J, CHUNG K W, et al. Lethal and sublethal effects of simvastatin, irgarol, and PBDE-47 on the estuarine fish, Fundulus heteroclitus [J]. Journal of Environmental Science and Health, Part B, 2009, 44(4): 379-382. doi: 10.1080/03601230902801083
[54] BELLAS J, BEIRAS R, MARIÑO-BALSA J C, et al. Toxicity of organic compounds to marine invertebrate embryos and larvae: A comparison between the sea urchin embryogenesis bioassay and alternative test species [J]. Ecotoxicology (London, England), 2005, 14(3): 337-353. doi: 10.1007/s10646-004-6370-y
[55] KOUTSAFTIS A, AOYAMA I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina [J]. Science of the Total Environment, 2007, 387(1/2/3): 166-174.
[56] AVELELAS F, MARTINS R, OLIVEIRA T, et al. Efficacy and ecotoxicity of novel anti-fouling nanomaterials in target and non-target marine species [J]. Marine Biotechnology (New York, N. Y. ), 2017, 19(2): 164-174. doi: 10.1007/s10126-017-9740-1
[57] de CAMPOS B G, FIGUEIREDO J, PERINA F, et al. Occurrence, effects and environmental risk of antifouling biocides (EU PT21): Are marine ecosystems threatened? [J]. Critical Reviews in Environmental Science and Technology, 2021: 1-32.
[58] ARRHENIUS Å, BACKHAUS T, HILVARSSON A, et al. A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms [J]. Marine Pollution Bulletin, 2014, 87(1/2): 292-299.
[59] BELLAS J. Toxicity of the booster biocide Sea-Nine to the early developmental stages of the sea urchin Paracentrotus lividus [J]. Aquatic Toxicology, 2007, 83(1): 52-61. doi: 10.1016/j.aquatox.2007.03.011
[60] FIGUEIREDO J, OLIVEIRA T, FERREIRA V, et al. Toxicity of innovative anti-fouling nano-based solutions to marine species [J]. Environmental Science:Nano, 2019, 6(5): 1418-1429. doi: 10.1039/C9EN00011A
[61] BELLAS J. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay [J]. Aquatic Toxicology, 2008, 88(4): 308-315. doi: 10.1016/j.aquatox.2008.05.011
[62] DELORENZO M E, SERRANO L. Individual and mixture toxicity of three pesticides;atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta [J]. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38(5): 529-538.
[63] CARTEAU D, VALLÉE-RÉHEL K, LINOSSIER I, et al. Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances [J]. Progress in Organic Coatings, 2014, 77(2): 485-493. doi: 10.1016/j.porgcoat.2013.11.012
[64] LEE S, CHUNG J, WON H, et al. Analysis of antifouling agents after regulation of tributyltin compounds in Korea [J]. Journal of Hazardous Materials, 2011, 185(2/3): 1318-1325.
[65] GARG A, MEENA R M, JADHAV S, et al. Distribution of butyltins in the waters and sediments along the coast of India [J]. Marine Pollution Bulletin, 2011, 62(2): 423-431. doi: 10.1016/j.marpolbul.2010.12.003
[66] AL-SHATRI M A, NUHU A A, BASHEER C, et al. Assessment of tributyltin and triphenyltin compounds and their main degradation products in Saudi coastal waters [J]. Arabian Journal for Science and Engineering, 2015, 40(10): 2959-2967. doi: 10.1007/s13369-015-1673-2
[67] MENG P J, LIN J D, LIU L L. Aquatic organotin pollution in Taiwan [J]. Journal of Environmental Management, 2009, 90: S8-S15. doi: 10.1016/j.jenvman.2008.06.008
[68] MANZO S, ANSANELLI G, PARRELLA L, et al. First evaluation of the threat posed by antifouling biocides in the Southern Adriatic Sea [J]. Environmental Science. Processes & Impacts, 2014, 16(8): 1981-1993.
[69] ABRAHAM M, WESTPHAL L, HAND I, et al. TBT and its metabolites in sediments: Survey at a German coastal site and the central Baltic Sea [J]. Marine Pollution Bulletin, 2017, 121(1/2): 404-410.
