-
贻贝是一种常见的海洋生物,它们可以强力附着在水体环境中有机或无机基底材料的表面[1]。研究发现,贻贝黏液中的黏附蛋白(mussel adhesive proteins,MAPs)是贻贝能够迅速在潮湿环境中附着在各种材料表面的主要成分[2]。而黏附蛋白中起到黏附作用的关键物质是3,4-二羟基苯丙氨酸(3,4-dihydroxylphenylalanine,L-多巴或L-DOPA)和含赖氨酸蛋白质[3]。2007年,Lee等的研究团队在表面化学的研究中发现,多巴胺(dopamine,DA)在含氧碱性水溶液中会发生自聚反应,并利用共价和非共价键作用在材料表面生成具有极强黏附性的聚多巴胺包覆层,该涂层拓宽了材料表面功能化的新途径[4]。聚多巴胺包覆层拥有大量的邻苯二酚和胺基等功能基团,为吸附结合目标物提供了大量活性位点。目前,聚多巴胺功能材料已广泛运用在生产生活的多个领域[5]。在环境护方面,聚多巴胺功能材料凭借着优异的吸附催化性能,成为净化去除水体中重金属离子和有机污染物的研究热点[6-7]。
聚多巴胺功能材料在去除水中重金属和有机物方面的应用
Applications of polydopamine-functional materials in the removal of heavy metals and organics from water
-
摘要: 多巴胺又名4-(2-乙氨基)-苯-1,2-二酚,类似于海洋生物贻贝分泌的强黏附性蛋白。在含氧的水溶液条件下,多巴胺可发生自聚反应生成聚多巴胺(PDA)。聚多巴胺具有强附着性,能够在材料表面形成聚多巴胺薄膜层。聚多巴胺层具有如邻苯二酚和胺基等官能团,能够实现复合材料的功能化。本文从聚多巴胺的自聚-附着机理入手,介绍了聚多巴胺功能材料在去除水中重金属与有机污染物方面的应用进展。Abstract: : Dopamine, also known as 4-(2-ethylamine)-phenyl-1, 2-diphenol, is similar to a strong adhesive protein secreted by Marine mussels. Under the condition of aqueous solution containing oxygen, dopamine can turn into polydopamine(PDA)by autopolymerization. Polydopamine has strong adhesion and can form a polydopamine film layer on the surface of the material. The polydopamine layer has functional groups such as catechol and amino groups, which can realize the functionalization of the composite. This article starts with the self-polymerization-adhesion mechanism of polydopamine, and introduces the application progress of polydopamine functional materials in the removal of heavy metals and organic pollutants in water.
-
Key words:
- polydopamine /
- functional material /
- heavy metal /
- organic pollutant
-
-
[1] SILVERMAN H G, ROBERTO F F. Understanding marine mussel adhesion [J]. Marine Biotechnology, 2007, 9(6): 661-681. doi: 10.1007/s10126-007-9053-x [2] WAITE J H. Nature's underwater adhesive specialist [J]. International Journal of Adhesion and Adhesives, 1987, 7(1): 9-14. doi: 10.1016/0143-7496(87)90048-0 [3] WAITE J H. Surface chemistry-mussel power [J]. Nature Materials, 2008, 7(1): 8-9. doi: 10.1038/nmat2087 [4] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-in-spired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241 [5] 任悦. 聚多巴胺在功能材料中的应用研究及发展前景 [J]. 河南科技, 2015(5): 104-106. REN Y. Application research and development prospects of polydopamine in functional materials [J]. Journal of Henan Science and Technology, 2015(5): 104-106(in Chinese).
