[1] 中国生态环境状况公报[R]. 中国生态环境部, 2019. Bulletin of China’s ecological and environmental status in 2019 [R]. China’s Ministry of Ecology and Environment, 2019.
[2] 李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征 [J]. 水文地质工程地质, 2019, 46(6): 1-8. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01 LI S P, LI W P, YIN X L, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017 [J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1-8(in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01
[3] CHAN T Y. Food-borne nitrates and nitrites as a cause of methemoglobinemia [J]. The Southeast Asian Journal of Tropical Medicine and Public Health, 1996, 27(1): 189-192.
[4] XIONG Y, WANG C J, TAO T, et al. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide [J]. Analytical and Bioanalytical Chemistry, 2016, 408(13): 3413-3423. doi: 10.1007/s00216-016-9415-1
[5] RUGLESS F, BHATTACHARYA A, SUCCOP P, et al. Childhood exposure to manganese and postural instability in children living near a ferromanganese refinery in Southeastern Ohio [J]. Neurotoxicology and Teratology, 2014, 41: 71-79. doi: 10.1016/j.ntt.2013.12.005
[6] CORREA-DUARTE M A, PAZOS PEREZ N, GUERRINI L, et al. Boosting the quantitative inorganic surface-enhanced Raman scattering sensing to the limit: The case of nitrite/nitrate detection [J]. The Journal of Physical Chemistry Letters, 2015, 6(5): 868-874. doi: 10.1021/acs.jpclett.5b00115
[7] ZHAO Y, SHI R, BIAN X, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates?[J]. Advanced Science, 2019, 6(8): 1802109.
[8] ADEGOKE O, ZOLOTOVSKAYA S, ABDOLVAND A, et al. Rapid and highly selective colorimetric detection of nitrite based on the catalytic-enhanced reaction of mimetic Au nanoparticle-CeO2 nanoparticle-graphene oxide hybrid nanozyme [J]. Talanta, 2021, 224: 121875. doi: 10.1016/j.talanta.2020.121875
[9] ROMITELLI F, SANTINI S A, CHIERICI E, et al. Comparison of nitrite/nitrate concentration in human plasma and serum samples measured by the enzymatic batch Griess assay, ion-pairing HPLC and ion-trap GC-MS: The importance of a correct removal of proteins in the Griess assay [J]. Journal of Chromatography B, 2007, 851(1/2): 257-267.
[10] LO H S, LO K W, YEUNG C F, et al. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex [J]. Analytica Chimica Acta, 2017, 990: 135-140. doi: 10.1016/j.aca.2017.07.018
[11] YU J J, QIN X C, WANG D, et al. Light-controlled configurable colorimetric sensing array [J]. Analytical Chemistry, 2019, 91(10): 6632-6637. doi: 10.1021/acs.analchem.9b00549
[12] FERNANDES G M, SILVA W R, BARRETO D N, et al. Novel approaches for colorimetric measurements in analytical chemistry - A review [J]. Analytica Chimica Acta, 2020, 1135: 187-203. doi: 10.1016/j.aca.2020.07.030
[13] ZHANG Y Y, CHEN X Z, LIU X Y, et al. A highly sensitive multifunctional sensor based on phenylene-acetylene for colorimetric detection of Fe2+ and ratiometric fluorescent detection of Cd2+ and Zn2+ [J]. Sensors and Actuators B:Chemical, 2018, 273: 1077-1084. doi: 10.1016/j.snb.2018.07.012
[14] PRIYADARSHINI E, PRADHAN N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review [J]. Sensors and Actuators B:Chemical, 2017, 238: 888-902. doi: 10.1016/j.snb.2016.06.081
[15] CHEN L F, TIAN X K, XIA D S, et al. Novel colorimetric method for simultaneous detection and identification of multimetal ions in water: Sensitivity, selectivity, and recognition mechanism [J]. ACS Omega, 2019, 4(3): 5915-5922. doi: 10.1021/acsomega.9b00312