[70] SAKKAS V A, KONSTANTINOU I K, LAMBROPOULOU D A, et al. Survey for the occurrence of antifouling paint booster biocides in the aquatic environment of Greece [J]. Environmental Science and Pollution Research International, 2002, 9(5): 327-332. doi: 10.1007/BF02987576
[71] dos SANTOS D M, TURRA A, de MARCHI M R R, et al. Distribution of butyltin compounds in Brazil's southern and southeastern estuarine ecosystems: Assessment of spatial scale and compartments [J]. Environmental Science and Pollution Research International, 2016, 23(16): 16152-16163. doi: 10.1007/s11356-016-6720-3
[72] OKORO H K, FATOKI O S, ADEKOLA F A, et al. Spatio-temporal variation of organotin compounds in seawater and sediments from Cape Town harbour, South Africa using gas chromatography with flame photometric detector (GC-FPD) [J]. Arabian Journal of Chemistry, 2016, 9(1): 95-104. doi: 10.1016/j.arabjc.2013.05.014
[73] FERNANDEZ M V, GARDINALI P R. Risk assessment of triazine herbicides in surface waters and bioaccumulation of Irgarol and M1 by submerged aquatic vegetation in Southeast Florida [J]. Science of the Total Environment, 2016, 541: 1556-1571. doi: 10.1016/j.scitotenv.2015.09.035
[74] SAPOZHNIKOVA Y, WIRTH E, SCHIFF K, et al. Antifouling biocides in water and sediments from California marinas [J]. Marine Pollution Bulletin, 2013, 69(1/2): 189-194.
[75] KNUTSON S, DOWNS C A, RICHMOND R H. Concentrations of Irgarol in selected marinas of Oahu, Hawaii and effects on settlement of coral larval [J]. Ecotoxicology (London, England), 2012, 21(1): 1-8. doi: 10.1007/s10646-011-0752-8
[76] METCALFE C D, HELM P, PATERSON G, et al. Pesticides related to land use in watersheds of the Great Lakes Basin [J]. Science of the Total Environment, 2019, 648: 681-692. doi: 10.1016/j.scitotenv.2018.08.169
[77] DINIZ L G R, JESUS M S, DOMINGUEZ L A E, et al. First appraisal of water contamination by antifouling booster biocide of 3rdGeneration at itaqui harbor (são luiz - maranhão - Brazil) [J]. Journal of the Brazilian Chemical Society, 2014, 25(2): 380-388.
[78] DOMINGUEZ L A E, CALDAS S S, PRIMEL E G, et al. The influence of salinity and matrix effect in the determination of antifouling biocides in estuarine waters of Patos lagoon (southern Brazil) [J]. Journal of the Brazilian Chemical Society, 2014, 25(7): 1302-1310.
[79] BATISTA-ANDRADE J A, CALDAS S S, de OLIVEIRA ARIAS J L, et al. Antifouling booster biocides in coastal waters of Panama: First appraisal in one of the busiest shipping zones [J]. Marine Pollution Bulletin, 2016, 112(1/2): 415-419.
[80] SHEIKH M A, JUMA F S, STAEHR P, et al. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar [J]. Marine Pollution Bulletin, 2016, 109(1): 586-590. doi: 10.1016/j.marpolbul.2016.05.035
[81] KONING J T, BOLLMANN U E, BESTER K. The occurrence of modern organic antifouling biocides in Danish marinas [J]. Marine Pollution Bulletin, 2020, 158: 111402. doi: 10.1016/j.marpolbul.2020.111402
[82] CAQUET T, ROUCAUTE M, MAZZELLA N, et al. Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France) [J]. Environmental Science and Pollution Research International, 2013, 20(2): 651-666. doi: 10.1007/s11356-012-1171-y
[83] GUSTAVSSON B M, MAGNÉR J, CARNEY ALMROTH B, et al. Chemical monitoring of Swedish coastal waters indicates common exceedances of environmental thresholds, both for individual substances as well as their mixtures [J]. Marine Pollution Bulletin, 2017, 122(1/2): 409-419.
