-
氯代多环芳烃(Cl-PAHs)是饮用水氯消毒[1]、电子垃圾的处理[2-3]、金属冶炼[4]、垃圾焚烧[5-6]以及烹饪[7]等人类活动过程中产生的副产物,它具有与多氯联苯和二噁英相似的平面结构和类似的环境行为[8],其毒性与多环芳烃母体相当甚至高于母体。目前已在大气[9-10]、沉积物[11]、汽车尾气[12]、冶炼厂废气[4]、垃圾焚烧厂的飞灰和烟道气[6]及烧烤食品[7]中检测到氯代多环芳烃。氯代多环芳烃作为一类新型的高风险有机污染物广泛存在于环境中,对人类健康具有一定的潜在威胁。
氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs)主要通过工业废水排放和大气沉降进入地表,造成土壤污染。低水溶性和相对较高的辛醇-水分配系数(lgKow)可导致其在土壤中的积累。目前土壤中多环芳烃的测定方法有索氏抽提-高效液相色谱法[13]、微波萃取-高效液相色谱法[14]、加速溶剂萃取气相色谱-质谱法[15-16] 、加速溶剂萃取高效液相色谱法[17] 等。土壤中氯代多环芳烃的测定方法主要有加速溶剂萃取气相色谱-质谱法[18-19]、超声萃取高效液相色谱法[3]、索氏抽提萃取气相色谱-质谱法[20] 等。加速溶剂萃取设备昂贵;索氏抽提虽然设备简单但要消耗大量的有机溶剂。此外这些方法均需要进一步的浓缩、净化,操作过程繁琐,费时费力。因此发展一种简便、快速、成本低廉、环境友好的样品前处理方法对于土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃的测定很有意义。
超分子溶剂(supramolecular solvent, SUPRAS)是指含亲水基和疏水基的两亲性分子在水溶性有机溶剂作用下分散在水相中,通过疏水相互作用按照一定的顺序形成的一种具有纳米结构的胶束聚集体。超分子溶剂微萃取(supramolecular solvent-based microextraction, SSBME)是由西班牙学者Rubio 等[21]提出的一种以超分子溶剂为萃取剂的新型萃取技术。超分子溶剂的一个显著特点是其具有高浓度的亲和位点,使其在较小的溶剂体积下能取得高的萃取效率,因此特别适用于微萃取;此外超分子溶剂具有纳米孔腔结构,它可以使小分目标化合物进入其中,但对腐殖酸、蛋白质、糖类等大分子具有限制进入作用,从而在萃取的同时可以达到净化的目的;超分子溶剂还有一个优点,它具有非挥发性和不易燃性,使用安全。超分子溶剂微萃取具有简便、快速、环境友好、成本低廉等优点,已经在环境、食品等领域得到了广泛应用。目前已用于鱼和贝类中噁喹酸和氟甲喹[22]、水中磺胺类[23]、生小麦中的赭曲霉毒素A[24]、人尿液中羟基多环芳烃[25]等化合物的分析。
本文尝试采用SSBME结合高效液相色谱法建立一种同时测定土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs) 的简便快速方法。
-
Agilent 1200 型高效液相色谱仪( 美国安捷伦公司),配二极管阵列紫外和荧光检测器;Vortex Genie 2涡旋振荡器 (美国 Scientific Industries);KMS-181E 磁力搅拌器(精凿科技上海有限公司);飞鸽牌TDL-4013离心机(上海安亭科学仪器厂);乙腈(LC- grade,美国 Honeywell 公司);实验用水为经Milli-Q净化系统制备的去离子水。1-己醇、1-庚醇、1-辛醇、四氢呋喃购于阿拉丁试剂(中国)有限公司,纯度 ≧98.0%;1-葵醇购于梯希爱(上海)化成工业发展有限公司,纯度 98.0%。
16种多环芳烃混标(200 µg·mL−1,其中苊烯无荧光,不在测定之列)及2-氯蒽、9-氯菲、9-氯蒽、9,10-二氯蒽、1-氯芘(纯度大于95%)均购于百灵威化学试剂有限公司。
-
色谱条件:色谱柱为多环芳烃专用分析柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm);流动相为乙腈-水,采用梯度洗脱,乙腈变化为:0—18 min,40%—64%;18—25 min,64%;25—35 min,64%—100%;35—44 min,100%。流速为2 mL·min−1; 进样量10 μL。
20种目标化合物的荧光激发和发射波长见表1,高效液相色谱图见图1。
-
40 g 风干的山参种植土用100 mL 丙酮-二氯甲烷(1:1)超声提取3次后,加入100 mL含2400 ng 氯代多环芳烃和多环芳烃的丙酮-二氯甲烷(1:1)溶液,搅拌混匀后于通风橱中氮气吹至近干,继续放置干透后储存于磨口玻璃瓶。此土壤样品含目标化合物60 ng·g−1,用于超分子溶剂的制备及萃取的优化。
-
移取3 mL1-辛醇于50 mL聚四氟乙烯离心管中,加入8 mL四氢呋喃、29 mL去离子水,然后以900 r·min−1磁力搅拌5 min,静置2 min后3000 r·min−1 离心5 min,用玻璃滴管将上层形成的超分子溶剂转移到具塞玻璃瓶中,放于冰箱4 ℃储存备用。
-
于5 mL 聚丙烯离心管中加入200 mg 土壤,3粒玻璃珠(3 mm直径),加入400 μL 超分子溶剂,3200 r·min−1蜗旋振荡2 min,然后5000 r·min−1 离心5 min,用1 mL注射器移出上清液,过0.22 μm 滤膜后高效液相色谱测定。
-
将16种多环芳烃混标和5种氯代多环芳烃用乙腈配制成10000 µg·L−1的混标储备溶液,并逐级稀释成1000、100、10 ng·mL−1使用液。将此混标使用溶液添加到用丙酮-二氯甲烷(1:1)超声提取过的空白山参种植土中,使添加浓度分别为2.5 、10 、50 、 250、500、1000 ng·g−1, 4 ℃冰箱放置过夜,然后按1.5节方法萃取,用于标准工作曲线的测定。
-
以添加60 ng·g−1,目标化合物的200 mg供试土壤样品为萃取对象,以目标化合物的峰面积为指标,考察了超分子溶剂的组成(脂肪醇种类、脂肪醇的量、四氢呋喃量)、萃取溶剂体积、涡旋振荡时间等因素对萃取效率的影响。
-