[16] LI T H, LI Y L, ZHANG Y J, et al. A colorimetric nitrite detection system with excellent selectivity and high sensitivity based on Ag@Au nanoparticles [J]. The Analyst, 2015, 140(4): 1076-1081. doi: 10.1039/C4AN01583E
[17] ZHAO X X, ZHAO H B, YAN L, et al. Recent developments in detection using noble metal nanoparticles [J]. Critical Reviews in Analytical Chemistry, 2020, 50(2): 97-110. doi: 10.1080/10408347.2019.1576496
[18] KUMAR V V, ANTHONY S P. Highly selective silver nanoparticles based label free colorimetric sensor for nitrite anions [J]. Analytica Chimica Acta, 2014, 842: 57-62. doi: 10.1016/j.aca.2014.06.028
[19] Ibrahim M H, Xue Z, Abdu H I, et al. Sensitive and selective colorimetric nitrite ion assay using silver nanoparticles easily synthesized and stabilized by AHNDMS and functionalized with PABA [J]. Nanoscale Advances, 2019, 1(3): 1207-1214. doi: 10.1039/C8NA00146D
[20] MEMON S S, NAFADY A, SOLANGI A R, et al. Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles [J]. Sensors and Actuators B:Chemical, 2018, 259: 1006-1012. doi: 10.1016/j.snb.2017.12.162
[21] LU S M, ZHANG X, CHEN L, et al. Colorimetric determination of ferrous ion via morphology transition of gold nanorods [J]. Microchimica Acta, 2017, 185(1): 1-9.
[22] WU G H, DONG C, LI Y L, et al. A novel AgNPs-based colorimetric sensor for rapid detection of Cu2+ or Mn2+ via pH control [J]. RSC Advances, 2015, 5(26): 20595-20602. doi: 10.1039/C5RA00001G
[23] HE Y, ZHANG X H. Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles [J]. Sensors and Actuators B:Chemical, 2016, 222: 320-324. doi: 10.1016/j.snb.2015.08.089
[24] AHMED M J, ISLAM M T, HOSSAIN F. A highly sensitive and selective spectrofluorimetric method for the determination of manganese at nanotrace levels in some real, environmental, biological, soil, food and pharmaceutical samples using 2-(α-pyridyl)-thioquinaldinamide [J]. RSC Advances, 2018, 8(10): 5509-5522. doi: 10.1039/C7RA12762F
[25] HARATHI J, THENMOZHI K. AIE-active Schiff base compounds as fluorescent probes for the highly sensitive and selective detection of Fe3+ ions [J]. Materials Chemistry Frontiers, 2020, 4(5): 1471-1482. doi: 10.1039/C9QM00792J
[26] 纪雪峰, 单斌, 王莎莎, 等. 荧光探针在水中重金属离子检测中的应用研究进展 [J]. 青岛理工大学学报, 2021, 42(16): 109-118. doi: 10.3969/j.issn.1673-4602.2021.01.018 JI X F, SHAN B, WANG S S, MA J P. Application research progress of fluorescent probe in the detection of heavy metal ions in water [J]. Journal of Qingdao University of Technology, 2021, 42(16): 109-118(in Chinese). doi: 10.3969/j.issn.1673-4602.2021.01.018
[27] ZHANG X S, LI C H, ZHAO S L, et al. S doped silicon quantum dots with high quantum yield as a fluorescent sensor for determination of Fe3+ in water [J]. Optical Materials, 2020, 110: 110461. doi: 10.1016/j.optmat.2020.110461
[28] CUI Y J, YUE Y F, QIAN G D, et al. Luminescent functional metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 1126-1162. doi: 10.1021/cr200101d
[29] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271(5251): 933-937. doi: 10.1126/science.271.5251.933
[30] HIMMELSTOß S F, HIRSCH T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging [J]. Methods and Applications in Fluorescence, 2019, 7(2): 022002. doi: 10.1088/2050-6120/ab0bfa
[31] LOU Y B, ZHAO Y X, CHEN J X, et al. Metal ions optical sensing by semiconductor quantum dots [J]. Journal of Materials Chemistry C, 2014, 2(4): 595-613. doi: 10.1039/C3TC31937G
[32] YANG M, YAN Y J, SHI H X, et al. A novel fluorescent sensors for sensitive detection of nitrite ions [J]. Materials Chemistry and Physics, 2020, 239: 122121. doi: 10.1016/j.matchemphys.2019.122121