[84] SALEH A, MOLAEI S, SHEIJOONI FUMANI N, et al. Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf [J]. Marine Pollution Bulletin, 2016, 105(1): 367-372. doi: 10.1016/j.marpolbul.2016.02.037
[85] BALAKRISHNAN S, TAKEDA K, SAKUGAWA H. Occurrence of diuron and irgarol in seawater, sediments and planktons of seto inland sea, Japan [J]. Geochemical Journal, 2012, 46(3): 169-177. doi: 10.2343/geochemj.1.0163
[86] LAM K H, CAI Z W, WAI H Y, et al. Identification of a new Irgarol-1051 related s-triazine species in coastal waters [J]. Environmental Pollution, 2005, 136(2): 221-230. doi: 10.1016/j.envpol.2005.01.014
[87] ANSANELLI G, PARRELLA L, di LANDA G, et al. Risk assessment of selected priority pollutants coming from boating activities [J]. Environmental Monitoring and Assessment, 2016, 188(7): 435. doi: 10.1007/s10661-016-5419-8
[88] KÖCK-SCHULMEYER M, GINEBREDA A, GONZÁLEZ S, et al. Analysis of the occurrence and risk assessment of polar pesticides in the Llobregat River Basin (NE Spain) [J]. Chemosphere, 2012, 86(1): 8-16. doi: 10.1016/j.chemosphere.2011.08.034
[89] ANIM A K, THOMPSON K, DUODU G O, et al. Pharmaceuticals, personal care products, food additive and pesticides in surface waters from three Australian east coast estuaries (Sydney, Yarra and Brisbane) [J]. Marine Pollution Bulletin, 2020, 153: 111014. doi: 10.1016/j.marpolbul.2020.111014
[90] PENG Y, FANG W D, KRAUSS M, et al. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk [J]. Environmental Pollution, 2018, 241: 484-493. doi: 10.1016/j.envpol.2018.05.061
[91] KIM N S, SHIM W J, YIM U H, et al. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea [J]. Marine Pollution Bulletin, 2014, 78(1/2): 201-208.
[92] HARINO H, YAMAMOTO Y, EGUCHI S, et al. Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan [J]. Archives of Environmental Contamination and Toxicology, 2007, 52(2): 179-188. doi: 10.1007/s00244-006-0087-2
[93] DOLORES HERNANDO M, PIEDRA L, BELMONTE Á, et al. Determination of traces of five antifouling agents in water by gas chromatography with positive/negative chemical ionisation and tandem mass spectrometric detection [J]. Journal of Chromatography A, 2001, 938(1/2): 103-111.
[94] THOMAS K V, BROOKS S. The environmental fate and effects of antifouling paint biocides [J]. Biofouling, 2010, 26(1): 73-88. doi: 10.1080/08927010903216564
[95] STEEN R J C A, ARIESE F, van HATTUM B, et al. Monitoring and evaluation of the environmental dissipation of the marine antifoulant 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in a Danish Harbor [J]. Chemosphere, 2004, 57(6): 513-521. doi: 10.1016/j.chemosphere.2004.06.043
[96] MEYER B, PAILLER J Y, GUIGNARD C, et al. Concentrations of dissolved herbicides and pharmaceuticals in a small river in Luxembourg [J]. Environmental Monitoring and Assessment, 2011, 180(1/2/3/4): 127-146.
[97] SANGCHAN W, BANNWARTH M, INGWERSEN J, et al. Monitoring and risk assessment of pesticides in a tropical river of an agricultural watershed in northern Thailand [J]. Environmental Monitoring and Assessment, 2014, 186(2): 1083-1099. doi: 10.1007/s10661-013-3440-8
[98] XING Z S, CHOW L, COOK A, et al. Pesticide application and detection in variable agricultural intensity watersheds and their river systems in the maritime region of Canada [J]. Archives of Environmental Contamination and Toxicology, 2012, 63(4): 471-483. doi: 10.1007/s00244-012-9789-9
[99] GARG A, MEENA R M, BHOSLE N B. Distribution of butyltins in waters and sediments of the Mandovi and Zuari estuaries, west coast of India [J]. Environmental Monitoring and Assessment, 2010, 165(1/2/3/4): 643-651.
