-
X射线荧光光谱分析技术适合于各类固体、液体、泥浆状样品中主、次、痕量多元素的同时测定,其制样方法简单,是一种无损绿色检测技术。在农业、地质、能源、石化、出入境检验检疫、土壤修复和应急管理等领域有广泛应用[1-9]。2015年12月,国家发布了《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780-2015),使得波长色散X射线荧光光谱法(WD-XRF)分析土壤和沉积物中无机元素在生态环境监测行业有了分析依据[10]。WD-XRF在轻元素段分辨率较重元素好,分析时样品被原级X射线激发后,产生的荧光经准直器和分光器进入探测器,分光器是WD-XRF的核心部件,实现按波长扫描出元素的特征谱线。因此,WD-XRF对光路机构运动、光管冷却系统控制、系统抗振和电源等均有较高要求,无法应用于野外应急现场和原位精准测试。能量色散X射线荧光光谱法(ED-XRF)与WD-XRF区别在于不使用旨在达到分光目的的晶体和附属运转机构。因此,ED-XRF的光源、样品和检测器空间上布局可非常紧凑,无需分光晶体精密运动装置,避免了晶体衍射造成的强度损失,还可使用低功率X射线管,无需大功率高压发生器和专门的冷却系统,可节省资源和简化设计。ED-XRF在重元素段总体分辨率较轻元素好,土壤、固废中有毒有害重金属多为偏重元素,所以ED-XRF非常适合土壤、固废等领域的元素分析,这为XRF的多场景测试应用带来更多可能。
近年来,ED-XRF技术发展迅速,仪器硬件集成技术和软件算法也有了长足的发展和优化,其设备外形较以往更加小巧紧凑,在重金属监测指标上甚至已赶上或超过WD-XRF。特别是在WD-XRF无法准确测定的镉等关键重金属元素分析性能上有了极大提升,检出限、检测下限、精密度和正确度等指标甚至可达到实验室原子光谱和质谱分析水平。例如单波长激发ED-XRF对镉元素检出限达到几十微克每千克。特别是近几年,在生态环境监测和农业等行业领域已有了较高的普及率。在环境监测领域,XRF已发布的行标有4项,涉及土壤和沉积物、环境空气颗粒物、固废中无机元素测定 [10-12]。在上述背景下,ED-XRF以其小巧便携、低功率、多元素同时快速准确分析、现场或原位测试等优势,在元素成分分析领域,特别是在土壤环境质量保护工作中必将具有更广阔的应用前景。同时,其样品制备较WD-XRF简单,在减轻分析操作人员劳动强度方面有明显优势,还可作为质控手段,对其他仪器分析方法的促进具有积极意义[13-14]。
本文是在地方标准项目预研究成果基础上的凝练总结,对统一的系列土壤和沉积物样品进行比对测试,测量数据采用迭代稳健统计和四分位稳健统计,利用Z比分数进行数据合格性评价[15]。并将单波长激发ED-XRF测定数据与《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780-2015)检出限进行对比,对其精密度和准确性进行进一步评估,就能量色散和波长色散XRF测定土壤和沉积物中多种无机元素的优劣势进行讨论。
单波长激发能量色散X射线荧光光谱法测定土壤和沉积物中19种元素
Determination of 19 elements in soils and sediments by single-wavelength excitation energy dispersive X-ray fluorescence spectrometry
-
摘要: 近年来能量色散X射线荧光光谱(ED-XRF)分析技术发展迅速,但用于生态环境监测领域准确测定土壤和沉积物中多种无机元素的研究鲜有报道。基于多实验室协作对系列土壤和沉积物进行测试,对测量结果进行了四分位稳健统计和迭代稳健统计,利用Z比分数进行数据筛查;并重点对单波长激发ED-XRF采集的微量Cd、Pb、As、Br、Cr、Cu、Ga、Mo、Mn、Nb、Zr、Ni、Rb、Sr、Th、Sb、Ti、V、Zn共19种元素检出限、精密度和正确性进行评估,与《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 780-2015)进行比对和实际样品测试。结果表明,单波长激发ED-XRF测定土壤和沉积物中无机元素检出限绝大多数优于HJ 780-2015行业标准,精密度和正确度完全满足实验室日常检测和作为质控手段的要求,实际样品测试与实验室ICP-MS结果具有一致性。实验对土壤和沉积物中无机元素分析方法的拓展进行了有益尝试和积累,并为相关标准制订提供有益参考。
-
关键词:
- 土壤 /
- 沉积物 /
- 重金属 /
- 能量色散X射线荧光光谱法 /
- 镉元素
Abstract: Although the energy dispersive X-ray fluorescence spectroscopy (ED-XRF) technology has grown rapidly in the past few years, there are few reports on its application in the field of environmental monitoring for the accurate determination of various inorganic elements in soils and sediments. Through a multi-laboratory collaboration, concentrations of 19 inorganic elements in soil and sediment standard reference samples were tested by ED-XRF, and quadratic robust statistics and iterative robust