超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃

熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
引用本文: 熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
XIONG Li, WANG Jincheng, CHEN Jiping. Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction[J]. Environmental Chemistry, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
Citation: XIONG Li, WANG Jincheng, CHEN Jiping. Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction[J]. Environmental Chemistry, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103

超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃

    通讯作者: Tel:(0411)84379972,E-mail:wangjincheng@dicp.ac.cn

Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction

    Corresponding author: WANG Jincheng, wangjincheng@dicp.ac.cn
  • 摘要: 建立了土壤中5种氯代多环芳烃和15种多环芳烃的超分子溶剂微萃取高效液相色谱荧光检测分析方法。探讨了萃取剂的组成、用量、涡旋振荡时间等因素对萃取效率的影响。优化后的实验条件为:以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;400 μL 超分子溶剂加入200 mg样品中,斡旋震荡2 min,离心后上清液过0.22 μm 滤膜,目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm)乙腈-水梯度分离后荧光检测,外标法定量。结果显示,20种目标化合物在线性范围内呈现良好的线性关系,相关系数均大于0.999;目标化合物的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%,方法的检出限(LOD, S/N=3)为 0.07—2.3 µg·kg−1,定量限(LOQ,S/N=10)为 0.2—7.0 µg·kg−1。该方法简便快速,样品处理过程不超过15 min,而且成本低廉,环境友好,可用于土壤中氯代多环芳烃和多环芳烃的快速分析检测。
  • 铊是一种稀有的剧毒重金属元素,毒性高于铅、汞、镉等有毒物质,世界卫生组织关于铊的环境卫生标准规定,一般人群铊的总摄入量不超过5 μg,致死剂量为8~12 μg·g−1,铊对人体的急性毒性剂量为6~40 mg·kg−1 BW[1]。铊污染主要来源于工业排放,全世界每年用于工业生产的铊达到1.5×105 t左右,向环境中释放的铊达到2 000~5 000 t[2-3]。此外,尾矿、冶炼废弃物、含铊矿石等含铊物质经地表径流、淋滤、大气降水进入环境,以及钢铁厂等企业含铊废水的超标排放等,导致铊污染突发事件时有发生,给下游饮用水安全造成了严重威胁[4-5]。如广东韶关冶炼厂排放含铊污水造成了严重的水体铊污染事件、广西贺江铊污染事件、四川广元段的嘉陵江铊污染事件等。而且,2021年1月20日嘉陵江流域再次发生铊污染事件。因此,含铊废水的高效治理与防控刻不容缓。

    水中铊主要以Tl(I)和Tl(III)的无机形式存在,Tl(I)比Tl(III)更稳定和可溶[6]。与其它除铊技术相比,吸附法因其高效、经济、操作简便而被认为是最有前景的铊去除方法。已有不同类型吸附剂被开发并用于去除水中的铊污染物,包括腐殖质[7-8]、锯末[9]、活性炭[10-11]、多壁碳纳米管[12]、钛纳米管[13]、纳米Al2O3[14]和二氧化钛[15-16]等。然而,这些吸附剂的分离回收常采用离心机或过滤器,需要消耗能量且处理困难,使其在实际应用过程中受到限制。相比之下,在外加磁场作用下,磁性吸附剂可以简单地从处理水中分离出来,大大降低了操作能耗。为了提高吸附性能,通常将典型磁性材料 (例如Fe3O4和Fe2O3) 与对目标污染物具有强而特殊亲和力的吸附材料相结合[17-18],进而开发出磁性吸附剂用于去除铊、砷[17]、镉[18]和汞[19]等有毒物质。

    本研究通过化学共沉淀法制备Fe3O4颗粒,结合水热反应、溶胶凝胶等改性方法,制备磁性钛铁纳米颗粒 (TFNPs) 、四氧化三铁/二氧化钛核壳颗粒 (Fe3O4@TiO2) 和还原氧化石墨烯负载四氧化三铁/二氧化钛 (rGO-Fe3O4@TiO2) 复合磁性材料,并进一步优化TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性材料的制备方法,探讨TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性材料吸附、吸附氧化去除铊的性能,通过电化学手段,从微观水平阐明磁性材料中rGO对去除铊的促进机制。

    本研究中使用的所有化学品均为分析纯级,主要有硝酸铊 (TINO3) 、正钛酸四丁酯 (C16H36O4Ti,TBOT) 、乙醇 (C2H6O) 、叔丁醇 (C4H10O) 、氯化铁六水合物 (FeCl3·6H2O) 、硫酸亚铁七水合物 (FeSO4·6H2O) 、硼氢化钾 (KBH4) 、盐酸 (HCl) 、双氧水 (H2O2) 、氢氧化钠 (NaOH) 、硝酸 (HNO3) 、过硫酸钾 (K2S2O8,PS) ;所有溶液均采用超纯水配制。

    TFNPs是以TBOT和Fe3O4粉末为原料,其制备方法参考已有研究[20]。通过调节Fe3O4、TBOT的加入量和水热反应温度、时间等条件,制备最优的TFNPs磁性吸附材料。为减少实验次数,采用均匀实验设计方法进行实验设计[21],筛选具有代表性的Fe3O4、TBOT的加入量和水热反应温度、时间。均匀设计表用Un(qs)表示,其中U代表均匀设计,n代表要做的实验次数,q代表每个因素有q个水平,s代表因子个数。本研究主要考察的因子为Fe3O4加入量、TBOT加入量、水热反应温度和水热反应时间,实验次数一般为因子个数的3倍,采用均匀设计表 (U12[44]) 构建实验方案,如表1所示。以对Tl(I)的吸附量为优化指标筛选最佳吸附材料,具体的实验条件为:Tl(I)的初始质量浓度为10 mg·L−1、吸附剂用量为0.1 g·L−1、温度为 (25±1) ℃、pH为7、吸附时间为4 h。

    表 1  4因素4水平均匀设计表 (U12[44])
    Table 1.  Uniform design table of four factors and four levels (U12[44])
    组别Fe3O4加入量/mgTBOT加入量/mL水热反应温度/ ℃水热反应时间/h
    1305016060
    2302014036
    3505014024
    4304020024
    5402020060
    6503018048
    7403016048
    8604014060
    9605020048
    10404018036
    11602018024
    12503016036
     | Show Table
    DownLoad: CSV

    Fe3O4@TiO2的制备已有研究[22]。Fe3O4粉末投加量会直接影响TiO2壳状结构的厚度和致密性,进而影响材料的吸附容量。通过改变Fe3O4粉末和TBOT投加量,可以对核壳结构吸附材料结构与性能进行有效调控。采用表2优化Fe3O4粉末、TBOT的加入量,构建最优的Fe3O4@TiO2核壳磁性吸附材料,以对Tl(I)的吸附量为优化指标。具体吸附实验条件为:Tl(I)的初始质量浓度为10 mg·L−1、溶液pH为7.0、Fe3O4@TiO2用量为0.1 g·L−1、吸附时间为0.5 h。

    表 2  Fe3O4粉末和TBOT的加入量
    Table 2.  Addition amount of Fe3O4 and TBOT
    编号Fe3O4粉末/mgTBOT/mL
    1301
    2402
    3503
    4604
      注:考察Fe3O4粉末加入量时,TBOT的加入量为2 mL。
     | Show Table
    DownLoad: CSV