超分子溶剂通常由两亲分子在分散剂存在下在水相体系中通过自组装生成。本研究采用烷基醇与四氢呋喃制备超分子溶剂。为此恒定总体积为40 mL,考察了1.5 mL1-己醇、1-庚醇、1-辛醇、1-葵醇在水中分别与8 mL四氢呋喃制备的超分子溶剂对萃取效率的影响。结果表明随着脂肪醇碳链的增加,制备的超分子溶剂萃取效率逐渐增大。超分子溶剂中有两类亲和位点,一种是极性端羟基产生的氢键作用力,另一种是醇碳链部分的疏水作用力(范德华力、色散力)。对于萃取多环芳烃及氯代多环芳烃这类非极性和弱极性化合物而言,醇碳链部分的疏水作用力起主要作用,而碳链越长,这种作用力越强,因而萃取效率越大。但实验发现1-葵醇制备的超分子溶剂导致部分目标化合物色谱峰展宽且重叠,无法准确定量。故以下实验选1-辛醇制备超分子溶剂。
-
四氢呋喃的量保持8 mL,制备体系总体积为40 mL,考察了1-辛醇用量为0.5、1、1.5、2、2.5、3 mL时对萃取效率的影响。结果表明,改变1-辛醇用量,对制备的超分子溶剂的萃取效率无明显影响;但是随着1-辛醇用量的增加,生成的超分子溶剂体积增大,见图2。有文献[26]报道SUPRAs的体积Y(mL) 与烷基醇的用量X(mg) 和四氢呋喃在溶液中的体积百分比Z之间呈如下关系:Y = X(0.17 + e0.0389Z),即超分子溶剂的体积与醇的用量呈线性关系,本实验结果与文献报道一致。为了一次能制备更多的超分子溶剂,选定1-辛醇用量为3 mL。
-
作为超分子溶剂的组成部分,四氢呋喃的用量不仅与制备的超分子溶剂体积有关,而且对超分子溶剂的萃取效率亦有一定影响。为此固定1-辛醇用量为3 mL,制备体系总体积为40 mL,考察了不同四氢呋喃的量对萃取效率的影响,如图3所示。结果表明,四氢呋喃用量的增加对低分子量的目标化合物的萃取效率影响不大;但对于高分子量的目标化合物,随着四氢呋喃用量的增加,萃取效率增大;当四氢呋喃大于8 mL后趋于稳定。因此本实验制备超分子溶剂时选定四氢呋喃的量为8 mL。
-
为取得理想的萃取结果,考查超分子溶剂体积分别为300、350、400、500、600、700、800 μL时对萃取效率的影响。结果表明,随着萃取溶剂体积的增大,目标化合物的峰面积明显下降,即检测灵敏度下降;但同时回收率逐渐增大,当超分子溶剂体积大于400 μL时回收率趋于平稳。虽然增加萃取溶剂的体积可以萃取出更多的目标化合物,提高萃取回收率,但同时也会使目标化合物在萃取相中浓度的下降,而二者相比后者影响更大,进而导致检测灵敏度下降。综合以上结果,选定萃取溶剂的体积为400 μL。
-
涡旋振荡可以促进萃取溶剂与样品的充分接触,提高萃取效率。为此,考查了涡旋振荡时间分别为1、2、3、4、5、6、7、8 min时对萃取效率的影响,结果表明涡旋振荡时间大于2 min后,目标化合物的峰面积变化很小。
基于以上实验结果,优化后的实验条件为,以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;萃取溶剂的体积为400 μL,涡旋振荡2 min。
-
在优化的萃取条件下,对添加 5 种氯代多环芳烃和15种多环芳烃系列浓度的空白土壤样品进行超分子溶剂微萃取,然后HPLC荧光测定,以质量浓度 C(ng·g−1)对峰面积 A 绘制校正曲线,得到20种目标化合物的线性回归方程、线性范围及相关系数;并以目标化合物的S/N=3时的浓度定义为方法的检出限,S/N=10时的浓度定义为方法的定量限,见表2。结果表明,范围内,目标化合物在2.5—1000 µg·kg−1(9-氯菲、1-氯芘在10—1000 µg·kg−1)范围内线性关系良好,线性相关系数均大于 0.999;方法的检出限为0.07—2.3 µg·kg−1,定量限为 0.2—7.0 µg·kg−1。
-
用建立的超分子溶剂微萃取高效液相色谱分析方法对山参土(2018年5月采于吉林浑春某地)和大连某地环境污染土壤样品(采于2019年10月)进行了测定。并在山参土样品中添加低、中、高的3个浓度水平的混标溶液,每个浓度水平平行测定3次,结果如表3所示。结果显示,大连某环境污染样品所有目标化合物均检出,且污染严重;山参图样品中检出萘、菲、荧蒽和芘等化合物,其余目标化合物未检出;目标化合物的加标回收率为:76.5%—105.3%,相对标准偏差(RSD)0.2%—8.5%。
-
本文建立了超分子溶剂微萃取结合高效液相色谱荧光检测技术快速测定土壤中5种氯代多环芳烃和15种多环芳烃的分析方法。方法的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%。本方法简便、快速、成本低廉且环境友好,样品处理过程不超过15 min,而且一次可同时处理多个样品。本方法可用于土壤中5种氯代多环芳烃和15种多环芳烃的快速分析检测。
超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃
Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction
-
摘要: 建立了土壤中5种氯代多环芳烃和15种多环芳烃的超分子溶剂微萃取高效液相色谱荧光检测分析方法。探讨了萃取剂的组成、用量、涡旋振荡时间等因素对萃取效率的影响。优化后的实验条件为:以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;400 μL 超分子溶剂加入200 mg样品中,斡旋震荡2 min,离心后上清液过0.22 μm 滤膜,目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm)乙腈-水梯度分离后荧光检测,外标法定量。结果显示,20种目标化合物在线性范围内呈现良好的线性关系,相关系数均大于0.999;目标化合物的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%,方法的检出限(LOD, S/N=3)为 0.07—2.3 µg·kg−1,定量限(LOQ,S/N=10)为 0.2—7.0 µg·kg−1。该方法简便快速,样品处理过程不超过15 min,而且成本低廉,环境友好,可用于土壤中氯代多环芳烃和多环芳烃的快速分析检测。