-
众所周知,能源是国家的重要战略资源,在国民经济和社会发展中发挥着十分重要的促进和保障作用[1]。近年来,交通运输业的迅速发展,消耗大量的石油等化石能源,产生严重的环境污染[2]。而纯电动汽车在车辆运行过程中摆脱了对石油资源的依赖[3],为了减少交通部门的二氧化碳排放和其他环境污染物的排放,中国政府正在大力发展电动汽车(BEVs)[4-5]。
在这种趋势下,作为电动汽车主要驱动力的锂离子电池(LiBs) ,主要由正极材料、负极材料、电解液和隔膜组成[6]。由于其循环寿命长、能量和功率密度高,得到了广泛的应用[7-9]。然而,被称为“零排放”的电动汽车,其核心部件锂离子动力电池的生产、使用以及回收过程伴随着大量污染物的产生,造成严重的环境问题[10-12]。为此,人们对电动汽车的环境影响进行了大量的研究。邓叶林等[13]为了解未来电动汽车上锂离子电池的环境可持续性,建立一种新的生命周期评估(LCA)模型,对锂硫电池组的环境影响进行综合评估。孙鑫等[14]评估并量化了乘用电动汽车锂离子动力电池的生命周期环境影响,以确定影响整体环境负担的关键阶段,并找到有效减轻这种负担的方法;近年来,研究热点为电池的回收阶段。例如,陈坤等[15]选择车用镍氢电池与锂离子电池为研究对象,以回收部分为评价阶段,建立了 LCA评价模型,计算、汇总动力电池回收阶段的能耗和排放清单,并对其进行分析、评价和对比。此外,使用硅纳米管阳极锂离子电池组的生命周期评估也逐渐兴起[16]。
在继可持续发展后,近年来“绿色发展”概念被频繁地应用在宏观领域[17]和微观层面[18]。针对电池绿色环保评价指标的影响,是国内鲜有人研究的一项新课题。本文建立了LCA综合环境体系,基于足迹家族、资源消耗和毒性损害指标,首次单独对磷酸铁锂 LFP、锰酸锂 LMO、三元材料 NMC 和锂金属材料 LMB等多个类型的锂离子电池组的生产阶段进行环境评价,并衡量电池组类别的优越程度。此外,还建立了无量纲环境特性指标,以评估电池组产生的综合环境影响。
车载锂离子动力电池组环境特性分析
Environmental characteristics of Lithium-ion battery pack in electric vehicles
-
摘要: 虽然电动汽车在行驶阶段不直接排放温室气体,但是车载锂离子动力电池组在生产阶段的环境影响不容忽视。本研究以11个不同的车载锂离子电池组作为研究对象,将环境特性指标引入动力电池组的综合环境评价领域。结合生命周期评价框架,总结出包含足迹家族类指标、资源耗竭类指标和毒性损害类指标的评价体系。采取灰色关联和熵权组合赋权法计算权重。详细分析了锂离子电池不同成分在生产阶段的综合环境影响。结果表明,对于综合环境评价中的足迹家族指标,FeS2SS电池组在碳足迹和生态足迹的环境潜值最小;对于资源耗竭指标,FeS2SS在酸化潜势、富营养化潜势和光化学氧化方面的环境潜值最小,而在非生物性耗竭和臭氧层损耗方面的潜值也较小;对于毒性损害指标,FeS2SS在人类非致癌毒性和生态毒性方面的潜值最小,其人类致癌毒性仅高于Li−S电池。对于环境特性指标,FeS2SS 电池组得分最高,表明其在生产阶段更为绿色环保。Abstract: Although electric vehicles do not directly emit greenhouse gases in the running stage on road, the environmental impact of on−board lithium−ion power battery pack in the production stage cannot be ignored. In this study, 11 different lithium−ion battery packs are taken as the case study object. We introduce the environmental characteristic index into the comprehensive environmental assessment field to assess the power battery packs. Combined with the Life Cycle Assessment framework, the index of footprint family, resource depletion and toxic damage are summarized in this research. The combined weighting method of grey correlation and entropy weight is applied. The comprehensive environmental impact of components of lithium−ion batteries in the production stage is analyzed in details. The results show that, for the footprint family index in the comprehensive environmental assessment, FeS2SS battery pack has the lowest environmental potential in carbon footprint and ecological footprint. As for the resource depletion index, FeS2SS battery pack has the lowest values in acidification potential, eutrophication potential and photochemical oxidation formation potential. At the same time, it also has relatively low values in abiotic depletion potential and ozone depletion potential. As for toxicity damage index, the potential values of FeS2SS are the lowest in ecotoxicity and human toxicity non−cancer, and its human toxicity cancer is only higher than that of Li−S battery. For the environmental characteristic index, the FeS2SS battery pack has the highest score, indicating that it is more green and environmental protection in the production stage.