    考察TBOT的加入量时,Fe3O4粉末加入量为50 mg。

    rGO-Fe3O4@TiO2磁性材料的制备参考已有研究[23],采用表3优化rGO-Fe3O4和TBOT的加入量,构建最优的rGO-Fe3O4@TiO2磁性材料,以对Tl(I)的吸附量为优化指标。具体吸附实验条件为:Tl(I)的初始质量浓度为10 mg·L−1、溶液pH为7.0、吸附剂用量为0.1 g·L−1、吸附时间为0.5 h。

    表 3  rGO-Fe3O4、TBOT的加入量
    Table 3.  Addition amount of rGO-Fe3O4 and TBOT
    编号rGO-Fe3O4/mgTBOT/mL
    110.5
    251.5
    3102
      注:考察rGO-Fe3O4加入量时,TBOT的加入量为1.5 mL。
     | Show Table
    DownLoad: CSV

    考察TBOT的加入量时,rGO-Fe3O4粉末加入量为5 mg。

    采用铊离子储备液 (100 mg·L−1) 配置一系列浓度的铊离子工作溶液 (0.5、1、5、10、20、30和50 mg·L−1) ,用针管吸取1~2 mL溶液测定不同工作溶液的初始铊浓度。每个浓度的铊离子工作溶液,用量筒准确移取50 mL,转移至玻璃瓶中,调整溶液pH为7,吸附剂投加量为0.1 g·L−1。将所有玻璃瓶放置在超声仪器中超声3 min,然后放置在摇床摇晃24 h,摇床温度分别设置为25、35和45 ℃,分别在30 min、1.5 h、4 h和8 h校准pH至7。吸附24 h后,用针管吸取1~2 mL溶液,过0.45 μm滤膜,过滤溶液加到2 mL离心管中,采用逐级稀释方法,将样品进行不同倍数的稀释,确保样品浓度符合ICP-MS进样要求,待测。

    吸附热力学模型如式(1)~式(3)所示。

    ΔG=RTlnKT (1)
    KT=55.5×1000×204.38KL (2)
    lnKT=ΔSRΔHRT (3)

    式中:ΔG为Gibbs自由能,kJ·mol−1ΔH为焓变,J·(mol·K)−1ΔS为熵变,k·mol−1KT为无量纲参数;55.5 为水的摩尔浓度,mol·L−1;204.38为铊的摩尔分子量,g·mol−1R为气体常数,8.314×103 kJ·(mol·K)−1T为绝对温度,K。

    取50 mL Tl(I)反应溶液 (8.9 mg·L−1) ,移至玻璃瓶中,加入10 mmol PS,调整溶液pH=8,分别添加0.2 g·L−1的Fe3O4@TiO2和rGO-Fe3O4@TiO2。超声10 min后,放置于160 r·min−1的水浴振荡器中反应,分别在30 min、1 h、2 h和4 h校准pH=7,反应24 h后,取样过0.45 µm滤膜后测定反应后溶液中Tl的浓度。

    将10 mg rGO-Fe3O4@TiO2纳米颗粒用甲醇固定在Pt电极上,干燥后,作为工作电极,与甘汞和铂丝构成三电极体系,分别测定Tl(I)溶液 (8.5 mg·L−1) 和Tl(I)/PS (10 mg·L−1、10 mmol·L−1) 混合溶液条件下的循环伏安特性曲线。

    采用相同三电极体系,打开电流模式,依据循环伏安特性曲线测定结果,分别将工作电极电位设置为相应的氧化峰电位和还原峰电位,测定氧化电流-时间曲线和还原电流-时间曲线,计算电子供给容量 (EDC) 和电子接受容量 (EAC) 。

    1) TFNPs磁性材料制备条件的优化。4因素4水平条件下合成的TFNPs吸附Tl(I)的效果如图1所示,在实验条件范围内,Fe3O4加入量为50 mg、TBOT加入量为30 mL、水热反应温度为180 ℃和水热反应时间为48 h时,TFNPs吸附Tl(I)的效果最佳,确定此为制备TFNPs的最佳条件。

    图 1  4因素4水平条件下制备的TFNPs在同一因素下对Tl(I)的吸附量之和
    Figure 1.  The total adsorption capacity of Tl(I) by TFNPs synthesized at 4 factors and 4 levels under the same factor

    2) Fe3O4@TiO2核壳磁性材料制备条件的优化。改变Fe3O4粉末加入量的吸附结果如图2 (a) 所示,Fe3O4粉末加入量为50 mg时吸附效果最好,其次是60 mg。如图2 (b) 所示,TBOT的加入量为2 mL时吸附效果最好,确定Fe3O4粉末和TBOT的最佳加入量分别为50 mg和2 mL。

    图 2  Fe3O4 (a) 和TBOT (b) 加入量对Fe3O4@TiO2吸附剂Tl(I)吸附量的影响
    Figure 2.  Effect of the Fe3O4 (a) and TBOT (b) addition amount on the adsorption capacity of Fe3O4@TiO2 adsorbents toward Tl(I)

    3) rGO-Fe3O4@TiO2磁性材料制备条件的优化。在rGO-Fe3O4粉末加入量为5 mg条件下,改变TBOT投加量对材料吸附性能的影响结果如图3 (a) 所示,TBOT的加入量为1.5 mL和2.0 mL时,吸附材料性能更优。如图3 (b) 所示,将rGO-Fe3O4粉末加入量从1 mg提高至5 mg,吸附容量能够提高19.8%,继续提高rGO-Fe3O4粉末加入量至10 mg,吸附容量没有明显变化。确定TBOT和rGO-Fe3O4粉末的最佳加入量分别为1.5 mL和5 mg。

    图 3  TBOT (a) 和rGO-Fe3O4 (b) 投加量对rGO-Fe3O4@TiO2吸附剂Tl(I)吸附量的影响
    Figure 3.  Effect of TBOT (a) and rGO-Fe3O4 (b) addition amount on the adsorption capacity of rGO-Fe3O4@TiO2 adsorbents toward Tl(I)

    在pH=7.0、Tl(I)的初始浓度为10 mg·L−1、吸附剂量为0.1 g·L−1和T=(25±1)℃时,TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对Tl(I)的吸附去除率如图4所示。10 min内,TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对Tl(I)的去除率分别为29.98%、33.87%和23.01%,6 h后分别达到48.95%、43.23%和45.95%。3种磁性复合材料吸附除铊性能处于相同水平,但制备TFNPs的TBOT添加量 (10 mL) 远高于rGO-Fe3O4@TiO2 (1.5 mL) 。考虑到材料制备前驱体使用量,本研究将考察单位Ti条件下的吸附容量,即吸附位点的利用效率。

    图 4  TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对Tl(I)的吸附去除率
    Figure 4.  Adsorption removal percentage of Tl(I) by using TFNPs, Fe3O4@TiO2 and rGO-Fe3O4@TiO2