[33] REN H H, FAN Y, WANG B, et al. Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and water [J]. Journal of Agricultural and Food Chemistry, 2018, 66(33): 8851-8858. doi: 10.1021/acs.jafc.8b01951
[34] SINGH V K, MISHRA H, ALI R, et al. In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching [J]. ACS Applied Nano Materials, 2019, 2(1): 566-576. doi: 10.1021/acsanm.8b02162
[35] HE X H, JIA K, BAI Y, et al. Quantum dots encoded white-emitting polymeric superparticles for simultaneous detection of multiple heavy metal ions [J]. Journal of Hazardous Materials, 2021, 405: 124263. doi: 10.1016/j.jhazmat.2020.124263
[36] LI Q N, ZHOU W L, YU L P, et al. Perovskite quantum dots as a fluorescent probe for metal ion detection in aqueous solution via phase transfer [J]. Materials Letters, 2021, 282: 128654. doi: 10.1016/j.matlet.2020.128654
[37] SHENG X X, LIU Y, WANG Y, et al. Cesium lead halide perovskite quantum dots as a photoluminescence probe for metal ions [J]. Advanced Materials, 2017, 29(37): 1700150. doi: 10.1002/adma.201700150
[38] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
[39] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review [J]. Materials Today Chemistry, 2018, 8: 96-109. doi: 10.1016/j.mtchem.2018.03.003
[40] DEMCHENKO A P, DEKALIUK M O. Novel fluorescent carbonic nanomaterials for sensing and imaging [J]. Methods and Applications in Fluorescence, 2013, 1(4): 042001. doi: 10.1088/2050-6120/1/4/042001
[41] NICOLLIAN E H. Surface passivation of semiconductors [J]. Journal of Vacuum Science and Technology, 1971, 8(5): S39-S49. doi: 10.1116/1.1316388
[42] SHEN J H, ZHU Y H, CHEN C, et al. Facile preparation and upconversion luminescence of graphene quantum dots [J]. Chemical Communications (Cambridge, England), 2011, 47(9): 2580-2582. doi: 10.1039/C0CC04812G
[43] LI W S, HUANG S P, WEN H Y, et al. Fluorescent recognition and selective detection of nitrite ions with carbon quantum dots [J]. Analytical and Bioanalytical Chemistry, 2020, 412(4): 993-1002. doi: 10.1007/s00216-019-02325-9
[44] WU H F, TONG C L. Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury(II) in environmental water samples based on the Tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid [J]. Analytical Chemistry, 2020, 92(13): 8859-8866. doi: 10.1021/acs.analchem.0c00455
[45] SHI Y P, LIU J J, ZHANG Y, et al. Microwave-assisted synthesis of colorimetric and fluorometric dual-functional hybrid carbon nanodots for Fe3+ detection and bioimaging[J]. Chinese Chemical Letters, 2021
[46] HUANG H, WENG Y H, ZHENG L H, et al. Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, l-cysteine and iodide ions [J]. Journal of Colloid and Interface Science, 2017, 506: 373-378. doi: 10.1016/j.jcis.2017.07.076
[47] MAGDY G, ABDEL HAKIEM A F, BELAL F, et al. Green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots as new fluorescent nanosensors for determination of salinomycin and maduramicin in food samples [J]. Food Chemistry, 2021, 343: 128539. doi: 10.1016/j.foodchem.2020.128539
[48] SUN S J, GUAN Q W, LIU Y, et al. Highly luminescence manganese doped carbon dots [J]. Chinese Chemical Letters, 2019, 30(5): 1051-1054. doi: 10.1016/j.cclet.2019.01.014
[49] LIN L P, LUO Y X, TSAI P, et al. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications [J]. TrAC Trends in Analytical Chemistry, 2018, 103: 87-101. doi: 10.1016/j.trac.2018.03.015
[50] WANG Y, ZHANG Y, JIA M Y, et al. Functionalization of carbonaceous nanodots from Mn(Ⅱ) -coordinating functional knots [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2015, 21(42): 14843-14850.
