-
地下水是人类的主要水源之一。然而现代工业、农业的发展严重威胁地下水环境。据统计,2019年全国85.7%地下水水质为Ⅳ和Ⅴ类水[1],其中铁、锰和硝酸盐、亚硝酸盐是地下水污染的主要贡献指标,铁、锰的超标率为20%以上[2]。这些超标的污染物不同程度的对人体健康产生威胁,人体摄入的硝酸盐很容易转化为亚硝酸盐,通过血红蛋白不可逆地转化为高铁血红蛋白,从而抑制了体内的氧交换[3]。亚硝酸盐长时间暴露在体内会导致胃癌,高血压,冷球蛋白血症,先天性残疾和流产[4]。虽然微量的铁和锰是人体中不可缺少的元素,但是过量的铁和锰会引起帕金森氏病的发展并影响儿童的神经功能[5]。因此需要广泛地对地下水水质进行长期连续监测并扩大乡镇中以地下水为水源地的检测范围。目前水中硝酸盐、亚硝酸盐和重金属的常用的检测手段是离子色谱、火焰原子吸收光谱和电感耦合等离子体质谱等,这往往需要昂贵设备、专业操作人员和复杂前处理而降低检测速率,因此难以满足当前地下水快速检测要求。
相较于传统检测方法,基于光学传感器和电化学传感器检测方法则快速高效,且某些离子的检出限甚至低于专业的大型设备[6]。由于表面增强拉曼、纸基微流控等光谱技术和电化学方法对样品检测条件要求低、检测灵敏高效且分析检测设备便携,因此这些快速检测方法被广泛应用于营养盐、重金属离子检测中。
快速检测方法在环境中的应用的综述大多集中在某一类检测方法和重金属的检测,很少有关于地下水中主要无机污染物的快速检测方法的综述。由于纳米材料和微流控技术等快速检测方法在实际地下水检测中展现出巨大的应用潜力,因此本文综述了近10年来水中主要污染物硝酸盐、亚硝酸盐、铁和锰离子快速检测方法的研究进展,介绍各种快速检测方法的优势和局限性,指出在现场快速检测中可能面临的挑战,提出一种针对复杂水体的污染快速评估方案,并对今后的快速检测发展做出展望。
地下水主要无机污染物快速检测方法研究进展
Rapid detection method of main inorganic pollutants of groundwater: A review
-
摘要: 我国存在较为严重的地下水污染问题,因此需要对地下水中主要污染物进行简单连续监测。传统的检测方法费时费力并且检测仪器昂贵,难以满足当前广泛且频繁的地下水水质快速检测需求。发展一种经济高效地下水污染物检测方法对地下水水质监测和污染治理具有重要意义。近十几年来,基于光/电化学传感器技术发展迅速,纸基微流控、表面增强拉曼、纳米材料修饰的电化学传感器对地下水中的主要无机污染物检测展现出巨大的潜力。本文对基于光/电化学传感器的快速检测方法进行了综述并分析了各种传感器的优势和局限性,指出开发具有较宽线性检测区间而非超低检测限的快速检测手段以及提高复杂水体的检测准确性和重复性是实现现场快速检测的关键。此外提出了污染场地地下水可以以传统检测指标与特征污染物间的相关性作为地下水污染物的快速评估方法。Abstract: Groundwater have been seriously polluted in China. It is necessary to continuously monitor the major contaminants in groundwater. Traditional detection methods are time-consuming, laborious and expensive, expensive, which makes it difficult to test groundwater quality frequently and on a large scale. Therefore, it is essential to develop a cost-effective groundwater contaminant detection method for groundwater quality monitoring and pollution control. In recent decades, optical and electrochemical based sensors have been developed rapidly, in which paper-based microfluidic, surface-enhanced Raman, and nanomaterial-modified electrochemical sensors have shown great potential for the detection of major inorganic pollutants in groundwater. In this paper, rapid detection methods based on optical and electrochemical sensors are reviewed and the advantages and limitations of various sensors are evaluated. Finally, it is pointed out that developing rapid detection methods with wide linear detection intervals are more crucial than those with an ultra-low detection limits, which is the key to achieve rapid detection in the field. In addition, it is presented that the correlation between traditional detection indicators and characteristic contaminants can be used as a rapid assessment method for groundwater contaminants in groundwater at contaminated sites.