    由于TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性材料制备过程中TBOT添加量不同,而钛原子表面羟基 (Ti-OH) 是Tl离子吸附的主要功能基团,根据已有XPS分析结果[20,22,23 ],计算3种磁性材料在单位Ti含量条件下的Tl(I)吸附容量。如图5所示,10 min内,rGO-Fe3O4@TiO2相应单位Ti含量的Tl(I)吸附量 (97.3 mg-Tl·g-Ti−1) 是TFNPs (62.9 mg-Tl·g-Ti−1) 的1.55倍,是Fe3O4@TiO2 (68.6 mg-Tl·g-Ti−1) 的1.42倍。TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2单位Ti含量条件下Tl(I)最大吸附容量,分别为200、271.8和440 mg-Tl·g-Ti−1。Fe3O4@TiO2的单位Ti吸附容量高于TFNPs的1.36倍,而rGO-Fe3O4@TiO2的单位Ti吸附容量高于TFNPs的2.2倍。这主要与吸附材料结构特征直接相关[24-25],利用rGO纳米片作为模板,制备rGO-Fe3O4@TiO2磁性材料提高了TiO2的利用效率,最大程度上发挥所负载TiO2吸附Tl(I)的性能;而TFNPs通过将TiO2和Fe3O4颗粒在水热反应过程中集聚在一起,无次序的堆积,且相互挤压,使其部分活性位点被覆盖。同时,Fe3O4颗粒的晶体结构可能会受到干扰,材料的磁性会减弱。与TFNPs相比,Fe3O4@TiO2的核壳结构能够将吸附材料的活性中心更充分地暴露在磁性吸附剂的外表面上,降低了Tl污染物在吸附剂孔道内扩散阶段对吸附过程的影响,Tl污染物在该表面上吸附速度会更快[26]。但由于纳米TiO2粒子之间的范德华静电引力的作用,粒子表面相互靠在一起,使总表面积和表面自由能下降,TiO2粒子从高分散态变为团聚体,仍然会在一定程度降低了纳米颗粒的实际应用效果[27-29]。因此,综合考虑制备试剂的用量、单位吸附容量,rGO-Fe3O4@TiO2是快速、高效去除水中Tl(I)的最佳吸附剂。

    图 5  单位Ti含量条件下的TFNPs、Fe3O4@TiO2和 rGO-Fe3O4@TiO2对Tl(I)的吸附容量
    Figure 5.  Adsorption capacity of TFNPs, Fe3O4@TiO2 and rGO-Fe3O4@TiO2 toward Tl under unit Ti content

    与已报道的其他材料的吸附性能相比 (如表4所示) 。钛纳米管吸附量最大,达到709.2 mg·g−1,但需调节pH至5,而在铊泄漏造成的地表水污染情况时,水体pH一般在7左右。在中性情况下 (pH=7) ,FeOOH负载MnO2、过氧化钛、二氧化钛对Tl(I)的吸附量较大,分别为450、412和258 mg·g−1,均高于rGO-Fe3O4@TiO2的吸附性能,但过氧化钛和二氧化钛属于常规纳米吸附剂,需要借助离心或膜截留等方式进行回收再利用,高能耗在很大程度上,限制了其推广应用。rGO-Fe3O4@TiO2对Tl(I)的吸附量高于普鲁士蓝藻酸盐胶囊、聚丙烯酰胺膨润土等吸附剂,分别高于TFNPs、Fe3O4@TiO2磁性吸附剂的1.27、1.40倍[20, 22]。因此,rGO-Fe3O4@TiO2可作为一种磁选性能好且能有效去除铊污染物的吸附材料。

    表 4  现有已报道的吸附剂对Tl(I)的吸附性能比较
    Table 4.  Adsorption capacities of Tl(I) on previously reported adsorbents
    吸附剂Tl(I)/(mg·L−1)pH最大吸附量/(mg·g−1)参考文献
    碳纳米管0~0.126.00.42[30]
    锯末0~100 07.013.2[9]
    钛纳米管0~605.0709.2[13]
    改性真菌生物质-5.0159.7[31]
    聚丙烯酰胺沸石0~100 05.0378.1[32]
    聚丙烯酰胺膨润土0~100 05.073.6[32]
    过氧化钛0~507.0412[15]
    二氧化钛0~507.0258[15]
    普鲁士蓝藻酸盐胶囊0~4004.0103.0[33]
    FeOOH负载的MnO210~1507.0450[34]
    MnO2@黄铁矿渣0~16012.0320[35]
    硫醇二氧化硅微球10~3006.0452.8[36]
    线状MnO25~100 06.0450[37]
    TFNPs0~1507.0111.3[20]
    Fe3O4@TiO20~1507.0101.5[22]
    rGO-Fe3O4@TiO20~1507.0141.8[23]
     | Show Table
    DownLoad: CSV

    在pH=7.0,吸附剂量为0.1 mg·L−1和不同温度条件下的吸附热力学过程及Langmuir模型模拟数据如图6所示,依据式 (1)~式 (3) 计算的相关热动力学参数见表5。在温度为25、35和45 ℃条件下,rGO-Fe3O4@TiO2吸附去除Tl(I)过程的Gibbs自由能分别为−34.8、−36.3和−37.8 kJ·mol−1。这表明rGO-Fe3O4@TiO2吸附去除Tl(I)过程是自发进行的,且温度升高有助于提高材料的吸附性能[38]。相应焓变和熵变分别为10.19 kJ·(mol·K)−1和0.15 kJ·mol−1。这表明,Tl(I)在rGO-Fe3O4@TiO2磁性材料表面的吸附过程为吸热反应,且吸附后会导致固液界面无序性增加[39]

    图 6  rGO-Fe3O4@TiO2在不同温度下的吸附等温式及Langmuir模型模拟
    Figure 6.  Isotherm experimental data at different temperature with the fitting of Langmuir model
    表 5  吸附热力学参数
    Table 5.  Thermodynamic parameters of adsorption process
    T/ ℃ΔG/(kJ·mol−1)ΔH/(kJ·(mol·K)−1)ΔS/(kJ·mol−1)
    25−34.810.190.15
    35−36.3
    45−37.8
     | Show Table
    DownLoad: CSV

    3种磁性吸附材料TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2中的Fe3O4颗粒具有一定的PS活化能力,将其与PS耦合去除铊污染物,可以有效结合吸附和氧化技术,实现铊污染物的快速、高效去除[40]。如图7所示,在Tl(I)质量浓度为8.9 mg·L−1、PS浓度为10 mmol·L−1、磁性材料投加量为0.2 g·L−1和pH=8条件下反应24 h后,TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2对铊离子的去除率分别为51.1%、45.7%和50.3%,而TFNPs/PS、Fe3O4@TiO2/PS和rGO-Fe3O4@TiO2/PS耦合体系对Tl的去除率分别为51.7%、47.2%和88.4%。与TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2吸附去除率相比,TFNPs和Fe3O4@TiO2磁性材料在PS存在条件下对Tl的去除效率略有提高,而rGO-Fe3O4@TiO2磁性材料在PS存在条件下对Tl的去除率提高了75.7%。这说明,rGO-Fe3O4@TiO2磁性材料能够有效活化PS,提高了反应体系对Tl的去除效能[41]

    图 7  TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2与PS耦合前后的除铊性能
    Figure 7.  Tl removal of magnetic adsorbents including TFNPs, Fe3O4@TiO2 and rGO-Fe3O4@TiO2 with or without PS

