-
氯代多环芳烃(Cl-PAHs)是饮用水氯消毒[1]、电子垃圾的处理[2-3]、金属冶炼[4]、垃圾焚烧[5-6]以及烹饪[7]等人类活动过程中产生的副产物,它具有与多氯联苯和二噁英相似的平面结构和类似的环境行为[8],其毒性与多环芳烃母体相当甚至高于母体。目前已在大气[9-10]、沉积物[11]、汽车尾气[12]、冶炼厂废气[4]、垃圾焚烧厂的飞灰和烟道气[6]及烧烤食品[7]中检测到氯代多环芳烃。氯代多环芳烃作为一类新型的高风险有机污染物广泛存在于环境中,对人类健康具有一定的潜在威胁。
氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs)主要通过工业废水排放和大气沉降进入地表,造成土壤污染。低水溶性和相对较高的辛醇-水分配系数(lgKow)可导致其在土壤中的积累。目前土壤中多环芳烃的测定方法有索氏抽提-高效液相色谱法[13]、微波萃取-高效液相色谱法[14]、加速溶剂萃取气相色谱-质谱法[15-16] 、加速溶剂萃取高效液相色谱法[17] 等。土壤中氯代多环芳烃的测定方法主要有加速溶剂萃取气相色谱-质谱法[18-19]、超声萃取高效液相色谱法[3]、索氏抽提萃取气相色谱-质谱法[20] 等。加速溶剂萃取设备昂贵;索氏抽提虽然设备简单但要消耗大量的有机溶剂。此外这些方法均需要进一步的浓缩、净化,操作过程繁琐,费时费力。因此发展一种简便、快速、成本低廉、环境友好的样品前处理方法对于土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃的测定很有意义。
超分子溶剂(supramolecular solvent, SUPRAS)是指含亲水基和疏水基的两亲性分子在水溶性有机溶剂作用下分散在水相中,通过疏水相互作用按照一定的顺序形成的一种具有纳米结构的胶束聚集体。超分子溶剂微萃取(supramolecular solvent-based microextraction, SSBME)是由西班牙学者Rubio 等[21]提出的一种以超分子溶剂为萃取剂的新型萃取技术。超分子溶剂的一个显著特点是其具有高浓度的亲和位点,使其在较小的溶剂体积下能取得高的萃取效率,因此特别适用于微萃取;此外超分子溶剂具有纳米孔腔结构,它可以使小分目标化合物进入其中,但对腐殖酸、蛋白质、糖类等大分子具有限制进入作用,从而在萃取的同时可以达到净化的目的;超分子溶剂还有一个优点,它具有非挥发性和不易燃性,使用安全。超分子溶剂微萃取具有简便、快速、环境友好、成本低廉等优点,已经在环境、食品等领域得到了广泛应用。目前已用于鱼和贝类中噁喹酸和氟甲喹[22]、水中磺胺类[23]、生小麦中的赭曲霉毒素A[24]、人尿液中羟基多环芳烃[25]等化合物的分析。
本文尝试采用SSBME结合高效液相色谱法建立一种同时测定土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs) 的简便快速方法。
超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃
Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction
-
摘要: 建立了土壤中5种氯代多环芳烃和15种多环芳烃的超分子溶剂微萃取高效液相色谱荧光检测分析方法。探讨了萃取剂的组成、用量、涡旋振荡时间等因素对萃取效率的影响。优化后的实验条件为:以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;400 μL 超分子溶剂加入200 mg样品中,斡旋震荡2 min,离心后上清液过0.22 μm 滤膜,目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm)乙腈-水梯度分离后荧光检测,外标法定量。结果显示,20种目标化合物在线性范围内呈现良好的线性关系,相关系数均大于0.999;目标化合物的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%,方法的检出限(LOD, S/N=3)为 0.07—2.3 µg·kg−1,定量限(LOQ,S/N=10)为 0.2—7.0 µg·kg−1。该方法简便快速,样品处理过程不超过15 min,而且成本低廉,环境友好,可用于土壤中氯代多环芳烃和多环芳烃的快速分析检测。Abstract: An analytical method for determination of five kinds of chlorinated polycyclic aromatic hydrocarbons and fifteen kinds of polycyclic aromatic hydrocarbons in soil was developed using supramolecular solvent-based microextraction (SSBME) followed by high performance liquid chromatography coupled with fluorescence detection. The effects of the composition and amount of supramolecular solvent (SUPRAS) and vortex time on the extraction efficiency were systemically investigated. The supramolecular solvent was produced using 3 mL 1-octanol and 8 mL tetrahydrofuran and 29 mL water. 200 mg of dried soil samples were effectively extracted with 400 μL SUPRAS after vortexing for 2 min. After the centrifugation the supernatant was filtered by 0.22 μm film and the extracts was analyzed via liquid chromatography-fluorescence detection. Neither evaporation nor further clean-up steps for the extracts were needed. The overall sample treatment took approximately 15 min and multiple samples can be processed simultaneously. The separation of the target compounds was achieved on a SUPELCOSILTMLC-PAH column (150 mm×4.6 mm, 5 μm) with acetonitrile-water as mobile phase using gradient elution. Quantitative determination was achieved by external standard method. The correlation coefficients(r) were greater than 0.999 in the linear ranges of 20 target compounds. The average recoveries of target compounds were 76.5%—105.3% and the corresponding relative standard deviations (RSD, n=3) were 0.2%—8.5%. The limits of detection(LOD, S/N=3)and limits of quantification(LOQ, S/N=10)were in the range of 0.07—2.3 µg·kg−1 and 0.2—7.0 µg·kg−1, respectively. The method is simple, rapid, cheap and environmentally friendly. It can be applied for the rapid determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soil samples.
