超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃

熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
引用本文: 熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
XIONG Li, WANG Jincheng, CHEN Jiping. Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction[J]. Environmental Chemistry, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103
Citation: XIONG Li, WANG Jincheng, CHEN Jiping. Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction[J]. Environmental Chemistry, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103

超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃

    通讯作者: Tel:(0411)84379972,E-mail:wangjincheng@dicp.ac.cn

Fast determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soils by high performance liquid chromatography copuled with supramolecular solvent microextraction

    Corresponding author: WANG Jincheng, wangjincheng@dicp.ac.cn
  • 摘要: 建立了土壤中5种氯代多环芳烃和15种多环芳烃的超分子溶剂微萃取高效液相色谱荧光检测分析方法。探讨了萃取剂的组成、用量、涡旋振荡时间等因素对萃取效率的影响。优化后的实验条件为:以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;400 μL 超分子溶剂加入200 mg样品中,斡旋震荡2 min,离心后上清液过0.22 μm 滤膜,目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm)乙腈-水梯度分离后荧光检测,外标法定量。结果显示,20种目标化合物在线性范围内呈现良好的线性关系,相关系数均大于0.999;目标化合物的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%,方法的检出限(LOD, S/N=3)为 0.07—2.3 µg·kg−1,定量限(LOQ,S/N=10)为 0.2—7.0 µg·kg−1。该方法简便快速,样品处理过程不超过15 min,而且成本低廉,环境友好,可用于土壤中氯代多环芳烃和多环芳烃的快速分析检测。
  • 加载中
  • 图 1  氯代多环芳烃和多环芳烃的高效液相色谱图(1—20色谱峰对应的化合物见表2)

    Figure 1.  Chromatogram of Cl-PAH and PAH (The number of 1—20 were the same as those in table 2.)

    图 2  1-辛醇用量对超分子溶剂体积的影响

    Figure 2.  Effect of volume of 1-octanol on volume of SUPRAs

    图 3  四氢呋喃的量对萃取效率的影响

    Figure 3.  Effect of volume tetrahydrofuran on extraction efficiency

    表 1  荧光激发和发射波长

    Table 1.  Fluorescent Excitation wavelength and Emission wavelength

    时间/min Time激发波长/nm Ex发射波长/nm Em
    0.00275330
    13.90255375
    17.90245450
    19.80245370
    23.50265390
    32.40273440
    36.50290410
    38.50240480
    40.00265420
    时间/min Time激发波长/nm Ex发射波长/nm Em
    0.00275330
    13.90255375
    17.90245450
    19.80245370
    23.50265390
    32.40273440
    36.50290410
    38.50240480
    40.00265420
    下载: 导出CSV

    表 2  目标化合物的线性范围、线性方程、相关系数、检出限及定量限

    Table 2.  Linear ranges ,regression equation, correlation coefficients(r), limits of detection (LOD, S/N=3) and limits of quantitation (LOQ, S/N=10) of target compounds

