[1] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins [J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258
[2] ITRC. PFAS — Per- and Polyfluoroalkyl Substances [EB/OL]. [2021-7-1]. https: //pfas-1. itrcweb. org/.https://pfas-1.itrcweb.org/
[3] UNEP. Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty [EB/OL]. [2021-07-01]. http://chm.pops.int/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/language/en-US/Default.aspx.
[4] UNEP. The new POPs under the Stockholm Convention [EB/OL]. [2021-07-01]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx.
[5] EESC. Opinion of the European Economic and Social Committee on the Proposal for a Directive of the European Parliament and of the Council relating to restrictions on the marketing and use of perfluorooctane sulfonates (amendment of Council Directive 76/769/EEC)[J]. Official Journal of the European Union, 2006(C 195): 10-13.
[6] OECD. Organisation for Economic Co-operation and Development. Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts [R/OL]. [2021-07-01].https://www.oecd.org/chemicalsafety/risk-assessment/2382880.pdf.
[7] USEPA. Risk Management for Per- and Polyfluoroalkyl Substances (PFAS) under TSCA [EB/OL].[2021-07-01]. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-and-polyfluoroalkyl-substances-pfass.
[8] EC. Perfluorooctane sulfonate and its salts and certain other compounds regulations (PFOS regulations) [M/OL]. [2021-07-01].https://publications.gc.ca/site/eng/430879/publication.html.
[9] GELLRICH V, STAHL T, KNEPPER T P. Behavior of perfluorinated compounds in soils during leaching experiments [J]. Chemosphere, 2012, 87(9): 1052-1056. doi: 10.1016/j.chemosphere.2012.02.011
[10] PETROVIC M, FARRÉ M, de ALDA M L, et al. Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples [J]. Journal of Chromatography A, 2010, 1217(25): 4004-4017. doi: 10.1016/j.chroma.2010.02.059
[11] BOYACı E, RODRÍGUEZ-LAFUENTE Á, GORYNSKI K, et al. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases [J]. Analytica Chimica Acta, 2015, 873: 14-30. doi: 10.1016/j.aca.2014.12.051
[12] ANASTASSIADES M, LEHOTAY S J, ŠTAJNBAHER D, et al. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce [J]. Journal of AOAC INTERNATIONAL, 2003, 86(2): 412-431. doi: 10.1093/jaoac/86.2.412
[13] 陈瑞. 通过式净化UPLC-MS/MS法测定植物性食品中苯脲类、苯甲酰脲类和磺酰脲类农药残留[D]. 杭州: 浙江工业大学, 2018. CHEN R. Pass through purification-UPLC-MS/MS for the determination of phenylurea, benzoylurea and sulfonylurea pesticide residues in plant food[D]. Hangzhou: Zhejiang University of Technology, 2018 (in Chinese).