-
表 1 评价对象及其组分描述
Table 1. Evaluation objects and their contents
电池组类别
Battery pack category名称
Designation缩写
Abbreviation组分描述
ContentsLFP 磷酸铁锂电池 LFPx−C 磷酸铁锂是正极材料,石墨是负极材料;正极材料比例64.1%。 磷酸铁锂电池 LFPy−C 磷酸铁锂是正极材料,石墨是负极材料;正极材料比例28.4%。 LMO 锰酸锂电池 LMO−C 锰酸锂为正极材料,石墨为负极材料。 锰酸锂和三元材料
复合锂离子电池LMO/
NMC−C锰酸锂和三元材料为正极材料(LMO 和 NMC 的质量比为 1∶1),石墨为负极材料。 NMC 三元电池 NMC−C 镍钴锰为正极材料,石墨为负极材料。 三元电池 NMC111−C 镍钴锰为正极材料,石墨为负极材料。镍钴锰摩尔比 1∶1∶1。 三元电池 NMC442−C 镍钴锰为正极材料,石墨为负极材料。镍钴锰摩尔比 4∶2∶4。 三元电池 NMC−SiNT 镍钴锰为正极材料,硅纳米管为负极材料。 三元电池 NMC−SiNW 镍钴锰为正极材料,硅纳米线为负极材料。 LMB 锂硫电池 Li−S 金属锂为正极材料,单质硫为负极材料 硫化铁固态电池 FeS2SS 硫化铁为正极材料,金属锂为负极材料,硫化锂
和五硫化二磷为固相电解液材料。 -
[1] 汪祺. 基于生命周期评价的锂电正极材料对比分析[D]. 广州: 华南理工大学, 2012. WANG Q. Cathodes materials of lithium ion battery comparative analysis based on life cycle assessment[D]. Guangzhou: South China University of Technology, 2012(in Chinese).
[2] IOAKIMIDIS C, MURILLO−MARRODÁN A, BAGHERI A, et al. Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios [J]. Sustainability, 2019, 11(9): 2527. doi: 10.3390/su11092527 [3] ELLINGSEN L A W, SINGH B, STRØMMAN A H. The size and range effect: Lifecycle greenhouse gas emissions of electric vehicles [J]. Environmental Research Letters, 2016, 11(5): 054010. doi: 10.1088/1748-9326/11/5/054010 [4] RAUGEI M, WINFIELD P. Prospective LCA of the production and EoL recycling of a novel type of Li−ion battery for electric vehicles [J]. Journal of Cleaner Production, 2019, 213: 926-932. doi: 10.1016/j.jclepro.2018.12.237 [5] RUPP M, HANDSCHUH N, RIEKE C, et al. Contribution of country−specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany [J]. Applied Energy, 2019, 237: 618-634. doi: 10.1016/j.apenergy.2019.01.059 [6] 王元飞, 曾祥程. 电感耦合等离子体光谱仪测定锂电池三元材料中硫的干扰分析 [J]. 环境化学, 2020, 39(11): 3264-3266. WANG Y F, ZENG X C. Interference analysis of sulfur determination in ternary materials of lithium battery by ICP−OES [J]. Environmental Chemistry, 2020, 39(11): 3264-3266(in Chinese).
[7] OPITZ A, BADAMI P, SHEN L, et al. Can Li−Ion batteries be the Panacea for automotive applications? [J]. Renewable and Sustainable Energy Reviews, 2017, 68: 685-692. doi: 10.1016/j.rser.2016.10.019 [8] ALFARO−ALGABA M, RAMIREZ F J. Techno−economic and environmental disassembly planning of lithium−ion electric vehicle battery packs for remanufacturing [J]. Resources, Conservation and Recycling, 2020, 154: 104461. doi: 10.1016/j.resconrec.2019.104461 [9] WANG S Y, YU J. A comparative life cycle assessment on lithium−ion battery: Case study on electric vehicle battery in China considering battery evolution [J]. Waste Management & Research:the Journal for a Sustainable Circular Economy, 2021, 39(1): 156-164. [10] 弓原, 郁亚娟, 黄凯, 等. 典型锂离子电池材料的足迹家族分析 [J]. 环境化学, 2016, 35(6): 1103-1108. doi: 10.7524/j.issn.0254-6108.2016.06.2015092802 GONG Y, YU Y J, HUANG K, et al. Footprint family analysis of typical lithium−ion battery materials [J]. Environmental Chemistry, 2016, 35(6): 1103-1108(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015092802
[11] 程冬冬. 基于绿色发展理念的锂离子电池生命周期环境效益研究[D]. 广州: 广东工业大学, 2019. CHENG D D. Study on environmental benefits of lithium-ion batteries in life cycle based on green development concept[D]. Guangzhou: Guangdong University of Technology, 2019(in Chinese).