    No.化合物
    Compound
    线性范围/(µg·kg−1)
    Linear range
    标准曲线方程
    Regression equation
    相关系数
    R2
    检出限/(µg·kg−1)
    LOD
    定量限/(µg·kg−1)
    LOQ
    1萘(Na)2.5—1000A=0.3182C+6.4532*0.9990.30.9
    2苊(Ace)2.5—1000A=0.7244C+2.65730.9990.61.8
    3芴(Fl)2.5—1000A=1.5523C+0.78320.9990.31.0
    4菲(Phe)2.5—1000A= 1.1875C+14.61080.9990.20.6
    5蒽(Ant)2.5—1000A=2.0918C+0.20580.9990.20.8
    6荧蒽(Fu)2.5—1000A=0.4013C+3.02510.9990.51.9
    7芘(Py)2.5—1000A=1.0748C+6.64920.9990.20.7
    89-氯菲(9-ClPhe)10—1000A=0.0600C+1.05830.9992.37.0
    99-氯蒽(9-ClAnt)2.5—1000A=0.4078C+0.86280.9990.72.2
    102-氯蒽(2-ClAnt)2.5—1000A=0.8810C+0.28030.9990.51.5
    11苯并[a]蒽(BaA)2.5—1000A=1.3297C-0.49120.9990.41.3
    12䓛(Chr)2.5—1000A=1.7998C+5.93560.9990.20.6
    131-氯芘(1-ClPy)10—1000A=0.2456C-0.77800.9992.15.4
    14苯并[b]荧蒽(BbF)2.5—1000A=0.8110C+1.70580.9990.10.4
    159,10-二氯蒽(9,10-DClAnt)2.5—1000A=1.6689C+0.01700.9990.10.3
    16苯并[k]荧蒽(BkF)2.5—1000A= 1.8488C+1.30400.9990.070.2
    17苯并[a]芘(BaP)2.5—1000A=1.3673C-0.22310.9990.090.3
    18二苯并[a,h]蒽(DahA)2.5—1000A=1.1604C+2.94430.9990.10.4
    19苯并[ghi]苝(BghiP)2.5—1000A=0.6349C+0.34950.9990.20.6
    20茚并[1,2,3-cd]芘(Ipy)2.5—1000A= 0.3413C-0.22240.9990.31.0
      * A: peak area ;C:concentration(µg·kg−1).
    No.化合物
    Compound
    线性范围/(µg·kg−1)
    Linear range
    标准曲线方程
    Regression equation
    相关系数
    R2
    检出限/(µg·kg−1)
    LOD
    定量限/(µg·kg−1)
    LOQ
    1萘(Na)2.5—1000A=0.3182C+6.4532*0.9990.30.9
    2苊(Ace)2.5—1000A=0.7244C+2.65730.9990.61.8
    3芴(Fl)2.5—1000A=1.5523C+0.78320.9990.31.0
    4菲(Phe)2.5—1000A= 1.1875C+14.61080.9990.20.6
    5蒽(Ant)2.5—1000A=2.0918C+0.20580.9990.20.8
    6荧蒽(Fu)2.5—1000A=0.4013C+3.02510.9990.51.9
    7芘(Py)2.5—1000A=1.0748C+6.64920.9990.20.7
    89-氯菲(9-ClPhe)10—1000A=0.0600C+1.05830.9992.37.0
    99-氯蒽(9-ClAnt)2.5—1000A=0.4078C+0.86280.9990.72.2
    102-氯蒽(2-ClAnt)2.5—1000A=0.8810C+0.28030.9990.51.5
    11苯并[a]蒽(BaA)2.5—1000A=1.3297C-0.49120.9990.41.3
    12䓛(Chr)2.5—1000A=1.7998C+5.93560.9990.20.6
    131-氯芘(1-ClPy)10—1000A=0.2456C-0.77800.9992.15.4
    14苯并[b]荧蒽(BbF)2.5—1000A=0.8110C+1.70580.9990.10.4
    159,10-二氯蒽(9,10-DClAnt)2.5—1000A=1.6689C+0.01700.9990.10.3
    16苯并[k]荧蒽(BkF)2.5—1000A= 1.8488C+1.30400.9990.070.2
    17苯并[a]芘(BaP)2.5—1000A=1.3673C-0.22310.9990.090.3
    18二苯并[a,h]蒽(DahA)2.5—1000A=1.1604C+2.94430.9990.10.4
    19苯并[ghi]苝(BghiP)2.5—1000A=0.6349C+0.34950.9990.20.6
    20茚并[1,2,3-cd]芘(Ipy)2.5—1000A= 0.3413C-0.22240.9990.31.0
      * A: peak area ;C:concentration(µg·kg−1).
    下载: 导出CSV

    表 3  实际样品测定结果、方法的回收率及精密度(n=3)

    Table 3.  Determination results in real soil samples and recoveries and precisions of methods (n=3)