statistics were further performed based on measurement results. The data were screened using the Z ratio fraction, and the detection limits, precision and accuracy of 19 elements include cadmium, lead and arsenic by single wavelength excitation ED-XRF were determined and compared with the standard method: Determination of Inorganic Elements in Soil and Sediment by Wavelength Dispersive X-ray Fluorescence Spectrometry (HJ 780-2015). The results showed that the detection limits of the ED-XRF method for most of inorganic elements in soil and sediment are lower than those listed in the industry standard HJ 780-2015, and the precision and accuracy meet the requirements for routine laboratory testing and quality control. In addition, the results of actual samples were found consistent with those obtained by the ICP-MS. This study is a useful attempt at quantitation of inorganic elements in soils and sediments, which would also provide references for further developing standard methods.-
Key words:
- soils /
- sediments /
- heavy metals /
- energy dispersive X-ray fluorescence /
- cadmium
-
表 1 数据离群值筛查结果
Table 1. Robust statistical method to detect outliers
元素
Elements实验室
Lab四分法
Quadrature迭代法
Iterative剔除
Excluded采用率
Adoption rate元素
Elements实验室
Lab四分法
Quadrature迭代法
Iterative剔除
Excluded采用率
Adoption
rate可疑
Susceptibility离群
Outliers可疑
Susceptibility离群
Outliers离群
Outliers可疑
Susceptibility离群
Outliers可疑
Susceptibility离群
Outliers离群
OutliersTi Lab1 4 0 0 0 0 1 Rb Lab1 4 2 2 1 2 0.98 Lab2 5 0 1 0 0 1 Lab2 3 7 1 5 7 0.93 Lab3 2 3 1 2 3 0.97 Lab3 4 5 3 2 5 0.95 Lab4 2 2 1 0 2 0.98 Lab4 5 7 5 1 7 0.93 Lab5 6 0 1 0 0 1 Lab5 1 4 0 0 4 0.96 Lab6 2 2 1 2 2 0.98 Lab6 7 4 2 1 4 0.96 V Lab1 3 2 3 0 2 0.98 Sr Lab1 6 4 2 0 4 0.96 Lab2 2 4 0 0 4 0.96 Lab2 0 6 3 6 6 0.94 Lab3 3 3 0 1 3 0.97 Lab3 7 2 2 2 2 0.98 Lab4 7 4 2 0 4 0.96 Lab4 5 1 1 0 1 0.99 Lab5 4 4 1 0 4 0.96 Lab5 7 3 0 0 3 0.97 Lab6 3 1 1 0 1 0.99 Lab6 4 3 1 1 3 0.97 Cr Lab1 3 0 0 0 0 1 Zr Lab1 4 3 2 2 3 0.97 Lab2 1 5 0 5 5 0.95 Lab2 2 7 0 5 7 0.93 Lab3 3 5 1 0 5 0.95 Lab3 2 4 1 3 4 0.96 Lab4 2 6 3 1 6 0.94 Lab4 6 5 3 1 5 0.95 Lab5 3 4 4 0 4 0.96 Lab5 3 6 1 4 6 0.94 Lab6 4 2 1 1 2 0.98 Lab6 4 3 0 1 3 0.97 Mn Lab1 2 0 0 0 0 1 Nb Lab1 4 1 0 1 1 0.99 Lab2 2 2 1 1 2 0.98 Lab2 2 4 1 6 6 0.94 Lab3 3 6 0 2 6 0.94 Lab3 6 4 2 2 4 0.96 Lab4 1 9 3 2 9 0.91 Lab4 3 5 2 0 5 0.95 Lab5 7 6 4 0 6 0.94 Lab5 3 1 1 2 2 0.98 Lab6 3 1 0 1 1 0.99 Lab6 2 1 1 1 1 0.99 Ni Lab1 8 3 1 2 3 0.97 Mo Lab1 3 4 4 0 4 0.96 Lab2 6 2 2 2 2 0.98 