Abstract: An analytical method for determination of five kinds of chlorinated polycyclic aromatic hydrocarbons and fifteen kinds of polycyclic aromatic hydrocarbons in soil was developed using supramolecular solvent-based microextraction (SSBME) followed by high performance liquid chromatography coupled with fluorescence detection. The effects of the composition and amount of supramolecular solvent (SUPRAS) and vortex time on the extraction efficiency were systemically investigated. The supramolecular solvent was produced using 3 mL 1-octanol and 8 mL tetrahydrofuran and 29 mL water. 200 mg of dried soil samples were effectively extracted with 400 μL SUPRAS after vortexing for 2 min. After the centrifugation the supernatant was filtered by 0.22 μm film and the extracts was analyzed via liquid chromatography-fluorescence detection. Neither evaporation nor further clean-up steps for the extracts were needed. The overall sample treatment took approximately 15 min and multiple samples can be processed simultaneously. The separation of the target compounds was achieved on a SUPELCOSILTMLC-PAH column (150 mm×4.6 mm, 5 μm) with acetonitrile-water as mobile phase using gradient elution. Quantitative determination was achieved by external standard method. The correlation coefficients(r) were greater than 0.999 in the linear ranges of 20 target compounds. The average recoveries of target compounds were 76.5%—105.3% and the corresponding relative standard deviations (RSD, n=3) were 0.2%—8.5%. The limits of detection(LOD, S/N=3)and limits of quantification(LOQ, S/N=10)were in the range of 0.07—2.3 µg·kg−1 and 0.2—7.0 µg·kg−1, respectively. The method is simple, rapid, cheap and environmentally friendly. It can be applied for the rapid determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soil samples.
-
实施农村环境治理,着力改善水环境,是国务院《农村人居环境整治三年行动方案》的具体要求[1]。其中,农村生活污水的有效处理和长效管理是改善农村人居环境的重要环节。由于我国不同地区地理位置、气候及社会经济发展水平存在较大差异,因此,农村生活污水处理技术很难统一[2]。现有的处理工艺大部分来源于城镇污水处理领域[3-4]。其中,进水的碳氮比(C/N)是影响我国农村生活污水处理工艺效能的重要因素[5]。由于雨污合流的稀释作用、化粪池的不合理设置、管网施工不规范导致灌溉用水混入等[6]原因,农村生活污水中有机物浓度普遍较低[7],使得这类污水在处理过程中生物脱氮除磷难度增大。
UCT(University of Cape town,南非开普敦大学提出的一种脱氮除磷工艺)工艺是类似A2/O工艺的一种新型脱氮除磷工艺。与A2/O工艺相比,UCT工艺将污泥先回流至缺氧池,再将缺氧池部分混合液回流至厌氧池,从而减少回流污泥中硝酸盐对厌氧释磷的影响[8-10]。该工艺能有效降低污水的COD、SS等指标,并解决同步脱氮除磷过程中聚磷菌和硝化菌在污泥龄上存在的矛盾问题[9]。
江苏省太湖地区位于长江三角洲的核心区,是我国人口最稠密和经济发展最具活力的地区之一。该区域城镇化水平较高,水冲厕所普遍,农村生活污水排放量大,但大多数村庄分散,污水处理设施的整体利用率和处理效率并不高[11]。其原因是设施巡检难度较大,运维成本较高。2013—2017年,环太湖地区68个自然村的分散型生活污水处理设施现状调查结果表明[12],现有处理设施出水的COD、NH3-N、TN、TP达标率分别为90.5%、84.2%、72.5%、68.2%,脱氮除磷效果有待提高。该地区中,江苏省农村生活污水中碳氮比(C/N)的年均值为3.9,远低于浙江省的年均值(6.10),说明对其进行生物脱氮的难度较大[13]。近年来,太湖流域水体一直存在富营养化问题,而农村生活污水的排放为其重要因素[14]。因此,亟需研发适应进水水质特点且具有稳定脱氮除磷效果的农村生活污水处理工艺,来解决类似环境容量小、人口基数大、水质污染严重地区的污水处理问题。
本课题组设计并构建了基于改良型UCT工艺的一体化农村生活污水处理系统,并在江苏省常州市钟楼区邹区镇进行应用推广。本文梳理了该系统的工艺改进思路、工程设计方案、运行效果及经济性分析,以期为农村生活污水处理工程的实施提供参考。