    化合物
    Compound
    污染土中含量/
    (µg·kg−1)
    Content of
    contamined soil
    山参土中含量/
    (µg·kg−1)
    Content of
    mountain soil
    加标水平/
    (µg·kg−1)
    Spiked level
    加标回收率/%
    Recovery
    RSD/%
    萘(Na)63.28.010、100、100090.1、97.3、88.37.7、3.9、1.6
    苊(Ace)563.1nd10、100、100083.0、77.9、84.88.3、5.4、0.7
    芴(Fl)1442.5nd10、100、1000102.1、86.2、85.15.7,3.0,0.5
    菲(Phe)11122.88.010、100、100080.2、91.8、87.03.3、1.6、0.6
    蒽(Ant)3756.6nd10、100、100088.9、77.6、78.25.2、0.3、0.6
    荧蒽(Fu)19443.73.310、100、100094.3、79.2、85.73.7、4.2、0.2
    芘(Py)212007.610、100、100078.5、100.8、95.67.6、2.3、0.5
    9-氯菲(9-ClPhe)2241.6nd10、100、100078.0、84.9、84.07.8、3.4、0.2
    9-氯蒽(9-ClAnt)4901.8nd10、100、100081.2、90.4、78.68.5、3.7、0.6
    2-氯蒽(2-ClAnt)7202nd10、100、100085.6、86.6、79.16.8、5.3、0.4
    苯并[a]蒽(BaA)8787.4nd10、100、100095.2、88.0、87.34.5、1.8、0.3
    䓛(Chr)7392.2nd10、100、100096.2、89.4、87.63.6、2.5、0.3
    1-氯芘(1-ClPy)3022.7nd10、100、100082.3、87.1、90.77.9、4.0、0.5
    苯并[b]荧蒽(BbF)9073.9nd10、100、100086.5、88.1、88.64.2、3.9、0.2
    9,10-二氯蒽(9,10-DClAnt)392.7nd10、100、100081.2、85.2、83.03.6、1.8、0.6
    苯并[k]荧蒽(BkF)4041.7nd10、100、100090.2、87.9、87.53.2、2.4、0.3
    苯并[a]芘(BaP)9703.7nd10、100、100085.0、89.3、87.64.2、3.1、0.4
    二苯并[a,h]蒽(DahA)2581.7nd10、100、100079.1、89.7、88.44.5、2.4、0.2
    苯并[ghi]苝(BghiP)8263nd10、100、100089.2、105.3、94.84.2、1.6、0.6
    茚并[1,2,3-cd]芘(Ipy)7178nd10、100、100078.3、79.5、76.56.8、7.6、2.5
      * nd: not detected.
    化合物
    Compound
    污染土中含量/
    (µg·kg−1)
    Content of
    contamined soil
    山参土中含量/
    (µg·kg−1)
    Content of
    mountain soil
    加标水平/
    (µg·kg−1)
    Spiked level
    加标回收率/%
    Recovery
    RSD/%
    萘(Na)63.28.010、100、100090.1、97.3、88.37.7、3.9、1.6
    苊(Ace)563.1nd10、100、100083.0、77.9、84.88.3、5.4、0.7
    芴(Fl)1442.5nd10、100、1000102.1、86.2、85.15.7,3.0,0.5
    菲(Phe)11122.88.010、100、100080.2、91.8、87.03.3、1.6、0.6
    蒽(Ant)3756.6nd10、100、100088.9、77.6、78.25.2、0.3、0.6
    荧蒽(Fu)19443.73.310、100、100094.3、79.2、85.73.7、4.2、0.2
    芘(Py)212007.610、100、100078.5、100.8、95.67.6、2.3、0.5
    9-氯菲(9-ClPhe)2241.6nd10、100、100078.0、84.9、84.07.8、3.4、0.2
    9-氯蒽(9-ClAnt)4901.8nd10、100、100081.2、90.4、78.68.5、3.7、0.6
    2-氯蒽(2-ClAnt)7202nd10、100、100085.6、86.6、79.16.8、5.3、0.4
    苯并[a]蒽(BaA)8787.4nd10、100、100095.2、88.0、87.34.5、1.8、0.3
    䓛(Chr)7392.2nd10、100、100096.2、89.4、87.63.6、2.5、0.3
    1-氯芘(1-ClPy)3022.7nd10、100、100082.3、87.1、90.77.9、4.0、0.5
    苯并[b]荧蒽(BbF)9073.9nd10、100、100086.5、88.1、88.64.2、3.9、0.2
    9,10-二氯蒽(9,10-DClAnt)392.7nd10、100、100081.2、85.2、83.03.6、1.8、0.6
    苯并[k]荧蒽(BkF)4041.7nd10、100、100090.2、87.9、87.53.2、2.4、0.3
    苯并[a]芘(BaP)9703.7nd10、100、100085.0、89.3、87.64.2、3.1、0.4
    二苯并[a,h]蒽(DahA)2581.7nd10、100、100079.1、89.7、88.44.5、2.4、0.2
    苯并[ghi]苝(BghiP)8263nd10、100、100089.2、105.3、94.84.2、1.6、0.6
    茚并[1,2,3-cd]芘(Ipy)7178nd10、100、100078.3、79.5、76.56.8、7.6、2.5
      * nd: not detected.
    下载: 导出CSV
  • [1] 罗云, 张保琴, 任晓倩, 等. 氯代多环芳烃的污染现状及毒性研究进展 [J]. 生态毒理学报, 2017, 12(3): 120-134.