Lab2 2 6 3 1 6 0.94 Lab3 6 5 2 1 5 0.95 Lab3 3 3 0 1 3 0.97 Lab4 5 5 3 1 5 0.95 Lab4 3 5 2 0 5 0.95 Lab5 4 4 0 2 4 0.96 Lab5 4 3 0 1 3 0.97 Lab6 3 4 0 2 4 0.96 Lab6 3 2 1 0 2 0.98 Cu Lab1 4 3 2 1 3 0.97 Cd Lab1 3 3 1 1 3 0.97 Lab2 6 3 0 3 3 0.97 Lab2 3 7 5 1 7 0.93 Lab3 6 4 1 2 4 0.96 Lab3 3 4 3 0 4 0.96 Lab4 4 6 1 1 6 0.94 Lab4 5 7 2 2 7 0.92 Lab5 4 2 0 2 2 0.98 Lab5 3 1 1 0 1 0.99 Lab6 8 4 5 0 4 0.96 Lab6 6 6 3 1 6 0.94 Zn Lab1 0 2 0 2 2 0.98 Sb Lab1 3 4 2 2 4 0.96 Lab2 7 3 0 2 3 0.97 Lab2 3 6 0 2 6 0.94 Lab3 3 5 3 2 5 0.95 Lab3 1 9 3 2 9 0.91 Lab4 11 2 2 0 2 0.98 Lab4 7 6 4 0 6 0.94 Lab5 3 2 1 0 2 0.98 Lab5 2 4 0 0 4 0.96 Lab6 7 3 1 1 3 0.97 Lab6 2 2 1 1 2 0.98 Ga Lab1 9 2 1 1 2 0.98 Pb Lab1 1 3 0 4 4 0.96 Lab2 6 4 2 2 4 0.96 Lab2 4 2 0 2 2 0.98 Lab3 2 7 2 2 7 0.93 Lab3 5 3 3 1 3 0.97 Lab4 4 1 1 0 1 0.99 Lab4 5 1 1 0 1 0.99 Lab5 7 0 1 0 0 1 Lab5 7 3 1 2 3 0.97 Lab6 6 1 2 0 1 0.99 Lab6 7 2 0 1 2 0.98 As Lab1 5 1 0 1 1 0.99 Th Lab1 9 4 4 5 5 0.95 Lab2 4 0 0 2 2 0.98 Lab2 3 4 2 2 4 0.96 Lab3 6 1 3 0 1 0.99 Lab3 7 4 4 1 4 0.96 Lab4 4 1 1 1 1 0.99 Lab4 3 1 1 0 1 0.99 Lab5 4 1 1 0 1 0.99 Lab5 8 2 1 2 2 0.98 Lab6 5 4 2 1 4 0.96 Lab6 6 1 2 0 1 0.99 Br Lab1 5 1 0 3 3 0.97 Lab2 4 7 2 8 8 0.92 Lab3 2 6 3 1 6 0.94 Lab4 9 2 2 0 2 0.98 Lab5 4 2 2 0 2 0.98 Lab6 6 1 1 2 2 0.98 注:Ni的Lab 1数据个数为90个,Cd的Lab 4为89个,其他为96个.
Note: The Ni samples of Lab1 are 90, the Cd samples of Lab 4 are 89, the others are 96.表 2 单波长激发ED-XRF检出限
Table 2. Detection limit of single wavelength excitation ED-XRF
元素
Elements平均值/
(mg·kg−1)
Average标准偏差/
(mg·kg−1)
Std.相对标准
偏差/%
Relative
Std单波长激发
ED-XRF
检出限/(mg·kg−1)
ED-XRF LODHJ 780-2015
检出限/
(mg·kg−1)
LOD检出限评价结果
Evaluation results相关环境质量
最严要求/(mg·kg−1)
the Max of relevant
environmental quality国家土壤环境
网络监测项目
NSEM network
monitoringAs 0.82 0.07 8.5 0.23 2.0 1 20[21-25] 是 Ti 708 7.3 1.0 33.0 50.0 1 — 是 V 35 3.9 11 12.3 4.0 −1 165[22] 是 Cr 20.3 1.8 8.9 5.66 3.0 −1 80[25] 是 Mn 48.6 1.7 3.5 5.35 10.0 1 — 是 Ni 3.52 0.24 6.8 0.76 1.5 1 40[23-24] 是 Cu 3.58 0.25 7.0 0.79 1.2 1 35[25] 是 Zn 2.36 0.12 5.1 0.38 2.0 1 150[25] 是 Ga 3.21 0.23 7.2 0.73 2.0 1 — 是 Br 0.63 0.04 6.3 0.13 1.0 1 — 是 Rb 2.45 0.09 3.7 0.29 2.0 1 — 是 Sr 1.42 0.12 8.5 0.38 2.0 1 — 是 Zr 4.12 0.14 3.4 0.45 2.0 1 — 是 Nb 0.52 0.04 7.7 0.13 2.0 1 — 否 Mo 0.38 0.03 7.9 0.10 — 1 — 是 Cd 0.12 0.01 8.3 0.04 — 1 0.3[22, 24-25] 是 Sb 0.43 0.03 7.0 0.10 — 1 — 是 Pb 1.42 0.10 7.0 0.32 2.0 1 50[25] 是 Th 0.64 0.05 7.8 0.16 2.1 1 — 是 注:检出限比对评价时,1表示单波长激发ED-XRF优于HJ 780-2015,-1表示HJ 780-2015优于单波长激发ED-XRF.