1. 案例背景
1.1 案例所在区域水环境现状
邹区镇位于常州市钟楼区西部,地处长江三角洲太湖平原中心,紧邻京杭大运河。全镇总面积66.18 km2,辖17个行政村,4个社区居委会,常住人口约5.6×104人。全镇河流水系较多,分布较为均匀,几乎各自然村均有河浜相通。境内主要河流有扁担河、卜泰河、鹤溪河、礼河、岳津河等。近年来,当地经济发展迅速,形成了灯具生产、物流贸易、建材批发等一系列国内特色产业,人口密度亦不断增大。然而,当地农村地区污水处理、垃圾处理等基础设施建设相对滞后,大量废水直接排入河湖道,水生态和水环境状况急剧恶化。根据2017年邹区镇103个断面水质监测结果,水质为优良的断面仅占4.9%,而劣Ⅴ类占54.4%。在29条河流中,有19条不能满足功能区水质要求,超标率为65.5%。其中,16条河流达到重度污染级别,污染以有机污染为主,主要污染物为耗氧有机物(以COD计)、NH3-N及磷等[15]。
2017年,江苏省提出《“两减六治三提升”专项行动方案》。该方案提出要在2020年实现农村生活污水处理设施覆盖率90%以上,设施正常运行率80%以上。邹区镇人口密度高、环境负荷大、土地资源紧缺,且位于太湖流域,环境敏感性高。调研发现,近年来该地区已建设的农村生活污水治理设施,由于运维难度大,外加碳源和药剂频繁,大部分设施尚未实现稳定运行。
1.2 原有生活污水处理设施的运行状况
自2012年起,邹区镇分3年建设了基于A2O工艺的农村生活污水处理设施,共计28套,主要分布于邹区镇戴庄村、安基村和新屋村等5个行政村,处理规模为20 ~ 192 m3·d−1。以戴庄村五段头192 m3·d−1生活污水处理设施为例,其进出水水质情况(2016年5月—2017年4月)如表1所示。当地农村生活污水进水水质指标波动较大,尤以COD和NH3-N明显,分别为57.8~243 mg·L−1和16.8~89.4 mg·L−1。同时,进水耗氧有机物浓度较低,造成污水处理系统脱氮除磷的难度增加。而对于出水水质,对照《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)中一级A标准[16],NH3-N和TP与标准值的差距较大,需作为技术改造时的重点考虑指标。原有处理设施对污染物的平均去除率为:耗氧有机物(以COD 计)64.4%、氮(以NH3-N计)27.4%、磷(以TP计)48.4%、SS 52.9%。设备整体污染去除效率较低,部分月份氮磷去除率甚至为负值。
表 1 2016年5月—2017年4月戴庄村五段头生活污水处理设施进出水水质指标Table 1. Characteristics of the influent and effluent of the original process from May 2016 to June 2017mg·L-1 取样月份 进水 出水 COD NH3-N TP SS COD NH3-N TP SS 2016-05 78.4 16.8 1.05 55 52 12.3 0.87 36 2016-06 194 51.3 6.12 89 27.2 23.8 2.58 12 2016-07 126 32.5 4.62 40 25.6 20 2.74 11 2016-08 126 32.5 4.62 40 25.6 20 2.74 11 2016-09 80.5 23.6 3.61 43 22.3 26.4 1.45 32 2016-10 73.5 43.6 12.7 60 17.7 13.8 2.27 19 2016-11 57.8 23.6 7.08 48 19.7 21.3 3.53 30 2016-12 69.3 35.7 6.18 63 20.2 20.5 4.36 31 2017-01 77.8 23.1 6.09 60 26.9 24.1 1.59 22 2017-02 168 67.9 14.3 79 64.7 68.2 8.86 32 2017-03 76.3 26.1 6.23 61 59.9 31.7 4.59 35 2017-04 142 17 2.66 38 116 8.76 1.65 40 1.3 原有生活污水处理工艺存在的问题
1)脱氮除磷能力较差。邹区镇原有一体化设施采用A2O工艺。根据现状进水情况,TN、TP波动较大,且其质量浓度与城镇生活污水相比较高,而耗氧有机物质量浓度偏低,碳源含量较低。前端厌氧区聚磷菌吸收进水中易降解发酵产物以完成其细胞内的聚羟基烷酸的合成,使得后续缺氧区缺乏足够优质碳源,从而抑制了系统的反硝化潜力,降低了系统的脱氮效率。反之,当反硝化不彻底而残余硝酸盐随污泥回流进入厌氧区时,反硝化菌将优先利用环境中的有机物进行反硝化脱氮,从而会干扰厌氧释磷的正常进行,最终影响系统对磷的高效去除[17]。因此,当生物脱氮和生物除磷同时发生在A2O工艺中时,很难同时取得较好的效果。
2)运维难度较大。原有A2O工艺需通过投加除磷药剂、外加碳源来保证系统的稳定运行。然而,邹区镇农村污水处理设施分布较为分散,运维成本较高,加上政府监管的缺失,实际过程中基本未投加过除磷药剂;另外,受专业水平限制,运维人员并未按需求进行碳源的精准补加,常常过量补加碳源,这导致生化池内污泥快速增殖,剩余污泥量加大,从而进一步增加了运行成本。
2. 改良型UCT工艺的设计及应用
2.1 工艺流程设计思路
1)解决脱氮除磷效果差的问题。UCT工艺是在A2O工艺的基础上,将污泥回流入缺氧池而不是厌氧池,同时增加缺氧池到厌氧池的混合液回流,回流污泥和混合液中的硝态氮至缺氧池中进行反硝化,从而可减少硝酸盐对厌氧释磷的影响,以期实现较好的生物脱氮除磷效果,流程如图1(a)所示。另外,由缺氧池回流到厌氧池中的回流液硝态氮浓度降低,也削弱了聚磷菌对厌氧释磷的影响,从而解决脱氮和除磷不能同时取得较好效果的问题[18-20]。针对邹区镇生活污水有机物浓度较低的问题,在UCT缺氧段前增加了预缺氧段,用于回流沉淀池的污泥,并在缺氧池设置回流好氧池混合液的装置,即改良型UCT工艺(流程如图1(b)所示)。这种方式使得污泥脱氮和混合液脱氮完全分开,可保证低C/N下的脱氮效率,从而进一步减少硝酸盐进入厌氧区的可能性,还可解决同步脱氮除磷过程中聚磷菌和硝化菌在污泥龄上的矛盾,最终实现良好的氮磷去除效果。