    LUO Y, ZHANG B Q, REN X Q, et al. Advances in the researches on the occurrence and toxicity of chlorinated polycyclic aromatic hydrocarbons [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 120-134(in Chinese).

    [2] MA J, HORII Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China [J]. Environmental Science and Technology, 2009, 43: 643-649. doi: 10.1021/es802878w
    [3] NISHIMURA C, HORII Y, TANAKA S, et al. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils [J]. Environmental Pollution, 2017, 225: 252-260. doi: 10.1016/j.envpol.2016.10.088
    [4] XU Y, YANG L L, ZHENG M H, et al. Chlorinated and brominated polycyclic aromatic hydrocarbons from metallurgical plants [J]. Environmental Science & Technology, 2018, 52: 7334-7342.
    [5] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators [J]. Environmental Science & Technology, 2008, 42: 1904-1909.
    [6] WANG Q, MIYAKE Y, TOKUMURA M, et al. Effects of characteristics of waste incinerator on emission rate of halogenated polycyclic aromatic hydrocarbon into environments [J]. Science of the Total Environment, 2018, 625: 633-639. doi: 10.1016/j.scitotenv.2017.12.323
    [7] MASUDA M, WANG Q, TOKUMURA M, et al. Simultaneous determination of polycyclic aromatic hydrocarbons and their chlorinated derivatives in grilled foods [J]. Ecotoxicology and Environmental Safety, 2019, 178: 188-194. doi: 10.1016/j.ecoenv.2019.04.046
    [8] 马静, 吴明红, 徐刚, 等. 结构-活性关系对氯代多环芳烃性质的预测 [J]. 上海大学学报(自然科学版), 2010, 16(5): 536-540.

    MA J, WU M H, XU G, et al. Physical/chemical property estimation for Cl-PAHs congeners by quantitative structure-activity relationship [J]. Journal of Shanghai University (Natural Science Edition), 2010, 16(5): 536-540(in Chinese).

    [9] OHURA T, HORII Y, YAMASHITA N. Spatial distribution and exposure risks of ambient chlorinated polycyclic aromatic hydrocarbons in Tokyo Bay area and network approach to source impacts [J]. Environmental Pollution, 2018, 232: 367-374. doi: 10.1016/j.envpol.2017.09.037
    [10] SUN J L, JING X, CHANG W J, et al. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air [J]. Ecotoxicology and Environmental Safety, 2015, 113: 31-37. doi: 10.1016/j.ecoenv.2014.11.024
    [11] HORII Y, OHURA T, YAMASHITA N, et al. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States [J]. Archives of Environmental Contamination and Toxicology, 2009, 57: 651-660. doi: 10.1007/s00244-009-9372-1
    [12] OHURA T. Environmental behavior, sources, and effects of chlorinated polycyclic aromatic hydrocarbons [J]. The Scientific World Journal, 2007, 7: 372-380. doi: 10.1100/tsw.2007.75
    [13] 郭丽, 惠亚梅, 郑明辉, 等. 气相色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃 [J]. 环境化学, 2007, 26(2): 192-196. doi: 10.3321/j.issn:0254-6108.2007.02.016

    GUO L, HUI Y M, ZHENG M H, et al. Determination of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in soil and sediment by gas chromatography-mass spectrometry [J]. Environmental Chemistry, 2007, 26(2): 192-196(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.016

    [14] 林琳, 王海, 缪丽娜, 等. 微波提取高效液相色谱法测定土壤中15种痕量多环芳烃 [J]. 中国环境监测, 2009, 25(2): 86-89. doi: 10.3969/j.issn.1002-6002.2009.02.006

    LIN L, WANG H, MIU L N, et al. Determination of trace polycyclic aromatic hydrocarbons in environmental soil by using microwave assisted extraction coupled with high performance liquid chromatography [J]. Environmental Monitoring in China, 2009, 25(2): 86-89(in Chinese). doi: 10.3969/j.issn.1002-6002.2009.02.006

    [15] SONG S, LU Y L, WANG T Y, et al. Urban-rural gradients of polycyclic aromatic hydrocarbons in soils at a regional scale: Quantification and prediction [J]. Journal of Environmental Management, 2019, 249: 109406. doi: 10.1016/j.jenvman.2019.109406
    [16] 刘彬, 闫强, 郭丽, 等. 加压流体萃取-硅酸镁柱净化-气相色谱质谱法同时测定土壤中有机氯农药和多环芳烃 [J]. 环境化学, 2019, 38(10): 2212-2221. doi: 10.7524/j.issn.0254-6108.2018112605