[12] HAWKINS T R, SINGH B, MAJEAU-BETTEZ G, et al. Comparative environmental life cycle assessment of conventional and electric vehicles [J]. Journal of Industrial Ecology, 2013, 17(1): 53-64. doi: 10.1111/j.1530-9290.2012.00532.x [13] DENG Y L, LI J Y, LI T H, et al. Life cycle assessment of lithium sulfur battery for electric vehicles [J]. Journal of Power Sources, 2017, 343: 284-295. doi: 10.1016/j.jpowsour.2017.01.036 [14] SUN X, LUO X L, ZHANG Z, et al. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles [J]. Journal of Cleaner Production, 2020, 273: 123006. doi: 10.1016/j.jclepro.2020.123006 [15] 陈坤, 李君, 曲大为, 等. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(增刊1): 53-56. CHEN K, LI J, QU D W, et al. Study of environmental impact of power battery in recycling stage based on LCA assessment model[J]. Materials Reports, 2019, 33(Sup 1): 53-56(in Chinese).
[16] DENG Y L, MA L L, LI T H, et al. Life cycle assessment of silicon−nanotube−based lithium ion battery for electric vehicles [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 599-610. [17] WU H H, YU Y J, LI S S, et al. An empirical study of the assessment of green development in Beijing, China: Considering resource depletion, environmental damage and ecological benefits simultaneously [J]. Sustainability, 2018, 10(3): 719. doi: 10.3390/su10030719 [18] WU H H, GONG Y, YU Y J, et al. Superior “green” electrode materials for secondary batteries: Through the footprint family indicators to analyze their environmental friendliness [J]. Environmental Science and Pollution Research, 2019, 26(36): 36538-36557. doi: 10.1007/s11356-019-06865-6 [19] LIANG Y H, SU J, XI B D, et al. Life cycle assessment of lithium-ion batteries for greenhouse gas emissions [J]. Resources, Conservation and Recycling, 2017, 117: 285-293. doi: 10.1016/j.resconrec.2016.08.028 [20] YU Y J, WANG X, WANG D, et al. Environmental characteristics comparison of Li−ion batteries and Ni−MH batteries under the uncertainty of cycle performance [J]. Journal of Hazardous Materials, 2012, 229/230: 455-460. doi: 10.1016/j.jhazmat.2012.06.017 [21] MAJEAU−BETTEZ G, HAWKINS T R, STRØMMAN A H. Life cycle environmental assessment of lithium−ion and nickel metal hydride batteries for plug−in hybrid and battery electric vehicles [J]. Environmental Science & Technology, 2011, 45(10): 4548-4554. [22] YU A, WEI Y Q, CHEN W W, et al. Life cycle environmental impacts and carbon emissions: A case study of electric and gasoline vehicles in China [J]. Transportation Research Part D:Transport and Environment, 2018, 65: 409-420. doi: 10.1016/j.trd.2018.09.009 [23] ELLINGSEN L A W, MAJEAU−BETTEZ G, SINGH B, et al. Life cycle assessment of a lithium−ion battery vehicle pack [J]. Journal of Industrial Ecology, 2014, 18(1): 113-124. doi: 10.1111/jiec.12072 [24] LI B B, GAO X F, LI J Y, et al. Life cycle environmental impact of high−capacity lithium ion battery with silicon nanowires anode for electric vehicles [J]. Environmental Science & Technology, 2014, 48(5): 3047-3055. [25] NOTTER D A, GAUCH M, WIDMER R, et al. Contribution of Li−ion batteries to the environmental impact of electric vehicles [J]. Environmental Science & Technology, 2010, 44(17): 6550-6556. [26] CUSENZA M A, BOBBA S, ARDENTE F, et al. Energy and environmental assessment of a traction lithium−ion battery pack for plug-in hybrid electric vehicles [J]. Journal of Cleaner Production, 2019, 215: 634-649. doi: 10.1016/j.jclepro.2019.01.056 [27] KESHAVARZMOHAMMADIAN A, COOK S M, MILFORD J B. Cradle−to−gate environmental impacts of sulfur-based solid−state lithium batteries for electric vehicle applications [J]. Journal of Cleaner Production, 2018, 202: 770-778. doi: 10.1016/j.jclepro.2018.08.168