2)降低运维成本。改良型UCT工艺可发挥聚磷菌生物除磷作用,实现低C/N下系统的稳定运行,碳源投加量低于同类工艺,因此可降低了运维成本。脱氮除磷效果的增强,使得混凝剂和助凝剂的使用减少,加药频次降低还可很大程度地减少运维工作量,从而降低运维成本与难度,对于改进农村生活污水处理设施的长效运维管理作用明显。
2.2 工艺设计内容
1)构筑物设计参数。厌氧池:停留时间1.5 h,控制ORP、硝酸盐指标及碳源的供应以保持厌氧环境。缺氧池:停留时间4.2 h,反硝化负荷0.47,控制ORP以及碳源供应。好氧池:停留时间8.2 h。
2)运行参数。污泥质量浓度4 000 mg·L−1,外回流比100%,内回流比300%,污泥负荷(每日单位质量MLSS可承受的以COD计耗氧有机污染物的质量)0.48 kg·(kg·d)−1,污泥龄17 d,曝气量8.5 m3·min−1,气水体积比为8:1。
3)处理规模及设计水质。该系统总处理规模为270 m3·d−1,可服务人口1 996人,具体规模如表2所示。设计进水水质基于现状监测数据,按较不利的情景来考虑。设计出水水质执行《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)一级A标准。出水就近排入附近自然水体,用于河塘生态补水。一体化污水处理设施设计进出水水质如表3所示。
表 2 设备设计进、出水水质Table 2. Design parameters of the influent and effluent of project水质指标 质量浓度/(mg·L−1) 去除率/% 进水 出水 COD 250 50 80.0 总氮 60 20 66.6 氨氮 40 5(8*) 87.5 SS 100 10 90.0 总磷 6 1 83.3 注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。 表 3 分散式污水处理设施规模Table 3. Scale of the decentralized rural sewage treatment行政村 自然村 受益户数 受益人口 日用水量/(m3·d−1) 日排水量/(m3·d−1) 处理规模/(m3·d−1) 杏塘村 毛家村 26 83 9.13 7.30 10 杏塘村 野田村 39 111 12.21 9.77 15 杏塘村 大翁 29 70 7.7 6.16 30 杏塘村 小翁 37 114 12.54 10.03 30* 卜弋村 圣东村 31 79 8.69 6.95 20 卜弋村 圣西村 40 97 10.67 8.54 20* 卜弋村 庙东村 40 126 13.86 11.09 30 卜弋村 庙西村 33 80 8.8 7.04 30* 于家村 后湾村 48 127 13.97 11.18 15 于家村 塘下村 60 164 18.04 14.43 20 于家村 后邵头 27 82 9.02 7.22 10 桥东村 后店 118 308 33.88 27.1 100 桥东村 后巷 70 206 22.66 18.13 100* 桥东村 梅村 123 349 38.39 30.71 100* 注:*号表示与其他自然村合建共用一套污水处理设施。 2.3 工程建设情况
2018年,在邹区镇毛家村、野田村等4个行政村中的14个自然村投建了9套改良型UCT工艺一体化污水处理设施,总处理规模为270 m3·d−1,可服务人口1 996人,具体规模如表3所示。每套设施的服务范围按行政村河流、居住密集度和施工难度等因素进行划分。考虑到后期运维的成本和便利性,按照“分散处理,组团集中”的原则进行了布点。如于家村中3个自然村的分布较为分散,采用集中处理施工难度较大,故在每个自然村分别建设了3套处理设施,处理规模分别为15、20和10 m3·d−1;而桥东村的3个自然村居住密集度较大,故合建1套100 m3·d−1的处理设施。污水处理设施中的设备埋在地下,地上部分为电控系统(如图2所示)。
3. 污水处理设施运行效果
3.1 整体运行情况
改良型UCT工艺一体化污水处理工程于2018年8月进场施工,2018年12月完工进入调试阶段。经过5个月的调试运营期,建设单位于2019年5月委托第三方监测机构对9套一体化污水处理设施的出水水质进行了验收监测,结果如表4所示。新建的9套污水处理系统各项出水指标均能满足江苏省《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)中一级A标准。
表 4 一体化污水处理系统验收监测结果Table 4. Monitoring results of integrated sewage treatment system行政村 处理规模/(m3·d−1) COD/(mg·L−1) 总氮/(mg·L−1) 氨氮/(mg·L−1) SS/(mg·L−1) 总磷/(mg·L−1) 杏塘村 10 27.3 15.8 1.4 <5 0.73 杏塘村 15 31.2 14.1 1.1 <5 0.69 杏塘村 30 28.7 14.1 1.7 5 0.58 卜弋村 20 29.5 15.2 4.0 5 0.71 卜弋村 30 33.5 16.4 3.5 <5 0.74 于家村 15 32.3 15.6 1.9 <5 0.69 于家村 20 20.9 17.2 1.9 <5 0.77 于家村 10 27.6 16.5 2.3 5 0.85 桥东村 100 22.5 12.8 0.9 <5 0.58 注:括号外数值为水温>12℃时的控制指标,括号内数值为水温≤12℃时的控制指标。 3.2 各类污染物的去除效果
1)以COD计的耗氧有机物的去除效果。如图3所示,桥东村进水COD保持在95~240 mg·L−1,波动较大,进水平均COD为153.6 mg·L−1,低于设计水质。运行初期的第1~15天,系统尚未完全稳定,微生物还未培养成熟,在污泥浓度较低的情况下,出水平均COD为39.2 mg·L−1。随着系统的逐步稳定,自第30天起,系统出水COD 稳定在15~30 mg·L−1,出水平均COD为19.23 mg·L−1,可达到《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)一级A标准要求。系统稳定后,以COD计的耗氧有机物的平均去除率可达到87.8%。同时,由于改良型UCT工艺采用了多段回流,在系统进水COD波动较大时,仍可保持较高的抗冲击负荷。在稳定运行工况下,通过对好氧区微生物的观察可发现,有大量轮虫出现,可见出水水质良好。