[6] NEMATOLLAHZADEH A, SERAJ S, MIRZAYI B. Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal [J]. Chemical Engineering Journal, 2015, 277: 21-29. doi: 10.1016/j.cej.2015.04.135 [7] MA S D, FENG J, QIN W J, et al. CuFe2O4@PDA magnetic nanomaterials with a core-shell structure: Synthesis and catalytic application in the degradation of methylene blue in water [J]. RSC Advances, 2015, 5(66): 53514-53523. doi: 10.1039/C5RA09114D [8] CHEN H, ZHANG S Q, LIU M, et al. Application of dopamine functional materials in water pollution control [J]. Progress in Chemistry, 2019, 31(4): 571-579. [9] POEWE W, ANTONINI A, ZIJLMANS J, et al. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong [J]. Clinical Interventions in Ageing, 2010, 5: 229-238. [10] BARCLAY T G, HEGAB H M, CLARKE S R, et al. Versatile surface modification using polydopamine and related polycatecholamines: Chemistry, structure, and applications [J]. Advanced Materials Interfaces, 2017, 4(19): 1601192. doi: 10.1002/admi.201601192 [11] RYU J H, MESSERSMITH P B, LEE H. Polydopamine surface chemistry: A decade of discovery [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7523-7540. [12] LEE B P, DALSIN J L, MESSERSMITH P B. Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels [J]. Biomacromolecules, 2002, 3(5): 1038-1047. doi: 10.1021/bm025546n [13] 陈丽娟, 汪君, 闫叶寒, 等. 聚多巴胺涂层的研究与应用进展 [J]. 高分子通报, 2018(7): 42-49. CHEN L J, WANG J, YAN Y H, et al. The progress of research and application of polydopamine coatings [J]. Chinese Polymer Bulletin, 2018(7): 42-49(in Chinese).
[14] BERNSMANN F, BALL V, ADDIEGO F, et al. Dopamine−Melanin film deposition depends on the used oxidant and buffer solution [J]. Langmuir, 2011, 27(6): 2819-2825. doi: 10.1021/la104981s [15] CHEN C T, MARTIN-MARTINEZ F J, JUNG G S, et al. Polydopamine and eumelanin molecular structures investigated with ab initio calculations [J]. Chemical Science, 2017, 8(2): 1631-1641. doi: 10.1039/C6SC04692D [16] DREYER D R, MILLER D J, FREEMAN B D, et al. Elucidating the structure of poly(dopamine) [J]. Langmuir, 2012, 28(15): 6428-6435. doi: 10.1021/la204831b [17] HONG S, NA Y S, CHOI S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation [J]. Advanced Functional Materials, 2012, 22(22): 4711-4717. doi: 10.1002/adfm.201201156 [18] 张庆瑞, 李奕璇, 陈贺, 等. 多巴胺功能材料在环境保护中的应用进展 [J]. 燕山大学学报, 2018, 42(1): 1-10. ZHANG Q R, LI Y X, CHEN H, et al. Application and development of polydopamine functional materials with its usage on environmental protection [J]. Journal of Yanshan University, 2018, 42(1): 1-10(in Chinese).
[19] WAITE J H, QIN X X. Polyphosphoprotein from the adhesive pads of Mytilus edulis [J]. Biochemistry, 2001, 40(9): 2887-2893. doi: 10.1021/bi002718x [20] LEE H, SCHERER N F, MESSERSMITH P B. Single-molecule mechanics of mussel adhesion [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12999-13003. doi: 10.1073/pnas.0605552103 [21] ZHANG C, GONG L, XIANG L, et al. Deposition and adhesion of polydopamine on the surfaces of varying wettability [J]. ACS Applied Materials & Interfaces, 2017, 9(36): 30943-30950. [22] LIM C, HUANG J, KIM S, et al. Nanomechanics of poly(catecholamine) coatings in aqueous solutions [J]. Angewandte Chemie (International Ed. in English), 2016, 55(10): 3342-3346. doi: 10.1002/anie.201510319 [23] BALL V, del FRARI D, TONIAZZO V, et al. Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism [J]. Journal of Colloid and Interface Science, 2012, 386(1): 366-372. doi: 10.1016/j.jcis.2012.07.030 [24] WEI Q, ZHANG F L, LI J, et al. Oxidant-induced dopamine polymerization for multifunctional coatings [J]. Polymer Chemistry, 2010, 1(9): 1430-1433. doi: 10.1039/c0py00215a [25] 贺武, 帅韬, 高明阳, 等. 聚多巴胺形成的机理及影响因素 [J]. 江西化工, 2017(4): 4-10. WU H, TAO S, GAO M Y, et al. Mechanism and influencing factors for the formation of polydopamine [J]. Jiangxi Chemical Industry, 2017(4): 4-10(in Chinese).