    为探究rGO-Fe3O4@TiO2磁性材料能够更有效活化PS的内在机制,采用循环伏安特性曲线和电子交换容量进一步分析rGO-Fe3O4@TiO2磁性材料在反应过程中的电子传递性能,将rGO-Fe3O4@TiO2粉末固定在Pt电极上,作为工作电极。在Tl(I)溶液中的伏安特性曲线如图8 (a) 所示,呈现出明显的氧化还原峰,氧化峰位于0.31 V,还原峰位于0.06 V,2者具有较好的对称性,显示出一定的可逆性,在−0.20 V出现较弱的氧化峰,在−0.23 V出现较强的还原峰。这表明,rGO-Fe3O4@TiO2纳米颗粒自身具有较强的氧化还原能力。在Tl(I)和PS体系中的伏安特性曲线如图8 (b) 所示,出现2组氧化还原峰,分别在0.45 V和−0.18 V出现氧化峰,在−0.06 V和−0.63 V出现还原峰。与Tl(I)体系相比,PS存在条件下反应体系的氧化还原能力得到显著提高[42]

    图 8  不同体系循环伏安特性曲线
    Figure 8.  Cyclic voltammograms of the different systems

    有研究表明,rGO-Fe3O4@TiO2/PS耦合体系中主要是rGO和Fe3O4共同活化PS产生自由基将Tl(I)氧化为Tl(III)[43]。为进一步明确Fe3O4、rGO和rGO-Fe3O4@TiO2在Tl溶液和Tl/PS混合溶液条件下的电子转移能力即电子交换容量 (EEC) ,采用计时电流法评估不同材料 (包括Fe3O4、rGO和rGO-Fe3O4@TiO2) 在Tl溶液和Tl/PS混合溶液条件下的电子转移能力,以揭示rGO-Fe3O4@TiO2/PS耦合处理含铊污水的电子传输规律。如图9所示,Fe3O4、rGO和rGO-Fe3O4@TiO2在Tl(I)溶液体系中电子转移能力较弱,其EDC分别为2.45、0和0.56 μmol-e·g−1,而EAC分别为19.4、47.7和37.9 μmol-e·g−1。在Tl(I)/PS混合溶液体系中,3种材料的电子转移能力均显著提高,EDC分别为168.2、225.4和195.4 μmol-e·g−1,EAC测定值分别为131.4、746.8和571.3 μmol-e·g−1。这表明,PS存在条件下大量增加了反应体系的电子,rGO在Tl溶液和Tl/PS溶液中具有较强的电子转移能力,这主要是由于其自身含有的功能基团和碳骨架会促进电子的转移[44]。rGO-Fe3O4@TiO2的电子转移能力介于Fe3O4和rGO之间,主要是由于其表面锚定的Fe3O4@TiO2减小了rGO的电子转移能力。这表明,rGO在rGO-Fe3O4@TiO2/PS耦合体系中能够作为电子穿梭体介导电子的转移[45],具有优异的电子转移能力。

    图 9  计时电流法测定不同材料在Tl(I)和Tl(I)+PS体系电子转移能力:Fe3O4 (a)、rGO (b)和rGO-Fe3O4@TiO2 (c)
    Figure 9.  EAC and EDC of different materials in Tl(I) and Tl(I)+PS systems tested by chronoamperometry: Fe3O4 (a), rGO (b) and rGO-Fe3O4@TiO2 (c)

    1) 采用水热法、溶胶凝胶法、rGO模板法分别制备TFNPs、Fe3O4@TiO2和rGO-Fe3O4@TiO2磁性复合材料,优化其制备条件获得性能最佳的吸附材料。以rGO纳米片作为模板材料能够解决TiO2颗粒在废水中团聚的问题,加强吸附材料对重金属离子的吸附亲和力。rGO-Fe3O4@TiO2单位Ti含量条件下Tl(I)最大吸附容量可达到440 mg-Tl·g-Ti−1,吸附过程为吸热反应,温度升高有助于提高材料的吸附性能。

    2) rGO具有优异的电子转移能力,结合rGO-Fe3O4@TiO2磁性材料的高吸附性能,能够在材料周边形成局部高浓度,极大提高了电子传递给目标污染物的效率,进而强化电子利用效率,使rGO-Fe3O4@TiO2磁性材料在PS存在条件下对Tl的去除效率提高了75.7%。

  • 图 1  氯代多环芳烃和多环芳烃的高效液相色谱图(1—20色谱峰对应的化合物见表2)

    Figure 1.  Chromatogram of Cl-PAH and PAH (The number of 1—20 were the same as those in table 2.)

    图 2  1-辛醇用量对超分子溶剂体积的影响

    Figure 2.  Effect of volume of 1-octanol on volume of SUPRAs

    图 3  四氢呋喃的量对萃取效率的影响

    Figure 3.  Effect of volume tetrahydrofuran on extraction efficiency

    表 1  荧光激发和发射波长

    Table 1.  Fluorescent Excitation wavelength and Emission wavelength

    时间/min Time激发波长/nm Ex发射波长/nm Em
    0.00275330
    13.90255375
    17.90245450
    19.80245370
    23.50265390
    32.40273440
    36.50290410
    38.50240480
    40.00265420
    时间/min Time激发波长/nm Ex发射波长/nm Em
    0.00275330
    13.90255375
    17.90245450
    19.80245370
    23.50265390
    32.40273440
    36.50290410
    38.50240480
    40.00265420
    下载: 导出CSV

    表 2  目标化合物的线性范围、线性方程、相关系数、检出限及定量限

    Table 2.  Linear ranges ,regression equation, correlation coefficients(r), limits of detection (LOD, S/N=3) and limits of quantitation (LOQ, S/N=10) of target compounds