2)NH3-N的去除效果。图4为桥东村一体化污水处理系统的NH3-N去除效果。系统启动初期,好氧区硝化菌浓度较低,硝化作用不明显,出水NH3-N较高。随着污泥培养过程的进行,系统逐渐稳定,出水[NH3-N]保持在5 mg·L−1以下,平均去除率为92.4%,满足设计要求,较原有A2O工艺设备的NH3-N去除率明显提高。对于改良型UCT工艺,系统中NH3-N去除效率受好氧区DO的影响较大。较高的DO可提高系统硝化效果,但DO过高时,会造成运行成本的增加,且易产生污泥膨胀现象,导致出水悬浮物浓度升高。系统运行的第30~60天,DO可维持在1.02 mg·L−1,出水平均[NH3-N]为3.2 mg·L−1。第60~90天,DO提高至2.15 mg·L−1,出水[NH3-N]下降为1.69 mg·L−1。第90天起,为平衡运行成本,并减少硝化液回流对除磷效果的影响,将系统DO控制在1.6~1.8 mg·L−1,此时 NH3-N去除效率基本保持不变。
3)以TN计污染物的去除效果。农村生活污水中,以TN计污染物的去除效果与系统中进水C/N,回流比以及好氧区DO等均有密切关系。如图5所示,系统中进水TN波动较大,为29.2~104.9 mg·L−1,且进水C/N偏低,碳源严重不足。在系统运行初期(第0~30 天),未投加碳源,出水平均TN为24.6 mg·L−1,污染物去除率仅为45.1%,脱氮效果一般。系统运行30 d后开始投加少量碳源,C/N维持在3.5:1。第30~60天,以TN计污染物的去除率提高了15.7%,说明有机物对系统脱氮效率有较大影响。系统运行第60~90天,C/N调整为4.5:1,出水平均TN为15.2 mg·L−1,出水水质稳定达标。第90天后,系统C/N维持在3.5:1,通过调节回流比和好氧区DO,出水平均TN为14.6 mg·L−1。上述结果表明,改良UCT工艺具有较好的脱氮效果,而碳源投加量低于现有同类工艺,从而也降低了系统的运行成本。
4)以TP计污染物的去除效果。当地农村生活污水的C/N和C/P普遍偏低,系统中存在固有反硝化细菌与聚磷菌对碳源的竞争,且聚磷菌摄取易降解有机物的能力不如反硝化细菌,从而导致聚磷菌体内贮存的聚羟基烷酸含量不足,出水TP偏高[21]。系统脱磷效果如图6所示。系统运行初期的0~30 d,未进行化学除磷,设备进水平均TP为3.89 mg·L−1,设备出水平均TP为1.78 mg·L−1,污染物的平均去除率为50.65%。随着系统逐渐稳定,在第30~60天,由于工艺的回流设计,硝酸盐进入厌氧区的量减少,使得硝化菌比聚磷菌优先利用环境中的有机物,从而干扰厌氧释磷的正常进行,依靠聚磷菌的生物除磷作用,以TP计污染物的去除率提高至74.2%,但出水仍不能达标。在第60~90天,设备开启同步化学除磷,每天投加铝盐除磷药剂及助凝剂1.5 kg,以TP计污染物的去除率提高到83.8%。在90 d之后,铝盐除磷药剂日投加量增至2 kg,出水平均TP为0.53 mg·L−1,已满足相关标准和设计要求。此时,继续增加铝盐除磷药剂投加量,除磷效果基本保持不变。因此,系统铝盐除磷药剂及助凝剂日投加量控制在1.5~2 kg。上述结果表明,改良UCT工艺强化了厌氧缺氧的交替环境,为反硝化噬磷菌的生长提供了有利的条件,保证了系统对氮磷相关指标能达标。
3.3 经济性分析
该项目总投资为828.5万元。其中,工程建设费729.3万元,其他相关费用66.1万元,预备费33.1万元。新建一体化污水处理设施吨水建设费用约为4 650元(不含土建施工费用),与原有A2O工艺(约4 200元·m−3)相差不大。但在系统运行费用方面,改良型UCT工艺系统吨水运行费用为0.79元,较原有A2O工艺(0.9~1.2元·m−3)降低了15%[22]。这主要是由于本系统稳定运行所需DO质量浓度低于原工艺,故曝气风机能耗降低,单位水量平均耗电量降为0.313 kW·h·m−3;同时,本工艺系统尽可能地发挥了生物除磷作用,减少了混凝剂和助凝剂的投加量,进而降低了本工艺系统的运行成本。
4. 结语
本案例将改良型UCT工艺应用于江苏省常州市钟楼区邹区镇的农村生活污水处理系统中,已建成的9套污水处理设施出水水质均满足《村庄生活污水治理水污染物排放标准》(DB32/T 3462-2018)一级A标准。自2019年6月完成调试并投入运行以来,已稳定运行超过2年,运行效果良好。本系统用到的改良UCT工艺通过改变污泥回流方式,使污泥脱氮和混合液脱氮分离,从而保证了系统的脱氮效率,同时也减少了硝酸盐对厌氧释磷的影响,实现了低C/N进水条件下良好的氮磷去除效果,可为我国农村生活污水处理的技术选择提供参考。
-
表 1 荧光激发和发射波长
Table 1. Fluorescent Excitation wavelength and Emission wavelength
时间/min Time 激发波长/nm Ex 发射波长/nm Em 0.00 275 330 13.90 255 375 17.90 245 450 19.80 245 370 23.50 265 390 32.40 273 440 36.50 290 410 38.50 240 480 40.00 265 420 表 2 目标化合物的线性范围、线性方程、相关系数、检出限及定量限
Table 2. Linear ranges ,regression equation, correlation coefficients(r), limits of detection (LOD, S/N=3) and limits of quantitation (LOQ, S/N=10) of target compounds