Note: For comparative evaluation of detection limits, 1 indicates that single wavelength excitation ED-XRF is better than HJ 780-2015, -1 indicates that HJ 780-2015 is better than single wavelength excitation ED-XRF.表 3 《土壤环境监测技术规范》精密度允许范围
Table 3. Allowable range of precision of the Technical Specification for Soil Environmental Monitoring
元素
Elements含量范围/
(mg·kg−1)
Content range相对标准偏差/%
Relative Std含量范围/
(mg·kg−1)
Content range相对标准偏差/%
Relative Std含量范围/
(mg·kg−1)
Content range相对标准偏差/%
Relative StdAs <10 ±20 10—20 ±15 >20 ±15 Cu <20 ±20 20—30 ±15 >30 ±15 Cr <50 ±25 50—90 ±20 >90 ±15 Ni <20 ±30 20—30 ±25 >30 ±20 Pb <20 ±30 20—40 ±25 >40 ±20 Zn <50 ±25 50—90 ±20 >90 ±15 Cd <0.1 ±35 0.1—0.4 ±30 >0.4 ±25 表 4 单波长激发ED-XRF测试精密度
Table 4. Precision of single wavelength excitation ED-XRF test
相对标准偏差/%
Relative Std.Ti V Cr Mn Ni Cu Zn Ga As Br Rb Sr Zr Nb Mo Cd Sb Pb Th GSS-1a 0.3 21.1 10.9 7.2 7.7 1.3 3.5 6.8 7.3 20.4 5.4 2.6 1.2 7.5 7.2 3.6 2.4 3.4 7.8 GSS-2a 0.3 10.1 11.1 3.6 7.2 5.9 2.7 3.3 9.4 3.9 2.4 3.2 8.3 7.0 10.1 0.4 0.9 18.0 8.6 GSS-8a 0.6 16.3 7.7 1.9 2.4 4.8 6.9 3.7 2.3 3.7 3.3 3.1 4.6 12.5 3.6 19.9 1.2 8.8 6.1 GSS-24 0.3 3.5 5.6 0.1 8.2 15.1 7.7 10.3 4.2 0.0 2.8 9.9 4.4 1.5 3.0 25.6 1.1 2.9 4.9 GSS-34 0.3 0.0 6.9 4.6 6.1 4.4 2.0 3.1 2.2 7.6 1.4 0.2 5.1 1.7 2.0 22.2 1.1 8.7 14.2 GSS-39 0.2 10.6 13.1 7.6 10.1 8.9 3.1 6.3 10.8 0.4 2.8 4.4 2.7 8.8 8.5 11.5 1.1 9.9 2.1 GSS-40 0.4 6.5 7.4 5.1 7.8 5.7 1.7 5.2 3.0 1.2 2.2 2.2 2.3 6.6 6.2 8.4 1.2 8.3 5.7 GSS-50 0.3 18.7 9.3 0.6 6.7 6.0 0.3 6.8 11.7 1.9 3.2 2.8 2.6 0.8 0.4 7.0 0.4 0.1 12.1 GSS-60 0.2 18.8 15.7 2.3 6.0 7.6 2.4 2.3 3.0 9.2 0.6 0.4 10.0 5.0 4.4 10.2 1.8 5.4 13.2 GSS-63 0.1 1.7 6.0 1.3 2.4 2.7 0.3 2.5 9.8 12.9 0.8 0.3 4.0 2.8 7.9 6.1 1.2 2.1 3.0 GSD-19 0.3 4.5 2.1 2.2 7.2 10.3 3.7 8.0 6.4 2.2 0.3 1.8 15.0 2.6 7.1 12.5 0.2 3.8 7.9 GSD-26 2.1 4.0 16.2 0.3 1.5 9.1 1.3 2.1 5.4 22.1 1.8 2.5 5.7 0.4 4.1 19.2 2.5 3.4 9.3 GSD-27 0.3 9.1 4.1 2.0 5.4 3.5 3.8 8.8 8.9 13.7 2.0 2.5 1.1 4.2 1.3 3.8 1.0 4.3 16.6 GSD-29 0.1 5.0 2.9 11.9 1.9 4.1 0.1 0.3 7.1 7.2 6.6 3.0 2.0 1.7 1.7 16.1 0.2 19.2 24.0 GSD-30 0.4 5.7 13.3 3.2 5.6 2.7 2.8 6.8 9.5 3.6 1.8 4.7 2.9 1.3 6.3 1.0 1.9 6.6 4.2 GSD-32 2.6 2.6 13.2 4.2 2.0 4.3 0.0 5.3 7.9 8.1 2.7 10.8 4.9 2.6 3.9 1.9 1.2 7.2 6.4 是否合格 — — 是 — 是 是 是 — 是 — — — — — — 是 是 是 — 表 5 《农用地土壤污染状况详查质量保证与质量控制技术规定》精密度允许范围