-
Key words:
- groundwater /
- rapid detection /
- heavy metals /
- nutrient /
- sensor
-
表 1 地下水主要无机污染物的快速检测方法
Table 1. Rapid detection method of main inorganic pollutants in groundwater
目标污染物
Analyte检测方法
Method传感器
Sensors
(data capture
or material)检测限
Limit of
Detection线性区间
Linear range反应时间
Reaction
time最佳pH
pH of the
best condition环境样品检测
Environmental
sample test同时检测物质
Simultaneous
detection引用文献
Reference硝酸盐 比色法-试纸法 智能手机 1—10 mg·L−1 地下水 亚硝酸盐 [63] 硝酸盐 比色纸基微流控 比色 (image-J处理图像) 19 μmol·L−1 50–1000 μmol·L−1 5 min 自来水,池塘水 [70] 亚硝酸盐 1.0 μmol·L−1 10–150 μmol·L−1 5 min 亚硝酸盐 比色纸基微流控 比色 0.05 μmol·L−1
0.01 μmol·L−1
0.8 nmol·L−1[79] 荧光 SERS 亚硝酸盐 分光光度法 0.39 μmol·L−1 1—180 μmol·L−1 1 min 自来水 [10] 亚硝酸盐 催化分光光度法 uv-vis分光光度计 4.6 μmol·L−1 100—5000 μmol·L−1 1.5 min 2 自来水 [8] 亚硝酸盐 分光光度法 uv-vis分光光度计 6.9 μg·L−1 16—1100 μg·L−1 35 min 9.4 自来水,河水 [19] 亚硝酸盐 比色-试纸法 裸眼 或 分光光度计 0.005 mg·L−1 0.005—9.2 mg·L−1 自来水、 [62] 亚硝酸盐 荧光光谱 CQD-Tb3+ 2.0 nmol·L−1 5—1200 nmol·L−1 7.5 地下水、湖水、雨水、自来水 Hg+ [44] 亚硝酸盐 荧光光谱 ZnCdS QDs 0.87 μmol·L−1 180—700 μmol·L−1 5 min [32] 亚硝酸盐 荧光光谱 聚乙烯亚胺-CdS QDs 0.05 μmol·L−1 0.1—100 μmol·L−1 7.4 自来水 [33] 亚硝酸盐 荧光光谱 PA-CDS 7.1 nmol·L−1 0.05—1 μmol·L−1和
1—50 μmol·L−160 min 2 自来水 [43] 亚硝酸盐 SERS Fe3O4@ SiO2/Au NPs 13.69 μmol·L−1 10—200 μmol·L−1 几秒 无需处理 池塘水 [58] 亚硝酸盐 SERS AgNP @ ABT/ NA 0.4 pmol·L−1 0.4 pmol·L−1—100 nmol·L−1 [6] 亚硝酸盐 电化学伏安法 GO-PANI-AuNPs 0.17 μmol·L−1 0.5 μmol·L−1—0.24 mmol·L−1
和 0.24—2.58 mmol·L−1自来水、污水 [90] Fe3+ 电化学伏安法 杯芳烃-还原氧化石墨烯 0.02 nmol·L−1 0.1—10 nmol·L−1 [91] Fe2+ 电化学伏安法 碳纳米管-米氟沙星 4.8 nmol·L−1 0.1—10 mmol·L−1 5 s 3—9 自来水 [93] Fe2+ 比色法 亚苯基乙炔 0.02 μmol·L−1 4—9 自来水,地下水 Cd,Zn [13] Fe2+ 比色法 金纳米棒 13.5 nmol·L−1 0.075—1 μmol·L−1 8 min 6.6 [21] Fe3+ 比色法 ASA-AuNPs 0.051 μmol·L−1 0.3—21 μmol·L−1 河水 [20] Fe2+ 比色法 & 荧光法 裸眼 或 荧光分光光度计 2.6 μg·L−1 2s [64] Fe3+ 荧光光谱 WS2-QDs 1.32 μmol·L−1 0—55 μmol·L−1 [34] Fe3+ 荧光光谱 2QD@P-PEN 0.5—100 μmol·L−1 11 自来水 [35] Fe3+ 荧光光谱 席夫碱 0.163 μmol·L−1 [25] Fe3+ 荧光光谱 NCQDs 0.5 μmol·L−1 0—70 μmol·L−1 1 min 7 自来水、河水 Hg2+ [52] Fe3+ 荧光光谱 NCQDs 0.31 μmol·L−1 3—60 μmol·L−1 7.5 自来水 Cu2+ [53] Fe3+ 荧光和比色 CQD 52 nmol·L−1 1—150 μmol·L−1 5—11 [45] Fe3+ 拉曼光谱 便携式拉曼光谱 0.2 μmol·L−1 5—100 μmol·L−1 几秒 2 [59] Fe4+ 比色纸基微流控 3,4-HPO 55 μg·L−1 0.25—2.0 mg·L−1 15 min 8 自来水 [73] Mn2+ 比色法 uv-vis分光光度计 0.02 μmol·L−1 0.15— 15 μmol·L−1 12 自来水、湖水 Cu2+ [22] Mn2+ 比色法 AgNPs与精氨酸 0.02 μmol·L−1 0.02—0.7 μmol·L−1 和
5—70 μmol·L−19.4 自来水、湖水、河水 [23] Mn2+ 电化学伏安法 Mn(II)-IIP/MWCNT/Chit/IL/GCE 0.15 μmol·L−1 2.0—9.0 μmol·L−1 6 污水 [94] Mn2+ 电化学伏安法 Ag/Au NPs修饰的金电极 8.42 nmol·L−1 0.01—0.05 μmol·L−1 [92] Mn3+ 荧光光谱 N-CQDs/CCSCD 5.3 nmol·L−1 0—21.11 μmol·L−1 5 min 7 自来水、湖水 [55] Mn(VII) 荧光光谱 PTQA 1 ng·L−1 0.01—800 μg·L−1 5 min 1.3 地下水、海水、河水、自来水 [24] Mn(VII) 荧光光谱 S,Cl,N-CQDs 12.5 nmol·L−1 0.05—110 nmol·L−1 3 min 2 [54] Mn2+ 比色纸基微流控 比色(image-J处理图像) 0.002 mmol·L−1 0.002—0.01 mmol·L−1 11 池塘水,自来水 Cu,Co,Ni,Hg [71] -
[1] 中国生态环境状况公报[R]. 中国生态环境部, 2019. Bulletin of China’s ecological and environmental status in 2019 [R]. China’s Ministry of Ecology and Environment, 2019.