No. 化合物Compound 线性范围/(µg·kg−1)Linear range 标准曲线方程Regression equation 相关系数R2 检出限/(µg·kg−1)LOD 定量限/(µg·kg−1)LOQ 1 萘(Na) 2.5—1000 A=0.3182C+6.4532* 0.999 0.3 0.9 2 苊(Ace) 2.5—1000 A=0.7244C+2.6573 0.999 0.6 1.8 3 芴(Fl) 2.5—1000 A=1.5523C+0.7832 0.999 0.3 1.0 4 菲(Phe) 2.5—1000 A= 1.1875C+14.6108 0.999 0.2 0.6 5 蒽(Ant) 2.5—1000 A=2.0918C+0.2058 0.999 0.2 0.8 6 荧蒽(Fu) 2.5—1000 A=0.4013C+3.0251 0.999 0.5 1.9 7 芘(Py) 2.5—1000 A=1.0748C+6.6492 0.999 0.2 0.7 8 9-氯菲(9-ClPhe) 10—1000 A=0.0600C+1.0583 0.999 2.3 7.0 9 9-氯蒽(9-ClAnt) 2.5—1000 A=0.4078C+0.8628 0.999 0.7 2.2 10 2-氯蒽(2-ClAnt) 2.5—1000 A=0.8810C+0.2803 0.999 0.5 1.5 11 苯并[a]蒽(BaA) 2.5—1000 A=1.3297C-0.4912 0.999 0.4 1.3 12 䓛(Chr) 2.5—1000 A=1.7998C+5.9356 0.999 0.2 0.6 13 1-氯芘(1-ClPy) 10—1000 A=0.2456C-0.7780 0.999 2.1 5.4 14 苯并[b]荧蒽(BbF) 2.5—1000 A=0.8110C+1.7058 0.999 0.1 0.4 15 9,10-二氯蒽(9,10-DClAnt) 2.5—1000 A=1.6689C+0.0170 0.999 0.1 0.3 16 苯并[k]荧蒽(BkF) 2.5—1000 A= 1.8488C+1.3040 0.999 0.07 0.2 17 苯并[a]芘(BaP) 2.5—1000 A=1.3673C-0.2231 0.999 0.09 0.3 18 二苯并[a,h]蒽(DahA) 2.5—1000 A=1.1604C+2.9443 0.999 0.1 0.4 19 苯并[ghi]苝(BghiP) 2.5—1000 A=0.6349C+0.3495 0.999 0.2 0.6 20 茚并[1,2,3-cd]芘(Ipy) 2.5—1000 A= 0.3413C-0.2224 0.999 0.3 1.0 * A: peak area ;C:concentration(µg·kg−1). 表 3 实际样品测定结果、方法的回收率及精密度(n=3)
Table 3. Determination results in real soil samples and recoveries and precisions of methods (n=3)
化合物Compound 污染土中含量/(µg·kg−1)Content of contamined soil 山参土中含量/(µg·kg−1)Content of mountain soil 加标水平/(µg·kg−1)Spiked level 加标回收率/%Recovery RSD/% 萘(Na) 63.2 8.0 10、100、1000 90.1、97.3、88.3 7.7、3.9、1.6 苊(Ace) 563.1 nd 10、100、1000 83.0、77.9、84.8 8.3、5.4、0.7 芴(Fl) 1442.5 nd 10、100、1000 102.1、86.2、85.1 5.7,3.0,0.5 菲(Phe) 11122.8 8.0 10、100、1000 80.2、91.8、87.0 3.3、1.6、0.6 蒽(Ant) 3756.6 nd 10、100、1000 88.9、77.6、78.2 5.2、0.3、0.6 荧蒽(Fu) 19443.7 3.3 10、100、1000 94.3、79.2、85.7 3.7、4.2、0.2 芘(Py) 21200 7.6 10、100、1000 78.5、100.8、95.6 7.6、2.3、0.5 9-氯菲(9-ClPhe) 2241.6 nd 10、100、1000 78.0、84.9、84.0 7.8、3.4、0.2 9-氯蒽(9-ClAnt) 4901.8 nd 10、100、1000 81.2、90.4、78.6 8.5、3.7、0.6 2-氯蒽(2-ClAnt) 7202 nd 10、100、1000 85.6、86.6、79.1 6.8、5.3、0.4 苯并[a]蒽(BaA) 8787.4 nd 10、100、1000 95.2、88.0、87.3 4.5、1.8、0.3 䓛(Chr) 7392.2 nd 10、100、1000 96.2、89.4、87.6 3.6、2.5、0.3 1-氯芘(1-ClPy) 3022.7 nd 10、100、1000 82.3、87.1、90.7 7.9、4.0、0.5 苯并[b]荧蒽(BbF) 9073.9 nd 10、100、1000 86.5、88.1、88.6 4.2、3.9、0.2 9,10-二氯蒽(9,10-DClAnt) 392.7 nd 10、100、1000 81.2、85.2、83.0 3.6、1.8、0.6 苯并[k]荧蒽(BkF) 4041.7 nd 10、100、1000 90.2、87.9、87.5 3.2、2.4、0.3 苯并[a]芘(BaP) 9703.7 nd 10、100、1000 85.0、89.3、87.6 4.2、3.1、0.4 二苯并[a,h]蒽(DahA) 2581.7 nd 10、100、1000 79.1、89.7、88.4 4.5、2.4、0.2 苯并[ghi]苝(BghiP) 8263 nd 10、100、1000 89.2、105.3、94.8 4.2、1.6、0.6 茚并[1,2,3-cd]芘(Ipy) 7178 nd 10、100、1000 78.3、79.5、76.5 6.8、7.6、2.5 * nd: not detected. -
[1] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展 [J]. 生态毒理学报, 2017, 12(3): 120-134. LUO Y, ZHANG B Q, REN X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134(in Chinese).