    LIU B, YAN Q, GUO L, et al. Simultaneous determination of OCPs and PAHs in soil by GC-MSD with ASE and florisil SPE purification [J]. Environmental Chemistry, 2019, 38(10): 2212-2221(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112605

    [17] 张纯淳, 李思维, 李钟瑜, 等. 快速溶剂提取-高效液相色谱-二极管紫外阵列/荧光串联法同时测定土壤中18种多环芳烃 [J]. 环境化学, 2015, 34(6): 1231-1233.

    ZHANG C C, LI S W, LI Z Y, et al. Simultaneous determination of 18 polycyclic aromatic hydrocarbons in soil by rapid solvent extraction coupled with high performance liquid chromatography-diode UV array / fluorescence series method [J]. Environmental Chemistry, 2015, 34(6): 1231-1233(in Chinese).

    [18] WANG X L, WU J F, LIU B. Pressurized liquid extraction of chlorinated polycyclic aromatic hydrocarbons from soil samples using aqueous solutions [J]. RSC Advances, 2016, 6: 80017-80023. doi: 10.1039/C6RA13973F
    [19] WANG Y J, LIAO R Q, LIU W L, et al. Chlorinated polycyclic aromatic hydrocarbons in surface sediment from Maowei Sea, Guangxi, China: occurrence, distribution, and source apportionment [J]. Environmental Science and Pollution Research, 2017, 24: 16241-16252. doi: 10.1007/s11356-017-9193-0
    [20] 莫李桂, 马盛韬, 李会茹, 等. 气相色谱/三重四极杆串联质谱法检测土壤中氯代多环芳烃和溴代多环芳烃 [J]. 分析化学, 2013, 41(12): 1825-1830.

    MO L G, MA S T, LI H R, et al. Determination of chlorinated-and brominated-polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1825-1830(in Chinese).

    [21] BALLESTEROS-GÓMEZ A, RUBIO S, PÉREZ-BENDITO D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods [J]. Journal of Chromatography A, 2009, 1216: 530-539. doi: 10.1016/j.chroma.2008.06.029
    [22] COSTI E M, SICILIA M D, RUBIO S. Supramolecular solvents in solid sample microextractions: Application to the determination of residues of oxolinic acid and flumequine in fish and shellfish [J]. Journal of Chromatography A, 2010, 1217: 1447-1454. doi: 10.1016/j.chroma.2009.12.073
    [23] BOGDANOVA P, POCHIVALOV A, VAKH C, et al. Supramolecular solvents formation in aqueous solutions containing primary amine and monoterpenoid compound: Liquid phase microextraction of sulfonamides [J]. Talanta, 2020, 216: 120992. doi: 10.1016/j.talanta.2020.120992
    [24] GARCÍA-FONSECA S, BALLESTEROS-GÓMEZ A, RUBIO S, et al. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination [J]. Journal of Chromatography A, 2010, 1217: 2376-2382. doi: 10.1016/j.chroma.2009.10.085
    [25] MARTINEFSKI M, FEIZI N, LUNAR M L, et al. Supramolecular solvent-based high-throughput sample treatment platform for the biomonitoring of PAH metabolites in urine by liquid chromatography-tandem mass spectrometry [J]. Chemosphere, 2019, 237: 124525. doi: 10.1016/j.chemosphere.2019.124525
    [26] BALLESTEROS-GÓMEZ A, RUBIO S. Environment-responsive alkanol-based supramolecular solvents: Characterization and potential as restricted access property and mixed-mode extractants [J]. Analytical Chemistry, 2012, 84: 342-349. doi: 10.1021/ac2026207
  • 加载中
图( 3) 表( 3)
计量
  • 文章访问数:  2127
  • HTML全文浏览数:  2127
  • PDF下载数:  50
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-01
  • 录用日期:  2021-08-06
  • 刊出日期:  2022-10-27

超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃

    通讯作者: Tel:(0411)84379972,E-mail:wangjincheng@dicp.ac.cn
  • 1. 大连工业大学,大连 ,116034
  • 2. 中国科学院大连化学物理研究所,大连 ,116023