[26] 孙华杰. 我国水污染的主要成因及防治对策 [J]. 环境与发展, 2019, 31(9): 57-58. SUN H J. The main causes of water pollution in China and its prevention and control measures [J]. Environment and Development, 2019, 31(9): 57-58(in Chinese).
[27] ZHANG X Y, HUANG Q, DENG F J, et al. Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects [J]. Applied Materials Today, 2017, 7: 222-238. doi: 10.1016/j.apmt.2017.04.001 [28] AZIMI A, AZARI A, REZAKAZEMI M, et al. Removal of heavy metals from industrial wastewaters: A review [J]. Chembioeng Reviews, 2017, 4(1): 37-59. doi: 10.1002/cben.201600010 [29] 徐又一, 蒋金泓, 朱利平, 等. 多巴胺的自聚-附着行为与膜表面功能化 [J]. 膜科学与技术, 2011, 31(3): 32-38. XU Y Y, JIANG J H, ZHU L P, et al. Self-polymerization-adhesion behavior of dopamine and surface functionalization of membranes [J]. Membrane Science and Technology, 2011, 31(3): 32-38(in Chinese).
[30] 马玉荣, 周陆跃. 聚多巴胺包覆磁性纳米材料吸附去除模拟废水中的铅离子 [J]. 环境化学, 2018, 37(4): 817-823. MA Y R, ZHOU L Y. Adsorption and removal of lead from simulated waste water using polydopamine modified magnetic nanoparticles [J]. Environmental Chemistry, 2018, 37(4): 817-823(in Chinese).
[31] AHMAD S Z N, SALLEH N W S, ISMAIL A F, et al. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms [J]. Chemosphere, 2020, 248: 126008. doi: 10.1016/j.chemosphere.2020.126008 [32] 朱武青, 全海燕, 彭叔森, 等. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展 [J]. 材料导报, 2020, 34(11): 9-21. ZHU W Q, QUAN H Y, PENG S S, et al. Recent advances in mussel-inspired polydopamine-modified graphene-based functional materials and their applications in waterborne environmental remediation [J]. Materials Reports, 2020, 34(11): 9-21(in Chinese).
[33] DONG Z H, WANG D, LIU X, et al. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity [J]. Journal of Materials Chemistry A, 2014, 2(14): 5034-5040. doi: 10.1039/C3TA14751G [34] MEHDINIA A, HEYDARI S, JABBARI A. Synthesis and characterization of reduced graphene oxide-Fe3O4@polydopamine and application for adsorption of lead ions: Isotherm and kinetic studies [J]. Materials Chemistry and Physics, 2020, 239: 121964. doi: 10.1016/j.matchemphys.2019.121964 [35] 管东红, 管映兵, 杨帆. 功能化碳纳米管材料在含重金属处理废水中的应用研究进展 [J]. 水处理技术, 2019, 45(10): 1-6,29. GUAN D H, GUAN Y B, YANG F. Research progress on functionalized carbon nanotube materials in heavy metal waste-water treatment [J]. Technology of Water Treatment, 2019, 45(10): 1-6,29(in Chinese).
[36] 刘杏红, 谢磊, 罗德纹. 聚多巴胺包覆的磁性碳纳米管对水中Ni2+的吸附作用 [J]. 应用化工, 2020, 49(7): 1648-1653. LIU X H, XIE L, LUO D W. Adsorption of Ni2+ from water by polydopamine-modified magnetic carbon nanotubes [J]. Applied Chemical Industry, 2020, 49(7): 1648-1653(in Chinese).
[37] Yang Dongxu, Wang Xiangxue, Wang Ning, et al. In-situ growth of hierarchical layered double hydroxide on polydopamine-encapsulated hollow Fe3O4 microspheres for efficient removal and recovery of U(Ⅵ)[J]. Journal of Cleaner Production , 2018, 172(pta2): 2033-2044. [38] ZENG Q K, QI X L, ZHANG M Y, et al. Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels [J]. International Journal of Biological Macromolecules, 2020, 145: 1049-1058. doi: 10.1016/j.ijbiomac.2019.09.197 [39] LI T, LIU X J, LI L Z, et al. Polydopamine-functionalized graphene oxide compounded with polyvinyl alcohol/chitosan hydrogels on the recyclable adsorption of cu(II), Pb(II) and cd(II) from aqueous solution [J]. Journal of Polymer Research, 2019, 26(12): 1-12. [40] WANG H C, WANG Z W, YUE R R, et al. Rapid preparation of adsorbent based on mussel inspired chemistry and simultaneous removal of heavy metal ions in water [J]. Chemical Engineering Journal, 2020, 383: 123107. doi: 10.1016/j.cej.2019.123107 [41] 王静涛. 水中有机污染物对人体健康的潜在危害及防控措施 [J]. 中国高新技术企业, 2014(20): 71-72. WANG J T. Potential impairments of organic pollutants in water on human health and its prevention and control measures [J]. China High-Tech Enterprises, 2014(20): 71-72(in Chinese).