[100] BERTO D, GIANI M, BOSCOLO R, et al. Organotins (TBT and DBT) in water, sediments, and gastropods of the southern Venice lagoon (Italy) [J]. Marine Pollution Bulletin, 2007, 55(10/11/12): 425-435.
[101] WANG X H, HONG H S, ZHAO D M, et al. Environmental behavior of organotin compounds in the coastal environment of Xiamen, China[J]. Marine Pollution Bulletin, 2008, 57(6/7/8/9/10/11/12): 419-424.
[102] RADKE B, WASIK A, JEWELL L L, et al. The speciation of organotin compounds in sediment and water samples from the port of Gdynia [J]. Soil and Sediment Contamination:an International Journal, 2013, 22(6): 614-630. doi: 10.1080/15320383.2013.756448
[103] LIU L L, WANG J T, CHUNG K N, et al. Distribution and accumulation of organotin species in seawater, sediments and organisms collected from a Taiwan mariculture area[J]. Marine Pollution Bulletin, 2011, 63(5/6/7/8/9/10/11/12): 535-540.
[104] RADKE B, WASIK A, JEWELL L L, et al. Seasonal changes in organotin compounds in water and sediment samples from the semi-closed Port of Gdynia [J]. Science of the Total Environment, 2012, 441: 57-66. doi: 10.1016/j.scitotenv.2012.09.006
[105] SHUE M F, CHEN T C, BELLOTINDOS L M, et al. Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle [J]. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49(6): 432-438.
[106] GAO J M, CHEN X L, REN C R, et al. Organotins in the aquatic media of secondary anabranches in the Three Gorges Reservoir Region, China [J]. Chemosphere, 2019, 217: 232-242. doi: 10.1016/j.chemosphere.2018.10.204
[107] BANDARA K R V, CHINTHAKA S D M, YASAWARDENE S G, et al. Modified, optimized method of determination of Tributyltin (TBT) contamination in coastal water, sediment and biota in Sri Lanka [J]. Marine Pollution Bulletin, 2021, 166: 112202. doi: 10.1016/j.marpolbul.2021.112202
[108] SÁNCHEZ-RODRÍGUEZ Á, SOSA-FERRERA Z, SANTANA-DEL PINO Á, et al. Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain) [J]. Marine Pollution Bulletin, 2011, 62(5): 985-991. doi: 10.1016/j.marpolbul.2011.02.038
[109] KIM N S, HONG S H, AN J G, et al. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea [J]. Marine Pollution Bulletin, 2015, 95(1): 484-490. doi: 10.1016/j.marpolbul.2015.03.010
[110] ALI H R, ARIFIN M M, SHEIKH M A, et al. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia [J]. Marine Pollution Bulletin, 2013, 70(1/2): 253-257.
[111] MAI H, MORIN B, PARDON P, et al. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas [J]. Marine Environmental Research, 2013, 89: 1-8. doi: 10.1016/j.marenvres.2013.04.003
[112] KAONGA C C, TAKEDA K, SAKUGAWA H. Concentration and degradation of alternative biocides and an insecticide in surface waters and their major sinks in a semi-enclosed sea, Japan [J]. Chemosphere, 2016, 145: 256-264. doi: 10.1016/j.chemosphere.2015.11.100
[113] WILLE K, CLAESSENS M, RAPPÉ K, et al. Rapid quantification of pharmaceuticals and pesticides in passive samplers using ultra high performance liquid chromatography coupled to high resolution mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(51): 9162-9173. doi: 10.1016/j.chroma.2011.10.039