Table 5. Allowable range of test precision of The Soil contamination of agricultural land detailed investigation of quality assurance and quality control technology regulations
元素Elements 含量范围/
(mg·kg−1)
Content range相对偏差/%
Relative deviation含量范围/
(mg·kg−1)
Content range相对偏差/%
Relative deviation含量范围/
(mg·kg−1)
Content range相对偏差/%
Relative deviationAs <10 20 10—20 15 >20 10 Cu <20 20 20—30 15 >30 10 Cr <50 20 50—90 15 >90 10 Ni <20 20 20—30 15 >30 10 Pb <20 25 20—40 20 >40 15 Zn <50 20 50—90 15 >90 10 Cd <0.1 35 0.1—0.4 30 >0.4 25 表 6 单波长激发ED-XRF测试精密度
Table 6. Precision of single wavelength excitation ED-XRF test
相对偏差/%
Relative deviationTi V Cr Mn Ni Cu Zn Ga As Br Rb Sr Zr Nb Mo Cd Sb Pb Th GSS-1a 0.3 14.1 5.5 0.3 4.5 1.8 0.1 1.5 1.5 0.7 0.2 0.1 0.1 0.4 3.8 1.3 3.0 0.3 0.8 GSS-2a 0.4 11.3 5.6 0.2 1.6 1.7 0.7 1.4 0.8 1.6 0.2 0.1 0.1 0.2 2.7 15.4 7.9 0.6 1.9 GSS-8a 0.8 12.0 6.6 0.4 2.7 2.8 0.5 2.3 1.6 3.2 0.2 0.2 0.2 0.6 12.4 25.5 13.0 0.9 1.0 GSS-24 0.4 19.2 2.2 0.3 3.4 2.4 0.5 1.6 0.7 0.5 0.1 0.2 0.1 0.4 4.4 20.6 9.3 0.5 0.4 GSS-34 0.3 5.7 3.2 0.7 1.6 3.2 0.3 2.8 1.4 0.4 0.2 0.1 0.1 0.5 10.6 15.4 7.2 1.0 0.6 GSS-39 0.4 5.0 5.4 0.9 2.6 3.3 0.2 1.4 0.9 1.1 0.2 0.2 0.1 0.4 3.2 12.8 5.9 0.4 1.1 GSS-40 0.6 7.0 3.8 0.5 1.6 2.8 0.4 1.9 0.7 1.4 0.1 0.1 0.1 0.2 3.9 11.8 13.9 0.5 1.2 GSS-50 0.4 10.1 6.0 0.4 2.2 2.7 0.2 3.2 2.2 0.4 0.1 0.2 0.1 0.7 6.6 28.0 19.2 0.4 1.3 GSS-60 0.3 6.7 9.6 0.5 2.3 2.3 0.8 1.2 0.9 4.1 0.2 0.1 0.1 0.2 12.1 28.8 3.4 0.7 2.5 GSS-63 0.2 5.6 1.5 0.4 1.3 2.6 0.3 1.4 1.1 2.8 0.2 0.1 0.2 0.4 5.7 8.2 4.4 0.6 0.5 GSD-19 0.4 6.7 3.0 0.4 0.7 1.8 0.6 1.7 7.1 4.9 0.2 0.1 0.2 0.5 4.3 26.1 0.1 0.8 1.3 GSD-26 3.1 30.0 5.8 1.3 2.3 10.8 2.5 6.7 0.8 7.0 1.5 1.4 1.0 1.1 6.2 18.4 3.8 1.4 2.5 GSD-27 0.5 8.8 11.8 0.4 5.8 0.1 0.4 2.1 3.1 3.6 0.2 0.1 0.5 0.9 1.4 4.5 8.9 0.9 2.3 GSD-29 0.2 2.9 0.5 0.3 0.2 0.9 0.5 2.7 17.1 4.9 0.5 0.1 0.1 0.2 14.8 21.7 12.7 1.6 9.3 GSD-30 0.6 3.3 1.5 0.4 0.9 1.8 0.3 1.9 1.6 1.0 0.1 0.2 0.1 0.6 0.5 0.8 5.2 0.6 0.6 GSD-32 3.5 42.5 12.5 2.2 1.6 10.4 2.6 7.5 0.5 0.7 1.7 1.6 1.1 1.4 3.6 8.7 8.5 1.7 4.7 是否合格 — — 是 — 是 是 是 — 是 — — — — — — 是 — 是 — 表 7 《农用地土壤污染状况详查质量保证与质量控制技术规定》测试正确度允许范围
Table 7. Allowable range of test correctness of The Soil contamination of agricultural land detailed investigation of quality assurance and quality control technology regulations
元素
Elements含量范围/(mg·kg−1)
Content range相对误差/%