-
表 1 荧光激发和发射波长
Table 1. Fluorescent Excitation wavelength and Emission wavelength
时间/min Time 激发波长/nm Ex 发射波长/nm Em 0.00 275 330 13.90 255 375 17.90 245 450 19.80 245 370 23.50 265 390 32.40 273 440 36.50 290 410 38.50 240 480 40.00 265 420 表 2 目标化合物的线性范围、线性方程、相关系数、检出限及定量限
Table 2. Linear ranges ,regression equation, correlation coefficients(r), limits of detection (LOD, S/N=3) and limits of quantitation (LOQ, S/N=10) of target compounds
No. 化合物
Compound线性范围/(µg·kg−1)
Linear range标准曲线方程
Regression equation相关系数
R2检出限/(µg·kg−1)
LOD定量限/(µg·kg−1)
LOQ1 萘(Na) 2.5—1000 A=0.3182C+6.4532* 0.999 0.3 0.9 2 苊(Ace) 2.5—1000 A=0.7244C+2.6573 0.999 0.6 1.8 3 芴(Fl) 2.5—1000 A=1.5523C+0.7832 0.999 0.3 1.0 4 菲(Phe) 2.5—1000 A= 1.1875C+14.6108 0.999 0.2 0.6 5 蒽(Ant) 2.5—1000 A=2.0918C+0.2058 0.999 0.2 0.8 6 荧蒽(Fu) 2.5—1000 A=0.4013C+3.0251 0.999 0.5 1.9 7 芘(Py) 2.5—1000 A=1.0748C+6.6492 0.999 0.2 0.7 8 9-氯菲(9-ClPhe) 10—1000 A=0.0600C+1.0583 0.999 2.3 7.0 9 9-氯蒽(9-ClAnt) 2.5—1000 A=0.4078C+0.8628 0.999 0.7 2.2 10 2-氯蒽(2-ClAnt) 2.5—1000 A=0.8810C+0.2803 0.999 0.5 1.5 11 苯并[a]蒽(BaA) 2.5—1000 A=1.3297C-0.4912 0.999 0.4 1.3 12 䓛(Chr) 2.5—1000 A=1.7998C+5.9356 0.999 0.2 0.6 13 1-氯芘(1-ClPy) 10—1000 A=0.2456C-0.7780 0.999 2.1 5.4 14 苯并[b]荧蒽(BbF) 2.5—1000 A=0.8110C+1.7058 0.999 0.1 0.4 15 9,10-二氯蒽(9,10-DClAnt) 2.5—1000 A=1.6689C+0.0170 0.999 0.1 0.3 16 苯并[k]荧蒽(BkF) 2.5—1000 A= 1.8488C+1.3040 0.999 0.07 0.2 17 苯并[a]芘(BaP) 2.5—1000 A=1.3673C-0.2231 0.999 0.09 0.3 18 二苯并[a,h]蒽(DahA) 2.5—1000 A=1.1604C+2.9443 0.999 0.1 0.4 19 苯并[ghi]苝(BghiP) 2.5—1000 A=0.6349C+0.3495 0.999 0.2 0.6 20 茚并[1,2,3-cd]芘(Ipy) 2.5—1000 A= 0.3413C-0.2224 0.999 0.3 1.0 * A: peak area ;C:concentration(µg·kg−1). 表 3 实际样品测定结果、方法的回收率及精密度(n=3)
Table 3. Determination results in real soil samples and recoveries and precisions of methods (n=3)
化合物
Compound污染土中含量/
(µg·kg−1)
Content of
contamined soil山参土中含量/
(µg·kg−1)
Content of
mountain soil加标水平/
(µg·kg−1)
Spiked level加标回收率/%
RecoveryRSD/% 萘(Na) 63.2 8.0 10、100、1000 90.1、97.3、88.3 7.7、3.9、1.6 苊(Ace) 563.1 nd 10、100、1000 83.0、77.9、84.8 8.3、5.4、0.7 芴(Fl) 1442.5 nd 10、100、1000 102.1、86.2、85.1 5.7,3.0,0.5 菲(Phe) 11122.8 8.0 10、100、1000 80.2、91.8、87.0 3.3、1.6、0.6 蒽(Ant) 3756.6 nd 10、100、1000 88.9、77.6、78.2 5.2、0.3、0.6 荧蒽(Fu) 19443.7 3.3 10、100、1000 94.3、79.2、85.7 3.7、4.2、0.2 芘(Py) 21200 7.6 10、100、1000 78.5、100.8、95.6 