[114] MIJANGOS L, ZIARRUSTA H, ROS O, et al. Occurrence of emerging pollutants in estuaries of the Basque Country: Analysis of sources and distribution, and assessment of the environmental risk [J]. Water Research, 2018, 147: 152-163. doi: 10.1016/j.watres.2018.09.033
[115] KONSTANTINOU I K, ALBANIS T A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review [J]. Environment International, 2004, 30(2): 235-248. doi: 10.1016/S0160-4120(03)00176-4
[116] EGUCHI S, HARINO H, YAMAMOTO Y. Assessment of antifouling biocides contaminations in maizuru bay, Japan [J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 684-693. doi: 10.1007/s00244-009-9394-8
[117] MOCHIDA K, HANO T, ONDUKA T, et al. Spatial analysis of 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (Sea-Nine 211) concentrations and probabilistic risk to marine organisms in Hiroshima Bay, Japan [J]. Environmental Pollution, 2015, 204: 233-240. doi: 10.1016/j.envpol.2015.05.012
[118] YAMAMOTO A, MIYAMOTO I, KITAGAWA M, et al. Analysis of chlorothalonil by liquid chromatography/mass spectrometry using negative-ion atmospheric pressure photoionization [J]. Analytical Sciences, 2009, 25(5): 693-697. doi: 10.2116/analsci.25.693
[119] CRESSWELL T, RICHARDS J P, GLEGG G A, et al. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters [J]. Marine Pollution Bulletin, 2006, 52(10): 1169-1175. doi: 10.1016/j.marpolbul.2006.01.014
[120] SAPOZHNIKOVA Y, WIRTH E, SCHIFF K, et al. Antifouling pesticides in the coastal waters of Southern California [J]. Marine Pollution Bulletin, 2007, 54(12): 1972-1978. doi: 10.1016/j.marpolbul.2007.09.026
[121] CARBERY K, OWEN R, FRICKERS T, et al. Contamination of Caribbean coastal waters by the antifouling herbicide Irgarol 1051 [J]. Marine Pollution Bulletin, 2006, 52(6): 635-644. doi: 10.1016/j.marpolbul.2005.10.013
[122] PAZ-VILLARRAGA C A, CASTRO Í B, MILOSLAVICH P, et al. Venezuelan Caribbean Sea under the threat of TBT [J]. Chemosphere, 2015, 119: 704-710. doi: 10.1016/j.chemosphere.2014.07.068
[123] CASTRO Í B, IANNACONE J, SANTOS S, et al. TBT is still a matter of concern in Peru [J]. Chemosphere, 2018, 205: 253-259. doi: 10.1016/j.chemosphere.2018.04.097
[124] BATISTA R M, CASTRO I B, FILLMANN G. Imposex and butyltin contamination still evident in Chile after TBT global ban [J]. Science of the Total Environment, 2016, 566/567: 446-453. doi: 10.1016/j.scitotenv.2016.05.039
[125] DONG C D, CHEN C F, CHEN C W. Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan [J]. Estuarine, Coastal and Shelf Science, 2015, 156: 134-143. doi: 10.1016/j.ecss.2014.08.002
[126] CHEN C Z, CHEN L, LI F P, et al. Urgent caution to trace organometal pollution: Occurrence, distribution and sources of methyltins, butyltins and phenyltins in sediments from South Hangzhou Bay, China [J]. Environmental Pollution, 2019, 246: 571-577. doi: 10.1016/j.envpol.2018.12.037
[127] LEE M R N, KIM U J, LEE I S, et al. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area [J]. Marine Pollution Bulletin, 2015, 99(1/2): 157-165.