Relative error含量范围/(mg·kg−1)
Content range相对误差/%
Relative error含量范围/(mg·kg−1)
Content range相对误差/%
Relative errorAs <10 ±30 10—20 ±20 >20 ±15 Cu <20 ±25 20—30 ±20 >30 ±15 Cr <50 ±25 50—90 ±20 >90 ±15 Ni <20 ±25 20—30 ±20 >30 ±15 Pb <20 ±30 20—40 ±25 >40 ±20 Zn <50 ±25 50—90 ±20 >90 ±15 Cd <0.1 ±40 0.1—0.4 ±35 >0.4 ±30 表 8 单波长激发ED-XRF测试结果的相对误差
Table 8. Relative error of single wavelength excitation ED-XRF test
相对误差/%
Relative errorCr Ni Cu Zn As Cd Pb GSS-1a 4.8 9.0 0.5 3.5 8.1 3.7 3.8 GSS-2a 30.4 7.0 6.4 2.7 10.0 15.9 21.4 GSS-8a 4.5 2.9 2.4 7.3 2.6 3.5 8.0 GSS-24 4.0 8.8 15.5 7.4 3.6 21.1 2.3 GSS-34 3.6 4.9 6.8 2.0 2.1 31.2 8.6 GSS-39 13.5 8.9 8.2 3.0 11.5 14.7 9.5 GSS-40 3.6 8.5 5.2 1.4 3.5 11.6 8.0 GSS-50 11.4 6.9 8.6 0.3 19.6 3.7 0.4 GSS-60 17.3 9.0 6.2 2.8 3.7 1.4 4.9 GSS-63 6.6 4.0 3.6 0.3 8.3 11.2 2.2 GSD-19 2.4 6.6 10.7 3.3 52.9 14.8 3.6 GSD-26 31.6 3.4 11.5 0.2 4.6 1.9 3.8 GSD-27 1.1 1.1 3.7 3.6 9.7 7.3 4.0 GSD-29 2.7 1.9 3.7 0.5 74.5 11.2 29.9 GSD-30 12.3 6.5 4.8 3.0 9.1 0.3 6.5 GSD-32 33.1 2.7 5.5 1.1 7.4 2.1 6.7 GSD-13 8.0 7.8 18.7 8.6 26.4 10.1 0.0 表 9 单波长激发能散ED-XRF测试结果正确度判定结果
Table 9. Determination of the correctness of single wavelength excitation ED-XRF test
元素Elements Cr Ni Cu Zn As Cd Pb GSS-1a 1 1 1 1 1 1 1 GSS-2a 0 1 1 1 1 1 1 GSS-8a 1 1 1 1 1 1 1 GSS-24 1 1 1 1 1 1 1 GSS-34 1 1 1 1 1 1 1 GSS-39 1 1 1 1 1 1 1 GSS-40 1 1 1 1 1 1 1 GSS-50 1 1 1 1 1 1 1 GSS-60 1 1 1 1 1 1 1 GSS-63 1 1 1 1 1 1 1 GSD-19 1 1 1 1 0 1 1 GSD-26 0 1 1 1 1 1 1 GSD-27 1 1 1 1 1 1 1 GSD-29 1 1 1 1 0 1 0 GSD-30 1 1 1 1 1 1 1 GSD-32 0 1 1 1 1 1 1 GSD-13 1 1 0 1 0 1 1 注:正确度是否在允许范围内判断时,1表示在范围内,0表示不在范围. -
[1] 国家市场监督管理总局、中国国家标准化管理委员会. 煤灰中硅、铝、铁、钙、镁、钠、钾、磷、钛、锰、钡、锶的测定 X射线荧光光谱法: GB/T 37673—2019[S]. 北京: 中国标准出版社, 2019. Standardization Administration of the People’s Republic of China. Determination of silicon, aluminum, iron, calcium, magnesium, sodium, potassium, phosphorus, titanium, Manganese, strontium and Barium in coal ash—X-ray fluorescence spectrometric method: GB/T 37673—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
[2] 国家粮食局. 粮油检验 稻谷中镉含量快速测定 X射线荧光光谱法: LS/T 6115—2016[S]. 北京: 中国标准出版社, 2016. State Grain Administration of the People’s Republic of China. Inspection of grain and oils—Rapid determination of cadmium in rice—X-ray fluorescence spectrometry: LS/T 6115—2016[S]. Beijing: Standards Press of China, 2016(in Chinese).