7.6、2.3、0.5 9-氯菲(9-ClPhe) 2241.6 nd 10、100、1000 78.0、84.9、84.0 7.8、3.4、0.2 9-氯蒽(9-ClAnt) 4901.8 nd 10、100、1000 81.2、90.4、78.6 8.5、3.7、0.6 2-氯蒽(2-ClAnt) 7202 nd 10、100、1000 85.6、86.6、79.1 6.8、5.3、0.4 苯并[a]蒽(BaA) 8787.4 nd 10、100、1000 95.2、88.0、87.3 4.5、1.8、0.3 䓛(Chr) 7392.2 nd 10、100、1000 96.2、89.4、87.6 3.6、2.5、0.3 1-氯芘(1-ClPy) 3022.7 nd 10、100、1000 82.3、87.1、90.7 7.9、4.0、0.5 苯并[b]荧蒽(BbF) 9073.9 nd 10、100、1000 86.5、88.1、88.6 4.2、3.9、0.2 9,10-二氯蒽(9,10-DClAnt) 392.7 nd 10、100、1000 81.2、85.2、83.0 3.6、1.8、0.6 苯并[k]荧蒽(BkF) 4041.7 nd 10、100、1000 90.2、87.9、87.5 3.2、2.4、0.3 苯并[a]芘(BaP) 9703.7 nd 10、100、1000 85.0、89.3、87.6 4.2、3.1、0.4 二苯并[a,h]蒽(DahA) 2581.7 nd 10、100、1000 79.1、89.7、88.4 4.5、2.4、0.2 苯并[ghi]苝(BghiP) 8263 nd 10、100、1000 89.2、105.3、94.8 4.2、1.6、0.6 茚并[1,2,3-cd]芘(Ipy) 7178 nd 10、100、1000 78.3、79.5、76.5 6.8、7.6、2.5 * nd: not detected. -
[1] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展 [J]. 生态毒理学报, 2017, 12(3): 120-134. LUO Y, ZHANG B Q, REN X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134(in Chinese).
[2] MA J, HORII Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China [J]. Environmental Science and Technology, 2009, 43: 643-649. doi: 10.1021/es802878w [3] NISHIMURA C, HORII Y, TANAKA S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils [J]. Environmental Pollution, 2017, 225: 252-260. doi: 10.1016/j.envpol.2016.10.088 [4] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants [J]. Environmental Science & Technology, 2018, 52: 7334-7342. [5] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008, 42: 1904-1909. [6] WANG Q, MIYAKE Y, TOKUMURA M, et al. Effects of characteristics of waste incinerator on emission rate of halogenated polycyclic aromatic hydrocarbon into environments [J]. Science of the Total Environment, 2018, 625: 633-639. doi: 10.1016/j.scitotenv.2017.12.323 [7] MASUDA M, WANG Q, TOKUMURA M, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods [J]. Ecotoxicology and Environmental Safety, 2019, 178: 188-194. doi: 10.1016/j.ecoenv.2019.04.046 [8] 马静, 吴明红, 徐刚, 等. 结构-活性关系对氯代多环芳烃性质的预测 [J]. 上海大学学报(自然科学版), 2010, 16(5): 536-540. MA J, WU M H, XU G, et al. Physical/chemical property estimation for Cl-PAHs congeners by quantitative structure-activity relationship [J]. Journal of Shanghai University (Natural Science Edition), 2010, 16(5): 536-540(in Chinese).