    No.化合物Compound线性范围/(µg·kg−1)Linear range标准曲线方程Regression equation相关系数R2检出限/(µg·kg−1)LOD定量限/(µg·kg−1)LOQ
    1萘(Na)2.5—1000A=0.3182C+6.4532*0.9990.30.9
    2苊(Ace)2.5—1000A=0.7244C+2.65730.9990.61.8
    3芴(Fl)2.5—1000A=1.5523C+0.78320.9990.31.0
    4菲(Phe)2.5—1000A= 1.1875C+14.61080.9990.20.6
    5蒽(Ant)2.5—1000A=2.0918C+0.20580.9990.20.8
    6荧蒽(Fu)2.5—1000A=0.4013C+3.02510.9990.51.9
    7芘(Py)2.5—1000A=1.0748C+6.64920.9990.20.7
    89-氯菲(9-ClPhe)10—1000A=0.0600C+1.05830.9992.37.0
    99-氯蒽(9-ClAnt)2.5—1000A=0.4078C+0.86280.9990.72.2
    102-氯蒽(2-ClAnt)2.5—1000A=0.8810C+0.28030.9990.51.5
    11苯并[a]蒽(BaA)2.5—1000A=1.3297C-0.49120.9990.41.3
    12䓛(Chr)2.5—1000A=1.7998C+5.93560.9990.20.6
    131-氯芘(1-ClPy)10—1000A=0.2456C-0.77800.9992.15.4
    14苯并[b]荧蒽(BbF)2.5—1000A=0.8110C+1.70580.9990.10.4
    159,10-二氯蒽(9,10-DClAnt)2.5—1000A=1.6689C+0.01700.9990.10.3
    16苯并[k]荧蒽(BkF)2.5—1000A= 1.8488C+1.30400.9990.070.2
    17苯并[a]芘(BaP)2.5—1000A=1.3673C-0.22310.9990.090.3
    18二苯并[a,h]蒽(DahA)2.5—1000A=1.1604C+2.94430.9990.10.4
    19苯并[ghi]苝(BghiP)2.5—1000A=0.6349C+0.34950.9990.20.6
    20茚并[1,2,3-cd]芘(Ipy)2.5—1000A= 0.3413C-0.22240.9990.31.0
      * A: peak area ;C:concentration(µg·kg−1).
    No.化合物Compound线性范围/(µg·kg−1)Linear range标准曲线方程Regression equation相关系数R2检出限/(µg·kg−1)LOD定量限/(µg·kg−1)LOQ
    1萘(Na)2.5—1000A=0.3182C+6.4532*0.9990.30.9
    2苊(Ace)2.5—1000A=0.7244C+2.65730.9990.61.8
    3芴(Fl)2.5—1000A=1.5523C+0.78320.9990.31.0
    4菲(Phe)2.5—1000A= 1.1875C+14.61080.9990.20.6
    5蒽(Ant)2.5—1000A=2.0918C+0.20580.9990.20.8
    6荧蒽(Fu)2.5—1000A=0.4013C+3.02510.9990.51.9
    7芘(Py)2.5—1000A=1.0748C+6.64920.9990.20.7
    89-氯菲(9-ClPhe)10—1000A=0.0600C+1.05830.9992.37.0
    99-氯蒽(9-ClAnt)2.5—1000A=0.4078C+0.86280.9990.72.2
    102-氯蒽(2-ClAnt)2.5—1000A=0.8810C+0.28030.9990.51.5
    11苯并[a]蒽(BaA)2.5—1000A=1.3297C-0.49120.9990.41.3
    12䓛(Chr)2.5—1000A=1.7998C+5.93560.9990.20.6
    131-氯芘(1-ClPy)10—1000A=0.2456C-0.77800.9992.15.4
    14苯并[b]荧蒽(BbF)2.5—1000A=0.8110C+1.70580.9990.10.4
    159,10-二氯蒽(9,10-DClAnt)2.5—1000A=1.6689C+0.01700.9990.10.3
    16苯并[k]荧蒽(BkF)2.5—1000A= 1.8488C+1.30400.9990.070.2
    17苯并[a]芘(BaP)2.5—1000A=1.3673C-0.22310.9990.090.3
    18二苯并[a,h]蒽(DahA)2.5—1000A=1.1604C+2.94430.9990.10.4
    19苯并[ghi]苝(BghiP)2.5—1000A=0.6349C+0.34950.9990.20.6
    20茚并[1,2,3-cd]芘(Ipy)2.5—1000A= 0.3413C-0.22240.9990.31.0
      * A: peak area ;C:concentration(µg·kg−1).
    下载: 导出CSV

    表 3  实际样品测定结果、方法的回收率及精密度(n=3)

    Table 3.  Determination results in real soil samples and recoveries and precisions of methods (n=3)

    化合物Compound污染土中含量/(µg·kg−1)Content of contamined soil山参土中含量/(µg·kg−1)Content of mountain soil加标水平/(µg·kg−1)Spiked level加标回收率/%RecoveryRSD/%
    萘(Na)63.28.010、100、100090.1、97.3、88.37.7、3.9、1.6
    苊(Ace)563.1nd10、100、100083.0、77.9、84.88.3、5.4、0.7
    芴(Fl)1442.5nd10、100、1000102.1、86.2、85.15.7,3.0,0.5
    菲(Phe)11122.88.010、100、100080.2、91.8、87.03.3、1.6、0.6
    蒽(Ant)3756.6nd10、100、100088.9、77.6、78.25.2、0.3、0.6
    荧蒽(Fu)19443.73.310、100、100094.3、79.2、85.73.7、4.2、0.2
    芘(Py)212007.610、100、100078.5、100.8、95.67.6、2.3、0.5
    9-氯菲(9-ClPhe)2241.6nd10、100、100078.0、84.9、84.07.8、3.4、0.2
    9-氯蒽(9-ClAnt)4901.8nd10、100、100081.2、90.4、78.68.5、3.7、0.6
    2-氯蒽(2-ClAnt)7202nd10、100、100085.6、86.6、79.16.8、5.3、0.4
    苯并[a]蒽(BaA)8787.4nd10、100、100095.2、88.0、87.34.5、1.8、0.3
    䓛(Chr)7392.2nd10、100、100096.2、89.4、87.63.6、2.5、0.3
    1-氯芘(1-ClPy)3022.7nd10、100、100082.3、87.1、90.77.9、4.0、0.5
    苯并[b]荧蒽(BbF)9073.9nd10、100、100086.5、88.1、88.64.2、3.9、0.2
    9,10-二氯蒽(9,10-DClAnt)392.7nd10、100、100081.2、85.2、83.03.6、1.8、0.6
    苯并[k]荧蒽(BkF)4041.7nd10、100、100090.2、87.9、87.53.2、2.4、0.3
    苯并[a]芘(BaP)9703.7nd10、100、100085.0、89.3、87.64.2、3.1、0.4
    二苯并[a,h]蒽(DahA)2581.7nd10、100、100079.1、89.7、88.44.5、2.4、0.2
    苯并[ghi]苝(BghiP)8263nd10、100、100089.2、105.3、94.84.2、1.6、0.6
    茚并[1,2,3-cd]芘(Ipy)7178nd10、100、100078.3、79.5、76.56.8、7.6、2.5
      * nd: not detected.
    化合物Compound污染土中含量/(µg·kg−1)Content of contamined soil山参土中含量/(µg·kg−1)Content of mountain soil加标水平/(µg·kg−1)Spiked level加标回收率/%RecoveryRSD/%
    萘(Na)63.28.010、100、100090.1、97.3、88.37.7、3.9、1.6
    苊(Ace)563.1nd10、100、100083.0、77.9、84.88.3、5.4、0.7
    芴(Fl)1442.5nd10、100、1000102.1、86.2、85.15.7,3.0,0.5
    菲(Phe)11122.88.010、100、100080.2、91.8、87.03.3、1.6、0.6
    蒽(Ant)3756.6nd10、100、100088.9、77.6、78.25.2、0.3、0.6
    荧蒽(Fu)19443.73.310、100、100094.3、79.2、85.73.7、4.2、0.2
    芘(Py)212007.610、100、100078.5、100.8、95.67.6、2.3、0.5
    9-氯菲(9-ClPhe)2241.6nd10、100、100078.0、84.9、84.07.8、3.4、0.2
    9-氯蒽(9-ClAnt)4901.8nd10、100、100081.2、90.4、78.68.5、3.7、0.6
    2-氯蒽(2-ClAnt)7202nd10、100、100085.6、86.6、79.16.8、5.3、0.4
    苯并[a]蒽(BaA)8787.4nd10、100、100095.2、88.0、87.34.5、1.8、0.3
    䓛(Chr)7392.2nd10、100、100096.2、89.4、87.63.6、2.5、0.3
    1-氯芘(1-ClPy)3022.7nd10、100、100082.3、87.1、90.77.9、4.0、0.5
    苯并[b]荧蒽(BbF)9073.9nd10、100、100086.5、88.1、88.64.2、3.9、0.2
    9,10-二氯蒽(9,10-DClAnt)392.7nd10、100、100081.2、85.2、83.03.6、1.8、0.6
    苯并[k]荧蒽(BkF)4041.7nd10、100、100090.2、87.9、87.53.2、2.4、0.3
    苯并[a]芘(BaP)9703.7nd10、100、100085.0、89.3、87.64.2、3.1、0.4
    二苯并[a,h]蒽(DahA)2581.7nd10、100、100079.1、89.7、88.44.5、2.4、0.2
    苯并[ghi]苝(BghiP)8263nd10、100、100089.2、105.3、94.84.2、1.6、0.6
    茚并[1,2,3-cd]芘(Ipy)7178nd10、100、100078.3、79.5、76.56.8、7.6、2.5
      * nd: not detected.
    下载: 导出CSV
  • [1] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展 [J]. 生态毒理学报, 2017, 12(3): 120-134.