[2] 李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征 [J]. 水文地质工程地质, 2019, 46(6): 1-8. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01 LI S P, LI W P, YIN X L, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017 [J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1-8(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01
[3] CHAN T Y. Food-borne nitrates and nitrites as a cause of methemoglobinemia [J]. The Southeast Asian Journal of Tropical Medicine and Public Health, 1996, 27(1): 189-192. [4] XIONG Y, WANG C J, TAO T, et al. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide [J]. Analytical and Bioanalytical Chemistry, 2016, 408(13): 3413-3423. doi: 10.1007/s00216-016-9415-1 [5] RUGLESS F, BHATTACHARYA A, SUCCOP P, et al. Childhood exposure to manganese and postural instability in children living near a ferromanganese refinery in Southeastern Ohio [J]. Neurotoxicology and Teratology, 2014, 41: 71-79. doi: 10.1016/j.ntt.2013.12.005 [6] CORREA-DUARTE M A, PAZOS PEREZ N, GUERRINI L, et al. Boosting the quantitative inorganic surface-enhanced Raman scattering sensing to the limit: The case of nitrite/nitrate detection [J]. The Journal of Physical Chemistry Letters, 2015, 6(5): 868-874. doi: 10.1021/acs.jpclett.5b00115 [7] ZHAO Y, SHI R, BIAN X, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates?[J]. Advanced Science, 2019, 6(8): 1802109. [8] ADEGOKE O, ZOLOTOVSKAYA S, ABDOLVAND A, et al. Rapid and highly selective colorimetric detection of nitrite based on the catalytic-enhanced reaction of mimetic Au nanoparticle-CeO2 nanoparticle-graphene oxide hybrid nanozyme [J]. Talanta, 2021, 224: 121875. doi: 10.1016/j.talanta.2020.121875 [9] ROMITELLI F, SANTINI S A, CHIERICI E, et al. Comparison of nitrite/nitrate concentration in human plasma and serum samples measured by the enzymatic batch Griess assay, ion-pairing HPLC and ion-trap GC-MS: The importance of a correct removal of proteins in the Griess assay [J]. Journal of Chromatography B, 2007, 851(1/2): 257-267. [10] LO H S, LO K W, YEUNG C F, et al. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex [J]. Analytica Chimica Acta, 2017, 990: 135-140. doi: 10.1016/j.aca.2017.07.018 [11] YU J J, QIN X C, WANG D, et al. Light-controlled configurable colorimetric sensing array [J]. Analytical Chemistry, 2019, 91(10): 6632-6637. doi: 10.1021/acs.analchem.9b00549 [12] FERNANDES G M, SILVA W R, BARRETO D N, et al. Novel approaches for colorimetric measurements in analytical chemistry - A review [J]. Analytica Chimica Acta, 2020, 1135: 187-203. doi: 10.1016/j.aca.2020.07.030 [13] ZHANG Y Y, CHEN X Z, LIU X Y, et al. A highly sensitive multifunctional sensor based on phenylene-acetylene for colorimetric detection of Fe2+ and ratiometric fluorescent detection of Cd2+ and Zn2+ [J]. Sensors and Actuators B:Chemical, 2018, 273: 1077-1084. doi: 10.1016/j.snb.2018.07.012 [14] PRIYADARSHINI E, PRADHAN N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review [J]. Sensors and Actuators B:Chemical, 2017, 238: 888-902. doi: 10.1016/j.snb.2016.06.081 [15] CHEN L F, TIAN X K, XIA D S, et al. Novel colorimetric method for simultaneous detection and identification of multimetal ions in water: Sensitivity, selectivity, and recognition mechanism [J]. ACS Omega, 2019, 4(3): 5915-5922. doi: 10.1021/acsomega.9b00312 [16] LI T H, LI Y L, ZHANG Y J, et al. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles [J]. The Analyst, 2015, 140(4): 1076-1081. doi: 10.1039/C4AN01583E [17] ZHAO X X, ZHAO H B, YAN L, et al. Recent developments in detection using noble metal nanoparticles [J]. Critical Reviews in Analytical Chemistry, 2020, 50(2): 97-110. doi: 10.1080/10408347.2019.1576496 [18] KUMAR V V, ANTHONY S P. Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions [J]. Analytica Chimica Acta, 2014, 842: 57-62. doi: 10.1016/j.aca.2014.06.028 [19] Ibrahim M H, Xue Z, Abdu H I, et al. Sensitive and selective colorimetric nitrite ion assay using silver nanoparticles easily synthesized and stabilized by AHNDMS and functionalized with PABA [J]. Nanoscale Advances, 2019, 1(3): 1207-1214. doi: 10.1039/C8NA00146D [20] MEMON S S, NAFADY A, SOLANGI A R, et al. Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles [J]. Sensors and Actuators B:Chemical, 2018, 259: 1006-1012. doi: 10.1016/j.snb.2017.12.162 [21] LU S M, ZHANG X, CHEN L, et al. Colorimetric determination of ferrous ion via morphology transition of gold nanorods [J]. Microchimica Acta, 2017, 185(1): 1-9. [22] WU G H, DONG C, LI Y L, et al. A novel AgNPs-based colorimetric sensor for rapid detection of Cu2+ or Mn2+ via pH control [J]. RSC Advances, 2015, 5(26): 20595-20602. doi: 10.1039/C5RA00001G [23] HE Y, ZHANG X H. Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles [J]. Sensors and Actuators B:Chemical, 2016, 222: 320-324. doi: 10.1016/j.snb.2015.08.089 [24] AHMED M J, ISLAM M T, HOSSAIN F. A highly sensitive and selective spectrofluorimetric method for the determination of manganese at nanotrace levels in some real, environmental, biological, soil, food and pharmaceutical samples using 2-(α-pyridyl)-thioquinaldinamide [J]. RSC Advances, 2018, 8(10): 5509-5522. doi: 10.1039/C7RA12762F [25] HARATHI J, THENMOZHI K. AIE-active Schiff base compounds as fluorescent probes for the highly sensitive and selective detection of Fe3+ ions [J]. Materials Chemistry Frontiers, 2020, 4(5): 1471-1482. doi: 10.1039/C9QM00792J [26] 纪雪峰, 单斌, 王莎莎, 等. 荧光探针在水中重金属离子检测中的应用研究进展 [J]. 青岛理工大学学报, 2021, 42(16): 109-118. doi: 10.3969/j.issn.1673-4602.2021.01.018 JI X F, SHAN B, WANG S S, MA J P. Application research progress of fluorescent probe in the detection of heavy metal ions in water [J]. Journal of Qingdao University of Technology, 2021, 42(16): 109-118(in Chinese). doi: 10.3969/j.issn.1673-4602.2021.01.018
[27] ZHANG X S, LI C H, ZHAO S L, et al. S doped silicon quantum dots with high quantum yield as a fluorescent sensor for determination of Fe3+ in water [J]. Optical Materials, 2020, 110: 110461. doi: 10.1016/j.optmat.2020.110461 [28] CUI Y J, YUE Y F, QIAN G D, et al. Luminescent functional metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 1126-1162. doi: 10.1021/cr200101d [29] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271(5251): 933-937. doi: 10.1126/science.271.5251.933 [30] HIMMELSTOß S F, HIRSCH T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging [J]. Methods and Applications in Fluorescence, 2019, 7(2): 022002. doi: 10.1088/2050-6120/ab0bfa [31] LOU Y B, ZHAO Y X, CHEN J X, et al. Metal ions optical sensing by semiconductor quantum dots [J]. Journal of Materials Chemistry C, 2014, 2(4): 595-613. doi: 10.1039/C3TC31937G [32] YANG M, YAN Y J, SHI H X, et al. A novel fluorescent sensors for sensitive detection of nitrite ions [J]. Materials Chemistry and Physics, 2020, 239: 122121. doi: 10.1016/j.matchemphys.2019.122121 [33] REN H H, FAN Y, WANG B, et al. Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and water [J]. Journal of Agricultural and Food Chemistry, 2018, 66(33): 8851-8858. doi: 10.1021/acs.jafc.8b01951 [34] SINGH V K, MISHRA H, ALI R, et al. In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching [J]. ACS Applied Nano Materials, 2019, 2(1): 566-576. doi: 10.1021/acsanm.8b02162 [35] HE X H, JIA K, BAI Y, et al. Quantum dots encoded white-emitting polymeric superparticles for simultaneous detection of multiple heavy metal ions [J]. Journal of Hazardous Materials, 2021, 405: 124263. doi: 10.1016/j.jhazmat.2020.124263 [36] LI Q N, ZHOU W L, YU L P, et al. Perovskite quantum dots as a fluorescent probe for metal ion detection in aqueous solution via phase transfer [J]. Materials Letters, 2021, 282: 128654. doi: 10.1016/j.matlet.2020.128654 [37] SHENG X X, LIU Y, WANG Y, et al. Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions [J]. Advanced Materials, 2017, 29(37): 1700150. doi: 10.1002/adma.201700150 [38] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h [39] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review [J]. Materials Today Chemistry, 2018, 8: 96-109. doi: 10.1016/j.mtchem.2018.03.003 [40] DEMCHENKO A P, DEKALIUK M O. Novel fluorescent carbonic nanomaterials for sensing and imaging [J]. Methods and Applications in Fluorescence, 2013, 1(4): 042001. doi: 10.1088/2050-6120/1/4/042001 [41] NICOLLIAN E H. Surface passivation of semiconductors [J]. Journal of Vacuum Science and Technology, 1971, 8(5): S39-S49. doi: 10.1116/1.1316388 [42] SHEN J H, ZHU Y H, CHEN C, et al. Facile preparation and upconversion luminescence of graphene quantum dots [J]. Chemical Communications (Cambridge, England), 2011, 47(9): 2580-2582. doi: 10.1039/C0CC04812G [43] LI W S, HUANG S P, WEN H Y, et al. Fluorescent recognition and selective detection of nitrite ions with carbon quantum dots [J]. Analytical and Bioanalytical Chemistry, 2020, 412(4): 993-1002. doi: 10.1007/s00216-019-02325-9 [44] WU H F, TONG C L. Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury(II) in environmental water samples based on the Tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid [J]. Analytical Chemistry, 2020, 92(13): 8859-8866. doi: 10.1021/acs.analchem.0c00455 [45] SHI Y P, LIU J J, ZHANG Y, et al. Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe3+ detection and bioimaging[J]. Chinese Chemical Letters, 2021 [46] HUANG H, WENG Y H, ZHENG L H, et al. Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, l-cysteine and iodide ions [J]. Journal of Colloid and Interface Science, 2017, 506: 373-378. doi: 10.1016/j.jcis.2017.07.076 [47] MAGDY G, ABDEL HAKIEM A F, BELAL F, et al. Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples [J]. Food Chemistry, 2021, 343: 128539. doi: 10.1016/j.foodchem.2020.128539 [48] SUN S J, GUAN Q W, LIU Y, et al. Highly luminescence manganese doped carbon dots [J]. Chinese Chemical Letters, 2019, 30(5): 1051-1054. doi: 10.1016/j.cclet.2019.01.014 [49] LIN L P, LUO Y X, TSAI P, et al. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications [J]. TrAC Trends in Analytical Chemistry, 2018, 103: 87-101. doi: 10.1016/j.trac.2018.03.015 [50] WANG Y, ZHANG Y, JIA M Y, et al. Functionalization of carbonaceous nanodots from Mn(Ⅱ) -coordinating functional knots [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2015, 21(42): 14843-14850. [51] WU H, PANG L F, FU M J, et al. Boron and nitrogen codoped carbon dots as fluorescence sensor for Fe3+ with improved selectivity [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180: 113052. doi: 10.1016/j.jpba.2019.113052 [52] ZHU J T, CHU H Y, WANG T S, et al. Fluorescent probe based nitrogen doped carbon quantum dots with solid-state fluorescence for the detection of Hg2+ and Fe3+ in aqueous solution [J]. Microchemical Journal, 2020, 158: 105142. doi: 10.1016/j.microc.2020.105142 [53] BANDI R, DADIGALA R, GANGAPURAM B R, et al. N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(Ⅲ) and copper(Ⅱ) [J]. Microchimica Acta, 2019, 187(1): 1-10. [54] HU Q, LIU L F, SUN H J, et al. An ultra-selective fluorescence method with enhanced sensitivity for the determination of manganese (VII) in food stuffs using carbon quantum dots as nanoprobe [J]. Journal of Food Composition and Analysis, 2020, 88: 103447. doi: 10.1016/j.jfca.2020.103447 [55] WANG S, LIU J, ZHAO H H, et al. Carboxymethyl chitosan crosslinked β-cyclodextrin containing hydrogen bonded NC QDs nanocomposites to design fluorescence probes for manganese ion (Ⅱ) sensing [J]. Materials Science and Engineering:C, 2021, 119: 111556. doi: 10.1016/j.msec.2020.111556 [56] ONG T T X, BLANCH E W, JONES O A H. Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment [J]. Science of the Total Environment, 2020, 720: 137601. doi: 10.1016/j.scitotenv.2020.137601 [57] SINGH P, SINGH M K, BEG Y R, et al. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples [J]. Talanta, 2019, 191: 364-381. doi: 10.1016/j.talanta.2018.08.028 [58] CHEN J H, PANG S, HE L L, et al. Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy [J]. Biosensors and Bioelectronics, 2016, 85: 726-733. doi: 10.1016/j.bios.2016.05.068 [59] YAN F, REDDY C V G, SHRESTHA Y K, et al. Correction: Determination of ferric ions using surface-enhanced Raman scattering based on desferrioxamine-functionalized silver nanoparticles [J]. Chemical Communications, 2018, 54(78): 11053. doi: 10.1039/C8CC90421A [60] WEI H R, HOSSEIN ABTAHI S M, VIKESLAND P J. Plasmonic colorimetric and SERS sensors for environmental analysis [J]. Environmental Science:Nano, 2015, 2(2): 120-135. doi: 10.1039/C4EN00211C [61] 王胜智, 张平, 谢思桃. 试纸法及其在水质检测领域的应用研究[J]. 给水排水, 2008, 44(增刊2): 216-220. WANG S Z, ZHANG P, XIE S T. Dipstick method and its application in the field of water quality detection [J]. Water & Wastewater Engineering, 2008, 44(Sup 2): 216-220(in Chinese).