[14] 孟志娟, 黄云霞, 赵丽敏, 等. 气相色谱-串联质谱法测定水果中50种农药残留 [J]. 色谱, 2018, 36(9): 917-924. doi: 10.3724/SP.J.1123.2018.04011 MENG Z J, HUANG Y X, ZHAO L M, et al. Determination of 50 pesticide residues in fruits by gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2018, 36(9): 917-924(in Chinese). doi: 10.3724/SP.J.1123.2018.04011
[15] 兰韬, 初侨, 郝东宇, 等. Sin-QuEChERS结合UPLC-MS/MS同时检测茶叶中10种有机磷农药残留 [J]. 质谱学报, 2019, 40(3): 268-279. doi: 10.7538/zpxb.2018.0123 LAN T, CHU Q, HAO D Y, et al. Simultaneously detection of 10 organophosphorus pesticides residues in tea by sin-QuEChERS with UPLC-MS/MS [J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(3): 268-279(in Chinese). doi: 10.7538/zpxb.2018.0123
[16] 郭丽丽, 赵悠悠, 花锦, 等. SinChERS-液质联用分析远志与葛根药材中的农药残留 [J]. 中药材, 2019, 42(4): 747-753. doi: 10.13863/j.issn1001-4454.2019.04.009 GUO L L, ZHAO Y Y, HUA J, et al. Analysis of pesticide residues in polygala tenuifolia and pueraria lobata by the technology of SinChERS combined with LC-MS [J]. Journal of Chinese Medicinal Materials, 2019, 42(4): 747-753(in Chinese). doi: 10.13863/j.issn1001-4454.2019.04.009
[17] CHEN J N, LIAN Y J, ZHOU Y R, et al. Determination of 107 pesticide residues in wolfberry with acetate-buffered salt extraction and sin-QuEChERS nano column purification coupled with ultra performance liquid chromatography tandem mass spectrometry [J]. Molecules, 2019, 24(16): 2918. doi: 10.3390/molecules24162918
[18] 中国纺织工业联合会. 纺织品禁用偶氮染料快速测定方法: T/CNTAC 20—2018[S]. 中国纺织工业联合会, 2018. CNTAC. Textile—Rapid determination method of the banned azo colorants: T/CNTAC 20—2018[S]. China National Textile And Apparel Council. 2018 (in Chinese).
[19] ZHANG Q X. Extraction structure, extraction module, and liquid pretreatment device: US10150065[P]. [2018-12-11].https://patents.justia.com/patent/10150065
[20] USEPA. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2[EB/OL].[2021-07-01].https://www.epa.gov/sites/default/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf/.
[21] WANG P, LU Y L, WANG T Y, et al. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities [J]. Environmental Pollution, 2014, 190: 115-122. doi: 10.1016/j.envpol.2014.03.030
[22] ZHOU Y Q, MENG J, ZHANG M, et al. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? [J]. Environment International, 2019, 131: 104982. doi: 10.1016/j.envint.2019.104982
[23] HIGGINS C P, FIELD J A, CRIDDLE C S, et al. Quantitative determination of perfluorochemicals in sediments and domestic sludge [J]. Environmental Science & Technology, 2005, 39(11): 3946-3956.
[24] HU A L, QIU M, LIU H, et al. Simultaneous determination of phthalate diesters and monoesters in soil using accelerated solvent extraction and ultra-performance liquid chromatography coupled with tandem mass spectrometry [J]. Journal of Chromatography A, 2020, 1626: 461347. doi: 10.1016/j.chroma.2020.461347
[25] WANG C C, LU Y L, LI Q F, et al. Assessing the contribution of atmospheric transport and tourism activities to the occurrence of perfluoroalkyl acids (PFAAs) in an Alpine Nature Reserve [J]. Science of the Total Environment, 2019, 697: 133851. doi: 10.1016/j.scitotenv.2019.133851
[26] WANG P, WANG T Y, GIESY J P, et al. Perfluorinated compounds in soils from Liaodong Bay with concentrated fluorine industry Parks in China [J]. Chemosphere, 2013, 91(6): 751-757. doi: 10.1016/j.chemosphere.2013.02.017
[27] WANG P, LU Y L, WANG T Y, et al. Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China [J]. Journal of Hazardous Materials, 2016, 307: 55-63. doi: 10.1016/j.jhazmat.2015.12.059
[28] ZHANG M, WANG P, LU Y L, et al. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China [J]. Environment International, 2020, 135: 105347. doi: 10.1016/j.envint.2019.105347
[29] SONG L, HAN Y T, YANG J, et al. Rapid single-step cleanup method for analyzing 47 pesticide residues in pepper, chili peppers and its sauce product by high performance liquid and gas chromatography-tandem mass spectrometry [J]. Food Chemistry, 2019, 279: 237-245. doi: 10.1016/j.foodchem.2018.12.017
[30] GHISI R, VAMERALI T, MANZETTI S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review [J]. Environmental Research, 2019, 169: 326-341. doi: 10.1016/j.envres.2018.10.023