摘要: 建立了土壤中5种氯代多环芳烃和15种多环芳烃的超分子溶剂微萃取高效液相色谱荧光检测分析方法。探讨了萃取剂的组成、用量、涡旋振荡时间等因素对萃取效率的影响。优化后的实验条件为:以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;400 μL 超分子溶剂加入200 mg样品中,斡旋震荡2 min,离心后上清液过0.22 μm 滤膜,目标化合物经多环芳烃专用柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm)乙腈-水梯度分离后荧光检测,外标法定量。结果显示,20种目标化合物在线性范围内呈现良好的线性关系,相关系数均大于0.999;目标化合物的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%,方法的检出限(LOD, S/N=3)为 0.07—2.3 µg·kg−1,定量限(LOQ,S/N=10)为 0.2—7.0 µg·kg−1。该方法简便快速,样品处理过程不超过15 min,而且成本低廉,环境友好,可用于土壤中氯代多环芳烃和多环芳烃的快速分析检测。

English Abstract

  • 氯代多环芳烃(Cl-PAHs)是饮用水氯消毒[1]、电子垃圾的处理[2-3]、金属冶炼[4]、垃圾焚烧[5-6]以及烹饪[7]等人类活动过程中产生的副产物,它具有与多氯联苯和二噁英相似的平面结构和类似的环境行为[8],其毒性与多环芳烃母体相当甚至高于母体。目前已在大气[9-10]、沉积物[11]、汽车尾气[12]、冶炼厂废气[4]、垃圾焚烧厂的飞灰和烟道气[6]及烧烤食品[7]中检测到氯代多环芳烃。氯代多环芳烃作为一类新型的高风险有机污染物广泛存在于环境中,对人类健康具有一定的潜在威胁。

    氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs)主要通过工业废水排放和大气沉降进入地表,造成土壤污染。低水溶性和相对较高的辛醇-水分配系数(lgKow)可导致其在土壤中的积累。目前土壤中多环芳烃的测定方法有索氏抽提-高效液相色谱法[13]、微波萃取-高效液相色谱法[14]、加速溶剂萃取气相色谱-质谱法[15-16] 、加速溶剂萃取高效液相色谱法[17] 等。土壤中氯代多环芳烃的测定方法主要有加速溶剂萃取气相色谱-质谱法[18-19]、超声萃取高效液相色谱法[3]、索氏抽提萃取气相色谱-质谱法[20] 等。加速溶剂萃取设备昂贵;索氏抽提虽然设备简单但要消耗大量的有机溶剂。此外这些方法均需要进一步的浓缩、净化,操作过程繁琐,费时费力。因此发展一种简便、快速、成本低廉、环境友好的样品前处理方法对于土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃的测定很有意义。

    超分子溶剂(supramolecular solvent, SUPRAS)是指含亲水基和疏水基的两亲性分子在水溶性有机溶剂作用下分散在水相中,通过疏水相互作用按照一定的顺序形成的一种具有纳米结构的胶束聚集体。超分子溶剂微萃取(supramolecular solvent-based microextraction, SSBME)是由西班牙学者Rubio 等[21]提出的一种以超分子溶剂为萃取剂的新型萃取技术。超分子溶剂的一个显著特点是其具有高浓度的亲和位点,使其在较小的溶剂体积下能取得高的萃取效率,因此特别适用于微萃取;此外超分子溶剂具有纳米孔腔结构,它可以使小分目标化合物进入其中,但对腐殖酸、蛋白质、糖类等大分子具有限制进入作用,从而在萃取的同时可以达到净化的目的;超分子溶剂还有一个优点,它具有非挥发性和不易燃性,使用安全。超分子溶剂微萃取具有简便、快速、环境友好、成本低廉等优点,已经在环境、食品等领域得到了广泛应用。目前已用于鱼和贝类中噁喹酸和氟甲喹[22]、水中磺胺类[23]、生小麦中的赭曲霉毒素A[24]、人尿液中羟基多环芳烃[25]等化合物的分析。

    本文尝试采用SSBME结合高效液相色谱法建立一种同时测定土壤中氯代多环芳烃(Cl-PAHs)和多环芳烃(PAHs) 的简便快速方法。

    • Agilent 1200 型高效液相色谱仪( 美国安捷伦公司),配二极管阵列紫外和荧光检测器;Vortex Genie 2涡旋振荡器 (美国 Scientific Industries);KMS-181E 磁力搅拌器(精凿科技上海有限公司);飞鸽牌TDL-4013离心机(上海安亭科学仪器厂);乙腈(LC- grade美国 Honeywell 公司);实验用水为经Milli-Q净化系统制备的去离子水。1-己醇、1-庚醇、1-辛醇、四氢呋喃购于阿拉丁试剂(中国)有限公司,纯度 ≧98.0%;1-葵醇购于梯希爱(上海)化成工业发展有限公司,纯度 98.0%。