[51] WU H, PANG L F, FU M J, et al. Boron and nitrogen codoped carbon dots as fluorescence sensor for Fe3+ with improved selectivity [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180: 113052. doi: 10.1016/j.jpba.2019.113052
[52] ZHU J T, CHU H Y, WANG T S, et al. Fluorescent probe based nitrogen doped carbon quantum dots with solid-state fluorescence for the detection of Hg2+ and Fe3+ in aqueous solution [J]. Microchemical Journal, 2020, 158: 105142. doi: 10.1016/j.microc.2020.105142
[53] BANDI R, DADIGALA R, GANGAPURAM B R, et al. N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(Ⅲ) and copper(Ⅱ) [J]. Microchimica Acta, 2019, 187(1): 1-10.
[54] HU Q, LIU L F, SUN H J, et al. An ultra-selective fluorescence method with enhanced sensitivity for the determination of manganese (VII) in food stuffs using carbon quantum dots as nanoprobe [J]. Journal of Food Composition and Analysis, 2020, 88: 103447. doi: 10.1016/j.jfca.2020.103447
[55] WANG S, LIU J, ZHAO H H, et al. Carboxymethyl chitosan crosslinked β-cyclodextrin containing hydrogen bonded NC QDs nanocomposites to design fluorescence probes for manganese ion (Ⅱ) sensing [J]. Materials Science and Engineering:C, 2021, 119: 111556. doi: 10.1016/j.msec.2020.111556
[56] ONG T T X, BLANCH E W, JONES O A H. Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment [J]. Science of the Total Environment, 2020, 720: 137601. doi: 10.1016/j.scitotenv.2020.137601
[57] SINGH P, SINGH M K, BEG Y R, et al. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples [J]. Talanta, 2019, 191: 364-381. doi: 10.1016/j.talanta.2018.08.028
[58] CHEN J H, PANG S, HE L L, et al. Highly sensitive and selective detection of nitrite ions using Fe3O4@SiO2/Au magnetic nanoparticles by surface-enhanced Raman spectroscopy [J]. Biosensors and Bioelectronics, 2016, 85: 726-733. doi: 10.1016/j.bios.2016.05.068
[59] YAN F, REDDY C V G, SHRESTHA Y K, et al. Correction: Determination of ferric ions using surface-enhanced Raman scattering based on desferrioxamine-functionalized silver nanoparticles [J]. Chemical Communications, 2018, 54(78): 11053. doi: 10.1039/C8CC90421A
[60] WEI H R, HOSSEIN ABTAHI S M, VIKESLAND P J. Plasmonic colorimetric and SERS sensors for environmental analysis [J]. Environmental Science:Nano, 2015, 2(2): 120-135. doi: 10.1039/C4EN00211C
[61] 王胜智, 张平, 谢思桃. 试纸法及其在水质检测领域的应用研究[J]. 给水排水, 2008, 44(增刊2): 216-220. WANG S Z, ZHANG P, XIE S T. Dipstick method and its application in the field of water quality detection [J]. Water & Wastewater Engineering, 2008, 44(Sup 2): 216-220(in Chinese).
[62] VELLINGIRI K, CHOUDHARY V, PHILIP L. Fabrication of portable colorimetric sensor based on basic fuchsin for selective sensing of nitrite ions [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103374. doi: 10.1016/j.jece.2019.103374
[63] AUKEMA K G, WACKETT L P. Inexpensive microbial dipstick diagnostic fornitrate in water [J]. Environmental Science:Water Research & Technology, 2019, 5(2): 406-416.
[64] NAWAZ H, TIAN W G, ZHANG J M, et al. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes [J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2114-2121.