    LUO Y, ZHANG B Q, REN X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134(in Chinese).

    [2] MA J, HORII Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China [J]. Environmental Science and Technology, 2009, 43: 643-649. doi: 10.1021/es802878w
    [3] NISHIMURA C, HORII Y, TANAKA S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils [J]. Environmental Pollution, 2017, 225: 252-260. doi: 10.1016/j.envpol.2016.10.088
    [4] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants [J]. Environmental Science & Technology, 2018, 52: 7334-7342.
    [5] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008, 42: 1904-1909.
    [6] WANG Q, MIYAKE Y, TOKUMURA M, et al. Effects of characteristics of waste incinerator on emission rate of halogenated polycyclic aromatic hydrocarbon into environments [J]. Science of the Total Environment, 2018, 625: 633-639. doi: 10.1016/j.scitotenv.2017.12.323
    [7] MASUDA M, WANG Q, TOKUMURA M, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods [J]. Ecotoxicology and Environmental Safety, 2019, 178: 188-194. doi: 10.1016/j.ecoenv.2019.04.046
    [8] 马静, 吴明红, 徐刚, 等. 结构-活性关系对氯代多环芳烃性质的预测 [J]. 上海大学学报(自然科学版), 2010, 16(5): 536-540.

    MA J, WU M H, XU G, et al. Physical/chemical property estimation for Cl-PAHs congeners by quantitative structure-activity relationship [J]. Journal of Shanghai University (Natural Science Edition), 2010, 16(5): 536-540(in Chinese).

    [9] OHURA T, HORII Y, YAMASHITA N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts [J]. Environmental Pollution, 2018, 232: 367-374. doi: 10.1016/j.envpol.2017.09.037
    [10] SUN J L, JING X, CHANG W J, et al. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air [J]. Ecotoxicology and Environmental Safety, 2015, 113: 31-37. doi: 10.1016/j.ecoenv.2014.11.024
    [11] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of Environmental Contamination and Toxicology, 2009, 57: 651-660. doi: 10.1007/s00244-009-9372-1
    [12] OHURA T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons [J]. The Scientific World Journal, 2007, 7: 372-380. doi: 10.1100/tsw.2007.75
    [13] 郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃 [J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016

    GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2007, 26(2): 192-196(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.016

    [14] 林琳, 王海, 缪丽娜, 等. 微波提取高效液相色谱法测定土壤中15种痕量多环芳烃 [J]. 中国环境监测, 2009, 25(2): 86-89. doi: 10.3969/j.issn.1002-6002.2009.02.006

    LIN L, WANG H, MIU L N, et al. Determination of trace polycyclic aromatic hydrocarbons in environmental soil by using microwave assisted extraction coupled with high performance liquid chromatography [J]. Environmental Monitoring in China, 2009, 25(2): 86-89(in Chinese). doi: 10.3969/j.issn.1002-6002.2009.02.006

    [15] SONG S, LU Y L, WANG T Y, et al. Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction [J]. Journal of Environmental Management, 2019, 249: 109406. doi: 10.1016/j.jenvman.2019.109406
    [16] 刘彬, 闫强, 郭丽, 等. 加压流体萃取-硅酸镁柱净化-气相色谱质谱法同时测定土壤中有机氯农药和多环芳烃 [J]. 环境化学, 2019, 38(10): 2212-2221. doi: 10.7524/j.issn.0254-6108.2018112605

    LIU B, YAN Q, GUO L, et al. Simultaneous determination of OCPs and PAHs in soil by GC-MSD with ASE and florisil SPE purification [J]. Environmental Chemistry, 2019, 38(10): 2212-2221(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112605

    [17] 张纯淳, 李思维, 李钟瑜, 等. 快速溶剂提取-高效液相色谱-二极管紫外阵列/荧光串联法同时测定土壤中18种多环芳烃 [J]. 环境化学, 2015, 34(6): 1231-1233.

    ZHANG C C, LI S W, LI Z Y, et al. Simultaneous determination of 18 polycyclic aromatic hydrocarbons in soil by rapid solvent extraction coupled with high performance liquid chromatography-diode UV array / fluorescence series method [J]. Environmental Chemistry, 2015, 34(6): 1231-1233(in Chinese).

    [18] WANG X L, WU J F, LIU B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions [J]. RSC Advances, 2016, 6: 80017-80023. doi: 10.1039/C6RA13973F
    [19] WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment [J]. Environmental Science and Pollution Research, 2017, 24: 16241-16252. doi: 10.1007/s11356-017-9193-0
    [20] 莫李桂, 马盛韬, 李会茹, 等. 气相色谱/三重四极杆串联质谱法检测土壤中氯代多环芳烃和溴代多环芳烃 [J]. 分析化学, 2013, 41(12): 1825-1830.

    MO L G, MA S T, LI H R, et al. Determination of chlorinated-and brominated-polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1825-1830(in Chinese).