      16种多环芳烃混标(200 µg·mL−1,其中苊烯无荧光,不在测定之列)及2-氯蒽、9-氯菲、9-氯蒽、9,10-二氯蒽、1-氯芘(纯度大于95%)均购于百灵威化学试剂有限公司。

    • 色谱条件:色谱柱为多环芳烃专用分析柱(SUPELCOSILTMLC-PAH,150 mm×4.6 mm, 5 μm);流动相为乙腈-水,采用梯度洗脱,乙腈变化为:0—18 min,40%—64%;18—25 min,64%;25—35 min,64%—100%;35—44 min,100%。流速为2 mL·min−1; 进样量10 μL。

      20种目标化合物的荧光激发和发射波长见表1,高效液相色谱图见图1

    • 40 g 风干的山参种植土用100 mL 丙酮-二氯甲烷(1:1)超声提取3次后,加入100 mL含2400 ng 氯代多环芳烃和多环芳烃的丙酮-二氯甲烷(1:1)溶液,搅拌混匀后于通风橱中氮气吹至近干,继续放置干透后储存于磨口玻璃瓶。此土壤样品含目标化合物60 ng·g−1,用于超分子溶剂的制备及萃取的优化。

    • 移取3 mL1-辛醇于50 mL聚四氟乙烯离心管中,加入8 mL四氢呋喃、29 mL去离子水,然后以900 r·min−1磁力搅拌5 min,静置2 min后3000 r·min−1 离心5 min,用玻璃滴管将上层形成的超分子溶剂转移到具塞玻璃瓶中,放于冰箱4 ℃储存备用。

    • 于5 mL 聚丙烯离心管中加入200 mg 土壤,3粒玻璃珠(3 mm直径),加入400 μL 超分子溶剂,3200 r·min−1蜗旋振荡2 min,然后5000 r·min−1 离心5 min,用1 mL注射器移出上清液,过0.22 μm 滤膜后高效液相色谱测定。

    • 将16种多环芳烃混标和5种氯代多环芳烃用乙腈配制成10000 µg·L−1的混标储备溶液,并逐级稀释成1000、100、10 ng·mL−1使用液。将此混标使用溶液添加到用丙酮-二氯甲烷(1:1)超声提取过的空白山参种植土中,使添加浓度分别为2.5 、10 、50 、 250、500、1000 ng·g−1, 4 ℃冰箱放置过夜,然后按1.5节方法萃取,用于标准工作曲线的测定。

    • 以添加60 ng·g−1,目标化合物的200 mg供试土壤样品为萃取对象,以目标化合物的峰面积为指标,考察了超分子溶剂的组成(脂肪醇种类、脂肪醇的量、四氢呋喃量)、萃取溶剂体积、涡旋振荡时间等因素对萃取效率的影响。

    • 超分子溶剂通常由两亲分子在分散剂存在下在水相体系中通过自组装生成。本研究采用烷基醇与四氢呋喃制备超分子溶剂。为此恒定总体积为40 mL,考察了1.5 mL1-己醇、1-庚醇、1-辛醇、1-葵醇在水中分别与8 mL四氢呋喃制备的超分子溶剂对萃取效率的影响。结果表明随着脂肪醇碳链的增加,制备的超分子溶剂萃取效率逐渐增大。超分子溶剂中有两类亲和位点,一种是极性端羟基产生的氢键作用力,另一种是醇碳链部分的疏水作用力(范德华力、色散力)。对于萃取多环芳烃及氯代多环芳烃这类非极性和弱极性化合物而言,醇碳链部分的疏水作用力起主要作用,而碳链越长,这种作用力越强,因而萃取效率越大。但实验发现1-葵醇制备的超分子溶剂导致部分目标化合物色谱峰展宽且重叠,无法准确定量。故以下实验选1-辛醇制备超分子溶剂。