[2] MA J, HORII Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China [J]. Environmental Science and Technology, 2009, 43: 643-649. doi: 10.1021/es802878w [3] NISHIMURA C, HORII Y, TANAKA S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils [J]. Environmental Pollution, 2017, 225: 252-260. doi: 10.1016/j.envpol.2016.10.088 [4] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants [J]. Environmental Science & Technology, 2018, 52: 7334-7342. [5] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008, 42: 1904-1909. [6] WANG Q, MIYAKE Y, TOKUMURA M, et al. Effects of characteristics of waste incinerator on emission rate of halogenated polycyclic aromatic hydrocarbon into environments [J]. Science of the Total Environment, 2018, 625: 633-639. doi: 10.1016/j.scitotenv.2017.12.323 [7] MASUDA M, WANG Q, TOKUMURA M, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods [J]. Ecotoxicology and Environmental Safety, 2019, 178: 188-194. doi: 10.1016/j.ecoenv.2019.04.046 [8] 马静, 吴明红, 徐刚, 等. 结构-活性关系对氯代多环芳烃性质的预测 [J]. 上海大学学报(自然科学版), 2010, 16(5): 536-540. MA J, WU M H, XU G, et al. Physical/chemical property estimation for Cl-PAHs congeners by quantitative structure-activity relationship [J]. Journal of Shanghai University (Natural Science Edition), 2010, 16(5): 536-540(in Chinese).
[9] OHURA T, HORII Y, YAMASHITA N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts [J]. Environmental Pollution, 2018, 232: 367-374. doi: 10.1016/j.envpol.2017.09.037 [10] SUN J L, JING X, CHANG W J, et al. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air [J]. Ecotoxicology and Environmental Safety, 2015, 113: 31-37. doi: 10.1016/j.ecoenv.2014.11.024 [11] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of Environmental Contamination and Toxicology, 2009, 57: 651-660. doi: 10.1007/s00244-009-9372-1 [12] OHURA T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons [J]. The Scientific World Journal, 2007, 7: 372-380. doi: 10.1100/tsw.2007.75 [13] 郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃 [J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016 GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2007, 26(2): 192-196(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.016
[14] 林琳, 王海, 缪丽娜, 等. 微波提取高效液相色谱法测定土壤中15种痕量多环芳烃 [J]. 中国环境监测, 2009, 25(2): 86-89. doi: 10.3969/j.issn.1002-6002.2009.02.006 LIN L, WANG H, MIU L N, et al. Determination of trace polycyclic aromatic hydrocarbons in environmental soil by using microwave assisted extraction coupled with high performance liquid chromatography [J]. Environmental Monitoring in China, 2009, 25(2): 86-89(in Chinese). doi: 10.3969/j.issn.1002-6002.2009.02.006
[15] SONG S, LU Y L, WANG T Y, et al. Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction [J]. Journal of Environmental Management, 2019, 249: 109406. doi: 10.1016/j.jenvman.2019.109406 [16] 刘彬, 闫强, 郭丽, 等. 加压流体萃取-硅酸镁柱净化-气相色谱质谱法同时测定土壤中有机氯农药和多环芳烃 [J]. 环境化学, 2019, 38(10): 2212-2221. doi: 10.7524/j.issn.0254-6108.2018112605 LIU B, YAN Q, GUO L, et al. Simultaneous determination of OCPs and PAHs in soil by GC-MSD with ASE and florisil SPE purification [J]. Environmental Chemistry, 2019, 38(10): 2212-2221(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112605
[17] 张纯淳, 李思维, 李钟瑜, 等. 快速溶剂提取-高效液相色谱-二极管紫外阵列/荧光串联法同时测定土壤中18种多环芳烃 [J]. 环境化学, 2015, 34(6): 1231-1233. ZHANG C C, LI S W, LI Z Y, et al. Simultaneous determination of 18 polycyclic aromatic hydrocarbons in soil by rapid solvent extraction coupled with high performance liquid chromatography-diode UV array / fluorescence series method [J]. Environmental Chemistry, 2015, 34(6): 1231-1233(in Chinese).
[18] WANG X L, WU J F, LIU B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions [J]. RSC Advances, 2016, 6: 80017-80023. doi: 10.1039/C6RA13973F [19] WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment [J]. Environmental Science and Pollution Research, 2017, 24: 16241-16252. doi: 10.1007/s11356-017-9193-0 [20] 莫李桂, 马盛韬, 李会茹, 等. 气相色谱/三重四极杆串联质谱法检测土壤中氯代多环芳烃和溴代多环芳烃 [J]. 分析化学, 2013, 41(12): 1825-1830. MO L G, MA S T, LI H R, et al. Determination of chlorinated-and brominated-polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1825-1830(in Chinese).
[21] BALLESTEROS-GÓMEZ A, RUBIO S, PÉREZ-BENDITO D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods [J]. Journal of Chromatography A, 2009, 1216: 530-539. doi: 10.1016/j.chroma.2008.06.029 [22] COSTI E M, SICILIA M D, RUBIO S. Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish [J]. Journal of Chromatography A, 2010, 1217: 1447-1454. doi: 10.1016/j.chroma.2009.12.073 [23] BOGDANOVA P, POCHIVALOV A, VAKH C, et al. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides [J]. Talanta, 2020, 216: 120992. doi: 10.1016/j.talanta.2020.120992 [24] GARCÍA-FONSECA S, BALLESTEROS-GÓMEZ A, RUBIO S, et al. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination [J]. Journal of Chromatography A, 2010, 1217: 2376-2382. doi: 10.1016/j.chroma.2009.10.085 [25] MARTINEFSKI M, FEIZI N, LUNAR M L, et al. Supramolecular solvent-based high-throughput sample treatment platform for the biomonitoring of PAH metabolites in urine by liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2019, 237: 124525. doi: 10.1016/j.chemosphere.2019.124525 [26] BALLESTEROS-GÓMEZ A, RUBIO S. Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants [J]. Analytical Chemistry, 2012, 84: 342-349. doi: 10.1021/ac2026207 -