[3] 国家市场监督管理总局, 国家标准化管理委员会. 冶金产品分析方法 X射线荧光光谱法通则: GB/T 16597—2019[S]. 北京: 中国标准出版社, 2019. Standardization Administration of the People’s Republic of China. Analytical methods of metallurgical products—General rule for X-ray fluorescence spectrometric methods: GB/T 16597—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
[4] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 首饰 贵金属含量的测定 X射线荧光光谱法: GB/T 18043—2013[S]. 北京: 中国标准出版社, 2014. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Jewellery—Determination of precious metal content—Method using X-Ray fluorescence spectrometry: GB/T 18043—2013[S]. Beijing: Standards Press of China, 2014(in Chinese).
[5] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 原油中硫含量的测定 能量色散X-射线荧光光谱法: GB/T 17606—2009[S]. 北京: 中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of sulfur in crude-oil by energy-dispersive X-ray fluorescence spectrometry: GB/T 17606—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
[6] 姜晨阳, 潘飞, 庄旭明, 等. 分散液液微萃取-能量色散X射线荧光光谱法测定环境水样中的痕量铜 [J]. 环境化学, 2017, 36(8): 1795-1801. doi: 10.7524/j.issn.0254-6108.2016122303 JIANG C Y, PAN F, ZHUANG X M, et al. Determination of trace copper in environmental water samples by dispersive liquid-liquid microextraction and energy dispersive X-ray fluorescence spectroscopy [J]. Environmental Chemistry, 2017, 36(8): 1795-1801(in Chinese). doi: 10.7524/j.issn.0254-6108.2016122303
[7] 李诚, 任利锋, 张泽华. 熔融法-X射线荧光光谱测定金红石矿石中18种主次量元素 [J]. 环境化学, 2021, 40(5): 1623-1627. LI C, REN L F, ZHANG Z H. Determination of 18 elements in rutile ore by XRF of Fusion Sample Preparation Technique [J]. Environmental Chemistry, 2021, 40(5): 1623-1627(in Chinese).
[8] 庄知佳, 英世明, 茅力, 等. 环境中重金属分析检测研究进展 [J]. 贵州师范大学学报(自然科学版), 2021, 39(6): 83-90. doi: 10.16614/j.gznuj.zrb.2021.06.015 ZHUANG Z J, YING S M, MAO L, et al. Recent development on analysis and detection of heavy metals in environment [J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(6): 83-90(in Chinese). doi: 10.16614/j.gznuj.zrb.2021.06.015
[9] ZHAO W Z, LU B, YU J B, et al. Determination of sulfur in soils and stream sediments by wavelength dispersive X-ray fluorescence spectrometry [J]. Microchemical Journal, 2020, 156(9): 104840. [10] 中华人民共和国环境保护部. 土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法: HJ 780—2015[S]. 北京: 中国环境科学出版社, 2016. Ministry of Environmental Protection of the People’s Republic of China. Soil and sediment-Determination of inorganic element - Wavelength dispersive X-ray fluorescence spectrometry: HJ 780—2015[S]. Beijing: China Environment Science Press, 2016(in Chinese).
[11] 中华人民共和国环境保护部. 环境空气 颗粒物中机元素的测定 波长色散X射线荧光光谱法: HJ 830—2017[S]. 北京: 中国环境出版社, 2017. Ministry of Environmental Protection of the People’s Republic of China. Ambient air-Determination of inorganic elements in ambient particle matter- Wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) method: HJ 830—2017[S]. Beijing: China Environmental Science Press, 2017(in Chinese).
[12] 中华人民共和国生态环境部. 固体废物 无机元素的测定 波长色散X射线荧光光谱法: HJ 1211—2021[S]. 北京: 中国环境科学出版社, 2022. Soild waste—Determination of inorganic elements—Wavelength dispersive X-ray fluorescence spectrometry: HJ 1211—2021[S]. Beijing: China Environmental Science Press, 2022 (in Chinese).