[9] OHURA T, HORII Y, YAMASHITA N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts [J]. Environmental Pollution, 2018, 232: 367-374. doi: 10.1016/j.envpol.2017.09.037 [10] SUN J L, JING X, CHANG W J, et al. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air [J]. Ecotoxicology and Environmental Safety, 2015, 113: 31-37. doi: 10.1016/j.ecoenv.2014.11.024 [11] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of Environmental Contamination and Toxicology, 2009, 57: 651-660. doi: 10.1007/s00244-009-9372-1 [12] OHURA T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons [J]. The Scientific World Journal, 2007, 7: 372-380. doi: 10.1100/tsw.2007.75 [13] 郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃 [J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016 GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2007, 26(2): 192-196(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.016
[14] 林琳, 王海, 缪丽娜, 等. 微波提取高效液相色谱法测定土壤中15种痕量多环芳烃 [J]. 中国环境监测, 2009, 25(2): 86-89. doi: 10.3969/j.issn.1002-6002.2009.02.006 LIN L, WANG H, MIU L N, et al. Determination of trace polycyclic aromatic hydrocarbons in environmental soil by using microwave assisted extraction coupled with high performance liquid chromatography [J]. Environmental Monitoring in China, 2009, 25(2): 86-89(in Chinese). doi: 10.3969/j.issn.1002-6002.2009.02.006
[15] SONG S, LU Y L, WANG T Y, et al. Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction [J]. Journal of Environmental Management, 2019, 249: 109406. doi: 10.1016/j.jenvman.2019.109406 [16] 刘彬, 闫强, 郭丽, 等. 加压流体萃取-硅酸镁柱净化-气相色谱质谱法同时测定土壤中有机氯农药和多环芳烃 [J]. 环境化学, 2019, 38(10): 2212-2221. doi: 10.7524/j.issn.0254-6108.2018112605 LIU B, YAN Q, GUO L, et al. Simultaneous determination of OCPs and PAHs in soil by GC-MSD with ASE and florisil SPE purification [J]. Environmental Chemistry, 2019, 38(10): 2212-2221(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112605
[17] 张纯淳, 李思维, 李钟瑜, 等. 快速溶剂提取-高效液相色谱-二极管紫外阵列/荧光串联法同时测定土壤中18种多环芳烃 [J]. 环境化学, 2015, 34(6): 1231-1233. ZHANG C C, LI S W, LI Z Y, et al. Simultaneous determination of 18 polycyclic aromatic hydrocarbons in soil by rapid solvent extraction coupled with high performance liquid chromatography-diode UV array / fluorescence series method [J]. Environmental Chemistry, 2015, 34(6): 1231-1233(in Chinese).
[18] WANG X L, WU J F, LIU B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions [J]. RSC Advances, 2016, 6: 80017-80023. doi: 10.1039/C6RA13973F [19] WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment [J]. Environmental Science and Pollution Research, 2017, 24: 16241-16252. doi: 10.1007/s11356-017-9193-0 [20] 莫李桂, 马盛韬, 李会茹, 等. 气相色谱/三重四极杆串联质谱法检测土壤中氯代多环芳烃和溴代多环芳烃 [J]. 分析化学, 2013, 41(12): 1825-1830. MO L G, MA S T, LI H R, et al. Determination of chlorinated-and brominated-polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1825-1830(in Chinese).
[21] BALLESTEROS-GÓMEZ A, RUBIO S, PÉREZ-BENDITO D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods [J]. Journal of Chromatography A, 2009, 1216: 530-539. doi: 10.1016/j.chroma.2008.06.029 [22] COSTI E M, SICILIA M D, RUBIO S. Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish [J]. Journal of Chromatography A, 2010, 1217: 1447-1454. doi: 10.1016/j.chroma.2009.12.073 [23] BOGDANOVA P, POCHIVALOV A, VAKH C, et al. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides [J]. Talanta, 2020, 216: 120992. doi: 10.1016/j.talanta.2020.120992 [24] GARCÍA-FONSECA S, BALLESTEROS-GÓMEZ A, RUBIO S, et al. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination [J]. Journal of Chromatography A, 2010, 1217: 2376-2382. doi: 10.1016/j.chroma.2009.10.085 [25] MARTINEFSKI M, FEIZI N, LUNAR M L, et al. Supramolecular solvent-based high-throughput sample treatment platform for the biomonitoring of PAH metabolites in urine by liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2019, 237: 124525. doi: 10.1016/j.chemosphere.2019.124525 [26] BALLESTEROS-GÓMEZ A, RUBIO S. Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants [J]. Analytical Chemistry, 2012, 84: 342-349. doi: 10.1021/ac2026207