[128] WANG X M, KONG L N, CHENG J Y, et al. Distribution of butyltins at dredged material dumping sites around the coast of China and the potential ecological risk [J]. Marine Pollution Bulletin, 2019, 138: 491-500. doi: 10.1016/j.marpolbul.2018.11.043
[129] BRIANT N, BANCON-MONTIGNY C, ELBAZ-POULICHET F, et al. Trace elements in the sediments of a large Mediterranean Marina (Port Camargue, France): Levels and contamination history [J]. Marine Pollution Bulletin, 2013, 73(1): 78-85. doi: 10.1016/j.marpolbul.2013.05.038
[130] SOUSA A C A, OLIVEIRA I B, LARANJEIRO F, et al. Organotin levels in Nazaré canyon (west Iberian Margin, NE Atlantic) and adjacent coastal area [J]. Marine Pollution Bulletin, 2012, 64(2): 422-426. doi: 10.1016/j.marpolbul.2011.11.013
[131] MAGNUSSON M, HEIMANN K, RIDD M, et al. Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae [J]. Water Research, 2013, 47(14): 5211-5221. doi: 10.1016/j.watres.2013.06.003
[132] HARINO H, ARIFIN Z, RUMENGAN I F M, et al. Distribution of antifouling biocides and perfluoroalkyl compounds in sediments from selected locations in Indonesian coastal waters [J]. Archives of Environmental Contamination and Toxicology, 2012, 63(1): 13-21. doi: 10.1007/s00244-011-9747-y
[133] SOROLDONI S, VIEIRA da SILVA S, CASTRO Í B, et al. Antifouling paint particles cause toxicity to benthic organisms: Effects on two species with different feeding modes [J]. Chemosphere, 2020, 238: 124610. doi: 10.1016/j.chemosphere.2019.124610
[134] ABREU F E L, LIMA da SILVA J N, CASTRO Í B, et al. Are antifouling residues a matter of concern in the largest South American Port? [J]. Journal of Hazardous Materials, 2020, 398: 122937. doi: 10.1016/j.jhazmat.2020.122937
[135] MACIEL D C, CASTRO Í B, de SOUZA J R B, et al. Assessment of organotins and imposex in two estuaries of the northeastern Brazilian coast [J]. Marine Pollution Bulletin, 2018, 126: 473-478. doi: 10.1016/j.marpolbul.2017.11.061
[136] ANASTASIOU T I, CHATZINIKOLAOU E, MANDALAKIS M, et al. Imposex and organotin compounds in ports of the Mediterranean and the Atlantic: Is the story over? [J]. Science of the Total Environment, 2016, 569/570: 1315-1329. doi: 10.1016/j.scitotenv.2016.06.209
[137] GAO J M, ZHANG K, CHEN Y P, et al. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China [J]. Environmental Science and Pollution Research International, 2015, 22(11): 8375-8385. doi: 10.1007/s11356-014-3986-1
[138] QUINTAS P Y, OLIVA A L, ARIAS A, et al. Seasonal changes in organotin compounds in sediments from the Bahía Blanca Estuary [J]. Environmental Earth Sciences, 2016, 75(8): 1-13.
[139] CHEN C Z, CHEN L, XUE R, et al. Correction to: Spatiotemporal variation and source apportionment of organotin compounds in sediments in the Yangtze Estuary [J]. Environmental Sciences Europe, 2019, 31: 43. doi: 10.1186/s12302-019-0224-y
[140] FILIPKOWSKA A, KOWALEWSKA G. Butyltins in sediments from the Southern Baltic coastal zone: Is it still a matter of concern, 10 years after implementation of the total ban? [J]. Marine Pollution Bulletin, 2019, 146: 343-348. doi: 10.1016/j.marpolbul.2019.06.050
[141] van GESSELLEN N, BOUWMAN H, AVERBUJ A. Imposex assessment and tributyltin levels in sediments along the Atlantic coast of South Africa [J]. Marine Environmental Research, 2018, 142: 32-39. doi: 10.1016/j.marenvres.2018.09.016
[142] SOROLDONI S, CASTRO Í B, ABREU F, et al. Antifouling paint particles: Sources, occurrence, composition and dynamics [J]. Water Research, 2018, 137: 47-56. doi: 10.1016/j.watres.2018.02.064
[143] VIANA J L M, dos SANTOS S R V, dos SANTOS FRANCO T C R, et al. Occurrence and partitioning of antifouling booster biocides in sediments and porewaters from Brazilian northeast [J]. Environmental Pollution, 2019, 255: 112988. doi: 10.1016/j.envpol.2019.112988
[144] SOROLDONI S, ABREU F, CASTRO Í B, et al. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? [J]. Journal of Hazardous Materials, 2017, 330: 76-82. doi: 10.1016/j.jhazmat.2017.02.001
[145] MUKHTAR A, ZULKIFLI S Z, MOHAMAT-YUSUFF F, et al. Distribution of biocides in selected marine organisms from South of Johor, Malaysia [J]. Regional Studies in Marine Science, 2020, 38: 101384. doi: 10.1016/j.rsma.2020.101384