[13] 彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究 [J]. 农业环境科学学报, 2018, 37(7): 1386-1395. doi: 10.11654/jaes.2018-0568 PENG H L, YANG Z S, ZHAO J, et al. Use of high-precision portable X-ray fluorescence spectrometer on the heavy metal rapid determination for contaminated agricultural soils [J]. Journal of Agro-Environment Science, 2018, 37(7): 1386-1395(in Chinese). doi: 10.11654/jaes.2018-0568
[14] 殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素 [J]. 冶金分析, 2018, 38(4): 1-10. YIN H M, DU Z Y, LI Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model [J]. Metallurgical Analysis, 2018, 38(4): 1-10(in Chinese).
[15] 邢小茹, 马小爽, 田文, 等. 实验室间比对能力验证中的两种稳健统计技术探讨 [J]. 中国环境监测, 2011, 27(4): 4-8. doi: 10.3969/j.issn.1002-6002.2011.04.002 XING X R, MA X S, TIAN W, et al. Two robust statistic techniques in proficiency testing by interlaboratory comparisons [J]. Environmental Monitoring in China, 2011, 27(4): 4-8(in Chinese). doi: 10.3969/j.issn.1002-6002.2011.04.002
[16] 高志帆, 田碧珊, 陈泽武, 等. 一种高一致性XRF粉末分析样品杯装置: CN211669113U[P]. 2020-10-13. [17] 国家认证认可监督管理委员会. 化学检测领域测量不确定度评定 利用质量控制和方法确认数据评定不确定度: RB/T 141—2018[S]. 北京: 中国标准出版社, 2018. Evaluation of measurement uncertainty in the chemical testing field—Applying quality control and method validation data: RB/T 141—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[18] 李玉武, 任立军, 闫岩, 等. 方法标准验证实验数据中离群值的识别 [J]. 中国环境监测, 2017, 33(5): 167-175. LI Y W, REN L J, YAN Y, et al. Study on detection of outliers in inter-laboratory collaboration experimental data for validation of analysis method standard [J]. Environmental Monitoring in China, 2017, 33(5): 167-175(in Chinese).
[19] 包生祥. X射线荧光光谱分析检出限计算公式 [J]. 光谱学与光谱分析, 1992, 12(4): 93-96. BAO S X. Calculation formulas of detection limit in X-ray fluorescent spectrometry [J]. Spectroscopy and Spectral Analysis, 1992, 12(4): 93-96(in Chinese).
[20] 中华人民共和国生态环境部. 环境监测分析方法标准制订技术导则: HJ 168—2020[S]. 北京: 中国环境科学出版社, 2020. Technical guideline for the development of environmental monitoring analytical method standards: HJ 168—2020[S]. Beijing: China Environment Science Press, 2020 (in Chinese).
[21] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2019. Ministry of Ecology and Environment, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: Standards Press of China, 2019 (in Chinese).
[22] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2019. Ministry of Ecology and Environment, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: Standards Press of China, 2019 (in Chinese).
[23] 国家环境保护总局. 食用农产品产地环境质量评价标准: HJ/T 332—2006[S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Administration of the People’s Republic of China. Farland environmental quality evaluation standards for edible agricultural products: HJ/T 332—2006[S]. Beijing: China Environment Science Press, 2007(in Chinese).
[24] 国家环境保护总局. 温室蔬菜产地环境质量评价标准: HJ/T 333—2006[S]. 北京: 中国环境科学出版社, 2007. State Environmental Protection Administration of the People’s Republic of China. Environmental quality evaluation standard for farmland of greenhouse vegetables production: HJ/T 333—2006[S]. Beijing: China Environment Science Press, 2007(in Chinese).
[25] 国家质量监督检验检疫总局. 海洋沉积物质量: GB 18668—2002[S]. 北京: 中国标准出版社, 2004. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Marine sediment quality: GB 18668—2002[S]. Beijing: Standards Press of China, 2004(in Chinese).
[26] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究 [J]. 环境科学, 1991, 12(4): 12-19, 94. doi: 10.3321/j.issn:0250-3301.1991.04.015 WEI F S, CHEN J S, WU Y Y, et al. Study on the background contents on 61 elements of soils in China [J]. Environmental Science, 1991, 12(4): 12-19, 94(in Chinese). doi: 10.3321/j.issn:0250-3301.1991.04.015
[27] 国家环境保护总局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国环境出版社, 2004. China General Environmental Monitoring Station. Technical specification for soil environmental monitoring: HJ/T 166—2004[S]. Beijing: China Environmental Press, 2004 (in Chinese).
[28] 生态环境部办公厅. 农用地土壤污染状况详查质量保证与质量控制技术规定[S]. 环办土壤函〔2017〕1332号. 北京: 2017. General Office of the Ministry of Ecology and Environment. Technical Provisions on Quality Assurance and Quality Control for Detailed Survey of Soil Contamination on Agricultural Land[S]. Environmental Affairs Office Soil Letter [2017] No. 1332. Beijing: 2017 (in Chinese).