    [21] BALLESTEROS-GÓMEZ A, RUBIO S, PÉREZ-BENDITO D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods [J]. Journal of Chromatography A, 2009, 1216: 530-539. doi: 10.1016/j.chroma.2008.06.029
    [22] COSTI E M, SICILIA M D, RUBIO S. Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish [J]. Journal of Chromatography A, 2010, 1217: 1447-1454. doi: 10.1016/j.chroma.2009.12.073
    [23] BOGDANOVA P, POCHIVALOV A, VAKH C, et al. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides [J]. Talanta, 2020, 216: 120992. doi: 10.1016/j.talanta.2020.120992
    [24] GARCÍA-FONSECA S, BALLESTEROS-GÓMEZ A, RUBIO S, et al. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination [J]. Journal of Chromatography A, 2010, 1217: 2376-2382. doi: 10.1016/j.chroma.2009.10.085
    [25] MARTINEFSKI M, FEIZI N, LUNAR M L, et al. Supramolecular solvent-based high-throughput sample treatment platform for the biomonitoring of PAH metabolites in urine by liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2019, 237: 124525. doi: 10.1016/j.chemosphere.2019.124525
    [26] BALLESTEROS-GÓMEZ A, RUBIO S. Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants [J]. Analytical Chemistry, 2012, 84: 342-349. doi: 10.1021/ac2026207
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.4 %DOWNLOAD: 6.4 %HTML全文: 85.6 %HTML全文: 85.6 %摘要: 8.0 %摘要: 8.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.9 %其他: 96.9 %XX: 2.1 %XX: 2.1 %上海: 0.2 %上海: 0.2 %东莞: 0.1 %东莞: 0.1 %北京: 0.1 %北京: 0.1 %合肥: 0.1 %合肥: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.2 %武汉: 0.2 %深圳: 0.1 %深圳: 0.1 %漯河: 0.1 %漯河: 0.1 %其他XX上海东莞北京合肥天津广州榆林武汉深圳漯河Highcharts.com
图( 3) 表( 3)
计量
  • 文章访问数:  2698
  • HTML全文浏览数:  2698
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-01
  • 录用日期:  2021-08-06
  • 刊出日期:  2022-10-27
熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
引用本文: 熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
XIONG Li, WANG Jincheng, CHEN Jiping. Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction[J]. Environmental Chemistry, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
Citation: XIONG Li, WANG Jincheng, CHEN Jiping. Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction[J]. Environmental Chemistry, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103

超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃

    通讯作者: Tel:(0411)84379972,E-mail:wangjincheng@dicp.ac.cn
  • 1. 大连工业大学,大连 ,116034
  • 2. 中国科学院大连化学物理研究所,大连 ,116023

摘要: 建立了土壤中5种氯代多环芳烃和15种多环芳烃的超分子溶剂微萃取高效液相色谱荧光检测分析方法。探讨了萃取剂的组成、用量、涡旋振荡时间等因素对萃取效率的影响。优化后的实验条件为:以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;400 μL 超分子溶剂加入200 mg样品中,斡旋震荡2 min,离心后上清液过0.22 μm 滤膜,目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm)乙腈-水梯度分离后荧光检测,外标法定量。结果显示,20种目标化合物在线性范围内呈现良好的线性关系,相关系数均大于0.999;目标化合物的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%,方法的检出限(LOD, S/N=3)为 0.07—2.3 µg·kg−1,定量限(LOQ,S/N=10)为 0.2—7.0 µg·kg−1。该方法简便快速,样品处理过程不超过15 min,而且成本低廉,环境友好,可用于土壤中氯代多环芳烃和多环芳烃的快速分析检测。

English Abstract

  • 氯代多环芳烃(Cl-PAHs)是饮用水氯消毒[1]、电子垃圾的处理[2-3]、金属冶炼[4]、垃圾焚烧[5-6]以及烹饪[7]等人类活动过程中产生的副产物,它具有与多氯联苯和二噁英相似的平面结构和类似的环境行为[8],其毒性与多环芳烃母体相当甚至高于母体。目前已在大气[9-10]、沉积物[11]、汽车尾气[12]、冶炼厂废气[4]、垃圾焚烧厂的飞灰和烟道气[6]及烧烤食品[7]中检测到氯代多环芳烃。氯代多环芳烃作为一类新型的高风险有机污染物广泛存在于环境中,对人类健康具有一定的潜在威胁。

    氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs)主要通过工业废水排放和大气沉降进入地表,造成土壤污染。低水溶性和相对较高的辛醇-水分配系数(lgKow)可导致其在土壤中的积累。目前土壤中多环芳烃的测定方法有索氏抽提-高效液相色谱法[13]、微波萃取-高效液相色谱法[14]、加速溶剂萃取气相色谱-质谱法[15-16] 、加速溶剂萃取高效液相色谱法[17] 等。土壤中氯代多环芳烃的测定方法主要有加速溶剂萃取气相色谱-质谱法[18-19]、超声萃取高效液相色谱法[3]、索氏抽提萃取气相色谱-质谱法[20] 等。加速溶剂萃取设备昂贵;索氏抽提虽然设备简单但要消耗大量的有机溶剂。此外这些方法均需要进一步的浓缩、净化,操作过程繁琐,费时费力。因此发展一种简便、快速、成本低廉、环境友好的样品前处理方法对于土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃的测定很有意义。

    超分子溶剂(supramolecular solvent, SUPRAS)是指含亲水基和疏水基的两亲性分子在水溶性有机溶剂作用下分散在水相中,通过疏水相互作用按照一定的顺序形成的一种具有纳米结构的胶束聚集体。超分子溶剂微萃取(supramolecular solvent-based microextraction, SSBME)是由西班牙学者Rubio 等[21]提出的一种以超分子溶剂为萃取剂的新型萃取技术。超分子溶剂的一个显著特点是其具有高浓度的亲和位点,使其在较小的溶剂体积下能取得高的萃取效率,因此特别适用于微萃取;此外超分子溶剂具有纳米孔腔结构,它可以使小分目标化合物进入其中,但对腐殖酸、蛋白质、糖类等大分子具有限制进入作用,从而在萃取的同时可以达到净化的目的;超分子溶剂还有一个优点,它具有非挥发性和不易燃性,使用安全。超分子溶剂微萃取具有简便、快速、环境友好、成本低廉等优点,已经在环境、食品等领域得到了广泛应用。目前已用于鱼和贝类中噁喹酸和氟甲喹[22]、水中磺胺类[23]、生小麦中的赭曲霉毒素A[24]、人尿液中羟基多环芳烃[25]等化合物的分析。

    本文尝试采用SSBME结合高效液相色谱法建立一种同时测定土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs) 的简便快速方法。

    • Agilent 1200 型高效液相色谱仪( 美国安捷伦公司),配二极管阵列紫外和荧光检测器;Vortex Genie 2涡旋振荡器 (美国 Scientific Industries);KMS-181E 磁力搅拌器(精凿科技上海有限公司);飞鸽牌TDL-4013离心机(上海安亭科学仪器厂);乙腈(LC- grade美国 Honeywell 公司);实验用水为经Milli-Q净化系统制备的去离子水。1-己醇、1-庚醇、1-辛醇、四氢呋喃购于阿拉丁试剂(中国)有限公司,纯度 ≧98.0%;1-葵醇购于梯希爱(上海)化成工业发展有限公司,纯度 98.0%。

      16种多环芳烃混标(200 µg·mL−1,其中苊烯无荧光,不在测定之列)及2-氯蒽、9-氯菲、9-氯蒽、9,10-二氯蒽、1-氯芘(纯度大于95%)均购于百灵威化学试剂有限公司。

    • 色谱条件:色谱柱为多环芳烃专用分析柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm);流动相为乙腈-水,采用梯度洗脱,乙腈变化为:0—18 min,40%—64%;18—25 min,64%;25—35 min,64%—100%;35—44 min,100%。流速为2 mL·min−1; 进样量10 μL。

      20种目标化合物的荧光激发和发射波长见表1,高效液相色谱图见图1

    • 40 g 风干的山参种植土用100 mL 丙酮-二氯甲烷(1:1)超声提取3次后,加入100 mL含2400 ng 氯代多环芳烃和多环芳烃的丙酮-二氯甲烷(1:1)溶液,搅拌混匀后于通风橱中氮气吹至近干,继续放置干透后储存于磨口玻璃瓶。此土壤样品含目标化合物60 ng·g−1,用于超分子溶剂的制备及萃取的优化。