    • 四氢呋喃的量保持8 mL,制备体系总体积为40 mL,考察了1-辛醇用量为0.5、1、1.5、2、2.5、3 mL时对萃取效率的影响。结果表明,改变1-辛醇用量,对制备的超分子溶剂的萃取效率无明显影响;但是随着1-辛醇用量的增加,生成的超分子溶剂体积增大,见图2。有文献[26]报道SUPRAs的体积Y(mL) 与烷基醇的用量X(mg) 和四氢呋喃在溶液中的体积百分比Z之间呈如下关系:Y = X(0.17 + e0.0389Z),即超分子溶剂的体积与醇的用量呈线性关系,本实验结果与文献报道一致。为了一次能制备更多的超分子溶剂,选定1-辛醇用量为3 mL。

    • 作为超分子溶剂的组成部分,四氢呋喃的用量不仅与制备的超分子溶剂体积有关,而且对超分子溶剂的萃取效率亦有一定影响。为此固定1-辛醇用量为3 mL,制备体系总体积为40 mL,考察了不同四氢呋喃的量对萃取效率的影响,如图3所示。结果表明,四氢呋喃用量的增加对低分子量的目标化合物的萃取效率影响不大;但对于高分子量的目标化合物,随着四氢呋喃用量的增加,萃取效率增大;当四氢呋喃大于8 mL后趋于稳定。因此本实验制备超分子溶剂时选定四氢呋喃的量为8 mL。

    • 为取得理想的萃取结果,考查超分子溶剂体积分别为300、350、400、500、600、700、800 μL时对萃取效率的影响。结果表明,随着萃取溶剂体积的增大,目标化合物的峰面积明显下降,即检测灵敏度下降;但同时回收率逐渐增大,当超分子溶剂体积大于400 μL时回收率趋于平稳。虽然增加萃取溶剂的体积可以萃取出更多的目标化合物,提高萃取回收率,但同时也会使目标化合物在萃取相中浓度的下降,而二者相比后者影响更大,进而导致检测灵敏度下降。综合以上结果,选定萃取溶剂的体积为400 μL。

    • 涡旋振荡可以促进萃取溶剂与样品的充分接触,提高萃取效率。为此,考查了涡旋振荡时间分别为1、2、3、4、5、6、7、8 min时对萃取效率的影响,结果表明涡旋振荡时间大于2 min后,目标化合物的峰面积变化很小。

      基于以上实验结果,优化后的实验条件为,以3 mL 1-辛醇、8 mL四氢呋喃和29 mL水混合制备超分子溶剂;萃取溶剂的体积为400 μL,涡旋振荡2 min。

    • 在优化的萃取条件下,对添加 5 种氯代多环芳烃和15种多环芳烃系列浓度的空白土壤样品进行超分子溶剂微萃取,然后HPLC荧光测定,以质量浓度 C(ng·g−1)对峰面积 A 绘制校正曲线,得到20种目标化合物的线性回归方程、线性范围及相关系数;并以目标化合物的S/N=3时的浓度定义为方法的检出限,S/N=10时的浓度定义为方法的定量限,见表2。结果表明,范围内,目标化合物在2.5—1000 µg·kg−1(9-氯菲、1-氯芘在10—1000 µg·kg−1)范围内线性关系良好,线性相关系数均大于 0.999;方法的检出限为0.07—2.3 µg·kg−1,定量限为 0.2—7.0 µg·kg−1

    • 用建立的超分子溶剂微萃取高效液相色谱分析方法对山参土(2018年5月采于吉林浑春某地)和大连某地环境污染土壤样品(采于2019年10月)进行了测定。并在山参土样品中添加低、中、高的3个浓度水平的混标溶液,每个浓度水平平行测定3次,结果如表3所示。结果显示,大连某环境污染样品所有目标化合物均检出,且污染严重;山参图样品中检出萘、菲、荧蒽和芘等化合物,其余目标化合物未检出;目标化合物的加标回收率为:76.5%—105.3%,相对标准偏差(RSD)0.2%—8.5%。

    • 本文建立了超分子溶剂微萃取结合高效液相色谱荧光检测技术快速测定土壤中5种氯代多环芳烃和15种多环芳烃的分析方法。方法的基质加标回收率为 76.5%—105.3%,相对标准偏差为 0.2%—8.5%。本方法简便、快速、成本低廉且环境友好,样品处理过程不超过15 min,而且一次可同时处理多个样品。本方法可用于土壤中5种氯代多环芳烃和15种多环芳烃的快速分析检测。

    参考文献 (26)

目录

/

返回文章
返回