[42] LIU Y L, AI K L, LU L H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields [J]. Chemical Reviews, 2014, 114(9): 5057-5115. doi: 10.1021/cr400407a [43] ZHANG S X, ZHANG Y Y, BI G M, et al. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal [J]. Journal of Hazardous Materials, 2014, 270: 27-34. doi: 10.1016/j.jhazmat.2014.01.039 [44] LI X L, LU H J, ZHANG Y, et al. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal [J]. Applied Surface Science, 2016, 389: 567-577. doi: 10.1016/j.apsusc.2016.07.162 [45] CHEN H F, ZHOU Y, WANG J Y, et al. Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2 [J]. Journal of Hazardous Materials, 2020, 389: 121897. doi: 10.1016/j.jhazmat.2019.121897 [46] 刘怡虹, 周廷尧, 胡蓉, 等. 多巴胺修饰石墨烯气凝胶制备及染料吸附性能研究 [J]. 工业水处理, 2018, 38(10): 67-70. doi: 10.11894/1005-829x.2018.38(10).067 LIU Y H, ZHOU T Y, HU R, et al. Synthesis of dopamine-modified graphene aerogels and its adsorption capability for dyes [J]. Industrial Water Treatment, 2018, 38(10): 67-70(in Chinese). doi: 10.11894/1005-829x.2018.38(10).067
[47] FU J W, CHEN Z H, WANG M H, et al. Adsorption of methylene blue by a high-efficiency adsorbent(polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis [J]. Chemical Engineering Journal, 2015, 259: 53-61. doi: 10.1016/j.cej.2014.07.101 [48] 何雪梅, 宋磊, 冷炎, 等. 多巴胺/季铵盐阳离子功能化羊毛织物吸附染料性能 [J]. 纺织科学与工程学报, 2019, 36(1): 50-54. doi: 10.3969/j.issn.2096-5184.2019.01.010 HE X M, SONG L, LENG Y, et al. Adsorption dye property of functional wool fabric modified by dopamine/quaternary ammonium salt cations [J]. Journal of Textile Science and Engineering, 2019, 36(1): 50-54(in Chinese). doi: 10.3969/j.issn.2096-5184.2019.01.010
[49] ZHAN Y F, YANG L, LAN J W, et al. Mussel-inspired polydopamine decorated pomelo peel as a durable biosorbent for adsorption of cationic dyes [J]. Cellulose, 2021, 28(1): 453-470. doi: 10.1007/s10570-020-03541-8 [50] NIU H F, LI J B, WANG X F, et al. Au-Fe3O4 decorated polydopamine hollow nanoparticles as high performance catalysts with magnetic responsive properties [J]. Nanotechnology, 2020, 31(21): 215606. doi: 10.1088/1361-6528/ab73ba [51] MASSARO M, CAMPISCIANO V, IBORRA C V, et al. New mussel inspired polydopamine-like silica-based material for dye adsorption [J]. Nanomaterials, 2020, 10(7): 1416. doi: 10.3390/nano10071416 [52] 张娇娇, 左晓飞, 覃小红, 等. 聚多巴胺涂覆改性聚丙烯腈纳米纤维膜及其油水分离性能 [J]. 东华大学学报(自然科学版), 2018, 44(1): 10-17,32. ZHANG J J, ZUO X F, QIN X H, et al. Properties of polydopamine-coated electrospun polyacylonitrile membrane in oil/water separation [J]. Journal of Donghua University (Natural Science Edition), 2018, 44(1): 10-17,32(in Chinese).