    • 移取3 mL1-辛醇于50 mL聚四氟乙烯离心管中,加入8 mL四氢呋喃、29 mL去离子水,然后以900 r·min−1磁力搅拌5 min,静置2 min后3000 r·min−1 离心5 min,用玻璃滴管将上层形成的超分子溶剂转移到具塞玻璃瓶中,放于冰箱4 ℃储存备用。

    • 于5 mL 聚丙烯离心管中加入200 mg 土壤,3粒玻璃珠(3 mm直径),加入400 μL 超分子溶剂,3200 r·min−1蜗旋振荡2 min,然后5000 r·min−1 离心5 min,用1 mL注射器移出上清液,过0.22 μm 滤膜后高效液相色谱测定。

    • 将16种多环芳烃混标和5种氯代多环芳烃用乙腈配制成10000 µg·L−1的混标储备溶液,并逐级稀释成1000、100、10 ng·mL−1使用液。将此混标使用溶液添加到用丙酮-二氯甲烷(1:1)超声提取过的空白山参种植土中,使添加浓度分别为2.5 、10 、50 、 250、500、1000 ng·g−1, 4 ℃冰箱放置过夜,然后按1.5节方法萃取,用于标准工作曲线的测定。

    • 以添加60 ng·g−1,目标化合物的200 mg供试土壤样品为萃取对象,以目标化合物的峰面积为指标,考察了超分子溶剂的组成(脂肪醇种类、脂肪醇的量、四氢呋喃量)、萃取溶剂体积、涡旋振荡时间等因素对萃取效率的影响。

    • 超分子溶剂通常由两亲分子在分散剂存在下在水相体系中通过自组装生成。本研究采用烷基醇与四氢呋喃制备超分子溶剂。为此恒定总体积为40 mL,考察了1.5 mL1-己醇、1-庚醇、1-辛醇、1-葵醇在水中分别与8 mL四氢呋喃制备的超分子溶剂对萃取效率的影响。结果表明随着脂肪醇碳链的增加,制备的超分子溶剂萃取效率逐渐增大。超分子溶剂中有两类亲和位点,一种是极性端羟基产生的氢键作用力,另一种是醇碳链部分的疏水作用力(范德华力、色散力)。对于萃取多环芳烃及氯代多环芳烃这类非极性和弱极性化合物而言,醇碳链部分的疏水作用力起主要作用,而碳链越长,这种作用力越强,因而萃取效率越大。但实验发现1-葵醇制备的超分子溶剂导致部分目标化合物色谱峰展宽且重叠,无法准确定量。故以下实验选1-辛醇制备超分子溶剂。

    • 四氢呋喃的量保持8 mL,制备体系总体积为40 mL,考察了1-辛醇用量为0.5、1、1.5、2、2.5、3 mL时对萃取效率的影响。结果表明,改变1-辛醇用量,对制备的超分子溶剂的萃取效率无明显影响;但是随着1-辛醇用量的增加,生成的超分子溶剂体积增大,见图2。有文献[26]报道SUPRAs的体积Y(mL) 与烷基醇的用量X(mg) 和四氢呋喃在溶液中的体积百分比Z之间呈如下关系:Y = X(0.17 + e0.0389Z),即超分子溶剂的体积与醇的用量呈线性关系,本实验结果与文献报道一致。为了一次能制备更多的超分子溶剂,选定1-辛醇用量为3 mL。

    • 作为超分子溶剂的组成部分,四氢呋喃的用量不仅与制备的超分子溶剂体积有关,而且对超分子溶剂的萃取效率亦有一定影响。为此固定1-辛醇用量为3 mL,制备体系总体积为40 mL,考察了不同四氢呋喃的量对萃取效率的影响,如图3所示。结果表明,四氢呋喃用量的增加对低分子量的目标化合物的萃取效率影响不大;但对于高分子量的目标化合物,随着四氢呋喃用量的增加,萃取效率增大;当四氢呋喃大于8 mL后趋于稳定。因此本实验制备超分子溶剂时选定四氢呋喃的量为8 mL。

    • 为取得理想的萃取结果,考查超分子溶剂体积分别为300、350、400、500、600、700、800 μL时对萃取效率的影响。结果表明,随着萃取溶剂体积的增大,目标化合物的峰面积明显下降,即检测灵敏度下降;但同时回收率逐渐增大,当超分子溶剂体积大于400 μL时回收率趋于平稳。虽然增加萃取溶剂的体积可以萃取出更多的目标化合物,提高萃取回收率,但同时也会使目标化合物在萃取相中浓度的下降,而二者相比后者影响更大,进而导致检测灵敏度下降。综合以上结果,选定萃取溶剂的体积为400 μL。

    • 涡旋振荡可以促进萃取溶剂与样品的充分接触,提高萃取效率。为此,考查了涡旋振荡时间分别为1、2、3、4、5、6、7、8 min时对萃取效率的影响,结果表明涡旋振荡时间大于2 min后,目标化合物的峰面积变化很小。

      基于以上实验结果,优化后的实验条件为,以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;萃取溶剂的体积为400 μL,涡旋振荡2 min。

    • 在优化的萃取条件下,对添加 5 种氯代多环芳烃和15种多环芳烃系列浓度的空白土壤样品进行超分子溶剂微萃取,然后HPLC荧光测定,以质量浓度 C(ng·g−1)对峰面积 A 绘制校正曲线,得到20种目标化合物的线性回归方程、线性范围及相关系数;并以目标化合物的S/N=3时的浓度定义为方法的检出限,S/N=10时的浓度定义为方法的定量限,见表2。结果表明,范围内,目标化合物在2.5—1000 µg·kg−1(9-氯菲、1-氯芘在10—1000 µg·kg−1)范围内线性关系良好,线性相关系数均大于 0.999;方法的检出限为0.07—2.3 µg·kg−1,定量限为 0.2—7.0 µg·kg−1

    • 用建立的超分子溶剂微萃取高效液相色谱分析方法对山参土(2018年5月采于吉林浑春某地)和大连某地环境污染土壤样品(采于2019年10月)进行了测定。并在山参土样品中添加低、中、高的3个浓度水平的混标溶液,每个浓度水平平行测定3次,结果如表3所示。结果显示,大连某环境污染样品所有目标化合物均检出,且污染严重;山参图样品中检出萘、菲、荧蒽和芘等化合物,其余目标化合物未检出;目标化合物的加标回收率为:76.5%—105.3%,相对标准偏差(RSD)0.2%—8.5%。

    • 本文建立了超分子溶剂微萃取结合高效液相色谱荧光检测技术快速测定土壤中5种氯代多环芳烃和15种多环芳烃的分析方法。方法的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%。本方法简便、快速、成本低廉且环境友好,样品处理过程不超过15 min,而且一次可同时处理多个样品。本方法可用于土壤中5种氯代多环芳烃和15种多环芳烃的快速分析检测。

    参考文献 (26)

返回顶部

目录

/

返回文章
返回