[65] WANG Q H, YU L J, LIU Y, et al. Methods for the detection and determination of nitrite and nitrate: A review [J]. Talanta, 2017, 165: 709-720. doi: 10.1016/j.talanta.2016.12.044
[66] HUANGFU C X, ZHANG Y, JANG M, et al. A μPAD for simultaneous monitoring of Cu2+, Fe2+ and free chlorine in drinking water [J]. Sensors and Actuators B:Chemical, 2019, 293: 350-356. doi: 10.1016/j.snb.2019.02.092
[67] MARTINEZ A W, PHILLIPS S T, BUTTE M J, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays [J]. Angewandte Chemie, 2007, 46(8): 1318-1320. doi: 10.1002/anie.200603817
[68] ZHANG D H, LI C C, JI D L, et al. Paper-based microfluidic sensors for onsite environmental detection: A critical review [J]. Critical Reviews in Analytical Chemistry, 2021: 1-40.
[69] ZHANG Y, LI X, LI H, et al. Postage stamp-sized array sensor for the sensitive screening test of heavy-metal ions [J]. The Analyst, 2014, 139(19): 4887. doi: 10.1039/C4AN01022A
[70] JAYAWARDANE B M, WEI S, MCKELVIE I D, et al. Microfluidic paper-based analytical device for the determination of nitrite and nitrate [J]. Analytical Chemistry, 2014, 86(15): 7274-7279. doi: 10.1021/ac5013249
[71] KAMNOET P, AEUNGMAITREPIROM W, MENGER R F, et al. Highly selective simultaneous determination of Cu(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Hg(Ⅱ), and Mn(Ⅱ) in water samples using microfluidic paper-based analytical devices [J]. The Analyst, 2021, 146(7): 2229-2239. doi: 10.1039/D0AN02200D
[72] MENTELE M M, CUNNINGHAM J, KOEHLER K, et al. Microfluidic paper-based analytical device for particulate metals [J]. Analytical chemistry, 2012, 84(10): 4474-4480. doi: 10.1021/ac300309c
[73] MONIZ T, BASSETT C R, ALMEIDA M I G S, et al. Use of an ether-derived 3-hydroxy-4-pyridinone Chelator as a new chromogenic reagent in the development of a microfluidic paper-based analytical device for Fe(Ⅲ) determination in natural waters [J]. Talanta, 2020, 214: 120887. doi: 10.1016/j.talanta.2020.120887
[74] CATE D M, NANTHASURASAK P, RIWKULKAJORN P, et al. Rapid detection of transition metals in welding fumes using paper-based analytical devices [J]. The Annals of Occupational Hygiene, 2014, 58(4): 413-423.
[75] RATTANARAT P, DUNGCHAI W, CATE D, et al. Multilayer paper-based device for colorimetric and electrochemical quantification of metals [J]. Analytical Chemistry, 2014, 86(7): 3555-3562. doi: 10.1021/ac5000224
[76] GUO X F, LIU C, LI N, et al. Ratiometric fluorescent test paper based on silicon nanocrystals and carbon dots for sensitive determination of mercuric ions [J]. Royal Society Open Science, 2018, 5(6): 171922. doi: 10.1098/rsos.171922
[77] CHANG J, LI H, HOU T, et al. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity [J]. Biosensors and Bioelectronics, 2016(86): 971-977.