[62] VELLINGIRI K, CHOUDHARY V, PHILIP L. Fabrication of portable colorimetric sensor based on basic fuchsin for selective sensing of nitrite ions [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103374. doi: 10.1016/j.jece.2019.103374 [63] AUKEMA K G, WACKETT L P. Inexpensive microbial dipstick diagnostic fornitrate in water [J]. Environmental Science:Water Research & Technology, 2019, 5(2): 406-416. [64] NAWAZ H, TIAN W G, ZHANG J M, et al. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes [J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2114-2121. [65] WANG Q H, YU L J, LIU Y, et al. Methods for the detection and determination of nitrite and nitrate: A review [J]. Talanta, 2017, 165: 709-720. doi: 10.1016/j.talanta.2016.12.044 [66] HUANGFU C X, ZHANG Y, JANG M, et al. A μPAD for simultaneous monitoring of Cu2+, Fe2+ and free chlorine in drinking water [J]. Sensors and Actuators B:Chemical, 2019, 293: 350-356. doi: 10.1016/j.snb.2019.02.092 [67] MARTINEZ A W, PHILLIPS S T, BUTTE M J, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays [J]. Angewandte Chemie, 2007, 46(8): 1318-1320. doi: 10.1002/anie.200603817 [68] ZHANG D H, LI C C, JI D L, et al. Paper-based microfluidic sensors for onsite environmental detection: A critical review [J]. Critical Reviews in Analytical Chemistry, 2021: 1-40. [69] ZHANG Y, LI X, LI H, et al. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions [J]. The Analyst, 2014, 139(19): 4887. doi: 10.1039/C4AN01022A [70] JAYAWARDANE B M, WEI S, MCKELVIE I D, et al. Microfluidic paper-based analytical device for the determination of nitrite and nitrate [J]. Analytical Chemistry, 2014, 86(15): 7274-7279. doi: 10.1021/ac5013249 [71] KAMNOET P, AEUNGMAITREPIROM W, MENGER R F, et al. Highly selective simultaneous determination of Cu(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ), and Mn(Ⅱ) in water samples using microfluidic paper-based analytical devices [J]. The Analyst, 2021, 146(7): 2229-2239. doi: 10.1039/D0AN02200D [72] MENTELE M M, CUNNINGHAM J, KOEHLER K, et al. Microfluidic paper-based analytical device for particulate metals [J]. Analytical chemistry, 2012, 84(10): 4474-4480. doi: 10.1021/ac300309c [73] MONIZ T, BASSETT C R, ALMEIDA M I G S, et al. Use of an ether-derived 3-hydroxy-4-pyridinone Chelator as a new chromogenic reagent in the development of a microfluidic paper-based analytical device for Fe(Ⅲ) determination in natural waters [J]. Talanta, 2020, 214: 120887. doi: 10.1016/j.talanta.2020.120887 [74] CATE D M, NANTHASURASAK P, RIWKULKAJORN P, et al. Rapid detection of transition metals in welding fumes using paper-based analytical devices [J]. The Annals of Occupational Hygiene, 2014, 58(4): 413-423. [75] RATTANARAT P, DUNGCHAI W, CATE D, et al. Multilayer paper-based device for colorimetric and electrochemical quantification of metals [J]. Analytical Chemistry, 2014, 86(7): 3555-3562. doi: 10.1021/ac5000224 [76] GUO X F, LIU C, LI N, et al. Ratiometric fluorescent test paper based on silicon nanocrystals and carbon dots for sensitive determination of mercuric ions [J]. Royal Society Open Science, 2018, 5(6): 171922. doi: 10.1098/rsos.171922 [77] CHANG J, LI H, HOU T, et al. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity [J]. Biosensors and Bioelectronics, 2016(86): 971-977. [78] FENG L, LI H, NIU L Y, et al. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions [J]. Talanta, 2013, 108: 103-108. doi: 10.1016/j.talanta.2013.02.073 [79] LI D, MA Y D, DUAN H Z, et al. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite [J]. Biosensors and Bioelectronics, 2018, 99: 389-398. doi: 10.1016/j.bios.2017.08.008 [80] BANSOD B, KUMAR T, THAKUR R, et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms [J]. Biosensors and Bioelectronics, 2017, 94: 443-455. doi: 10.1016/j.bios.2017.03.031 [81] JIANG C B, HE Y H, LIU Y. Recent advances in sensors for electrochemical analysis of nitrate in food and environmental matrices [J]. The Analyst, 2020, 145(16): 5400-5413. doi: 10.1039/D0AN00823K [82] CHEN X Y, ZHOU G H, MAO S, et al. Rapid detection of nutrients with electronic sensors: A review [J]. Environmental Science:Nano, 2018, 5(4): 837-862. doi: 10.1039/C7EN01160A [83] FEIER B, FLONER D, CRISTEA C, et al. Flow electrochemical analyses of zinc by stripping voltammetry on graphite felt electrode [J]. Talanta, 2012, 98: 152-156. doi: 10.1016/j.talanta.2012.06.063 [84] YANG S L, LIU X Y, ZENG X D, et al. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite [J]. Sensors and Actuators B:Chemical, 2010, 145(2): 762-768. doi: 10.1016/j.snb.2010.01.032 [85] CUI Y P, YANG C Z, ZENG W, et al. Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique [J]. Analytical Sciences:The International Journal of the Japan Society for Analytical Chemistry, 2007, 23(12): 1421-1425. doi: 10.2116/analsci.23.1421 [86] WANG Z F, LIAO F, GUO T T, et al. Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods [J]. Journal of Electroanalytical Chemistry, 2012, 664: 135-138. doi: 10.1016/j.jelechem.2011.11.006 [87] PHAM X H, LI C A, HAN K N, et al. Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes [J]. Sensors and Actuators B:Chemical, 2014, 193: 815-822. doi: 10.1016/j.snb.2013.12.034 [88] WANG S Q, YIN Y M, LIN X Q. Cooperative effect of Pt nanoparticles and Fe(Ⅲ) in the electrocatalytic oxidation of nitrite [J]. Electrochemistry Communications, 2004, 6(3): 259-262. doi: 10.1016/j.elecom.2003.12.008 [89] MILHANO C, PLETCHER D. The electrodeposition and electrocatalytic properties of copper-palladium alloys [J]. Journal of Electroanalytical Chemistry, 2008, 614(1/2): 24-30. [90] CHEN G Z, ZHENG J B. Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite [J]. Microchemical Journal, 2021, 164: 106034. doi: 10.1016/j.microc.2021.106034 [91] GÖDE C, YOLA M L, YıLMAZ A, et al. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) ions [J]. Journal of Colloid and Interface Science, 2017, 508: 525-531. doi: 10.1016/j.jcis.2017.08.086 [92] GEORGE J M, PRIYANKA R N, MATHEW B. Bimetallic Ag-Au nanoparticles as pH dependent dual sensing probe for Mn(Ⅱ) ion and ciprofloxacin [J]. Microchemical Journal, 2020, 155: 104686. doi: 10.1016/j.microc.2020.104686 [93] ABDALLAH N A. Novel potentiometric solid-contact electrode for the determination of Fe2+ ions via MWCNTs-gemifloxacin composite [J]. Electroanalysis, 2021, 33(5): 1283-1289. doi: 10.1002/elan.202060319 [94] ROUSHANI M, SAEDI Z, HAMDI F, et al. Preparation an electrochemical sensor for detection of manganese (Ⅱ) ions using glassy carbon electrode modified with multi walled carbon nanotube-chitosan-ionic liquid nanocomposite decorated with ion imprinted polymer [J]. Journal of Electroanalytical Chemistry, 2017, 804: 1-6. doi: 10.1016/j.jelechem.2017.09.038 [95] HAN Z Y, MA H N, SHI G Z, et al. A review of groundwater contamination near municipal solid waste landfill sites in China [J]. Science of the Total Environment, 2016, 569/570: 1255-1264. doi: 10.1016/j.scitotenv.2016.06.201 [96] 雷抗. 垃圾填埋场地下水污染监测预警技术研究 : 以天津市某简易垃圾填埋场为例[D]. 北京: 中国地质大学(北京), 2018. LEI K. Study on monitoring and early warning technology applied to groundwater contamination in waste landfills —acase studyfor asimple landfill in Tianjin[D]. Beijing: China University of Geosciences, 2018(in Chinese).
[97] JIANG Y, LI R, YANG Y N, et al. Migration and evolution of dissolved organic matter in landfill leachate-contaminated groundwater plume [J]. Resources, Conservation and Recycling, 2019, 151: 104463. doi: 10.1016/j.resconrec.2019.104463 [98] 张云龙. 地下水典型污染源全过程监控及预警方法研究[D]. 成都: 成都理工大学, 2016. ZHANG Y L. Study on the whole-process monitoring and early warning of groundwater pollution of typical pollution sources[D]. Chengdu: Chengdu University of Technology, 2016(in Chinese).