[78] FENG L, LI H, NIU L Y, et al. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions [J]. Talanta, 2013, 108: 103-108. doi: 10.1016/j.talanta.2013.02.073
[79] LI D, MA Y D, DUAN H Z, et al. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite [J]. Biosensors and Bioelectronics, 2018, 99: 389-398. doi: 10.1016/j.bios.2017.08.008
[80] BANSOD B, KUMAR T, THAKUR R, et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms [J]. Biosensors and Bioelectronics, 2017, 94: 443-455. doi: 10.1016/j.bios.2017.03.031
[81] JIANG C B, HE Y H, LIU Y. Recent advances in sensors for electrochemical analysis of nitrate in food and environmental matrices [J]. The Analyst, 2020, 145(16): 5400-5413. doi: 10.1039/D0AN00823K
[82] CHEN X Y, ZHOU G H, MAO S, et al. Rapid detection of nutrients with electronic sensors: A review [J]. Environmental Science:Nano, 2018, 5(4): 837-862. doi: 10.1039/C7EN01160A
[83] FEIER B, FLONER D, CRISTEA C, et al. Flow electrochemical analyses of zinc by stripping voltammetry on graphite felt electrode [J]. Talanta, 2012, 98: 152-156. doi: 10.1016/j.talanta.2012.06.063
[84] YANG S L, LIU X Y, ZENG X D, et al. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite [J]. Sensors and Actuators B:Chemical, 2010, 145(2): 762-768. doi: 10.1016/j.snb.2010.01.032
[85] CUI Y P, YANG C Z, ZENG W, et al. Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique [J]. Analytical Sciences:The International Journal of the Japan Society for Analytical Chemistry, 2007, 23(12): 1421-1425. doi: 10.2116/analsci.23.1421
[86] WANG Z F, LIAO F, GUO T T, et al. Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods [J]. Journal of Electroanalytical Chemistry, 2012, 664: 135-138. doi: 10.1016/j.jelechem.2011.11.006
[87] PHAM X H, LI C A, HAN K N, et al. Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes [J]. Sensors and Actuators B:Chemical, 2014, 193: 815-822. doi: 10.1016/j.snb.2013.12.034
[88] WANG S Q, YIN Y M, LIN X Q. Cooperative effect of Pt nanoparticles and Fe(Ⅲ) in the electrocatalytic oxidation of nitrite [J]. Electrochemistry Communications, 2004, 6(3): 259-262. doi: 10.1016/j.elecom.2003.12.008
[89] MILHANO C, PLETCHER D. The electrodeposition and electrocatalytic properties of copper-palladium alloys [J]. Journal of Electroanalytical Chemistry, 2008, 614(1/2): 24-30.
[90] CHEN G Z, ZHENG J B. Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite [J]. Microchemical Journal, 2021, 164: 106034. doi: 10.1016/j.microc.2021.106034
[91] GÖDE C, YOLA M L, YıLMAZ A, et al. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) ions [J]. Journal of Colloid and Interface Science, 2017, 508: 525-531. doi: 10.1016/j.jcis.2017.08.086
[92] GEORGE J M, PRIYANKA R N, MATHEW B. Bimetallic Ag-Au nanoparticles as pH dependent dual sensing probe for Mn(Ⅱ) ion and ciprofloxacin [J]. Microchemical Journal, 2020, 155: 104686. doi: 10.1016/j.microc.2020.104686
[93] ABDALLAH N A. Novel potentiometric solid-contact electrode for the determination of Fe2+ ions via MWCNTs-gemifloxacin composite [J]. Electroanalysis, 2021, 33(5): 1283-1289. doi: 10.1002/elan.202060319
[94] ROUSHANI M, SAEDI Z, HAMDI F, et al. Preparation an electrochemical sensor for detection of manganese (Ⅱ) ions using glassy carbon electrode modified with multi walled carbon nanotube-chitosan-ionic liquid nanocomposite decorated with ion imprinted polymer [J]. Journal of Electroanalytical Chemistry, 2017, 804: 1-6. doi: 10.1016/j.jelechem.2017.09.038
[95] HAN Z Y, MA H N, SHI G Z, et al. A review of groundwater contamination near municipal solid waste landfill sites in China [J]. Science of the Total Environment, 2016, 569/570: 1255-1264. doi: 10.1016/j.scitotenv.2016.06.201
[96] 雷抗. 垃圾填埋场地下水污染监测预警技术研究 : 以天津市某简易垃圾填埋场为例[D]. 北京: 中国地质大学(北京), 2018. LEI K. Study on monitoring and early warning technology applied to groundwater contamination in waste landfills —acase studyfor asimple landfill in Tianjin[D]. Beijing: China University of Geosciences, 2018(in Chinese).
[97] JIANG Y, LI R, YANG Y N, et al. Migration and evolution of dissolved organic matter in landfill leachate-contaminated groundwater plume [J]. Resources, Conservation and Recycling, 2019, 151: 104463. doi: 10.1016/j.resconrec.2019.104463
[98] 张云龙. 地下水典型污染源全过程监控及预警方法研究[D]. 成都: 成都理工大学, 2016. ZHANG Y L. Study on the whole-process monitoring and early warning of groundwater pollution of typical pollution sources[D]. Chengdu: Chengdu University of Technology, 2016(in Chinese).