-
药品及个人护理用品(pharmaceutical and personal care products,PPCPs)是水环境普遍存在的新型污染物,其中药品包括抗生素、激素、止痛药、消炎药、β-阻滞剂等。个人护理产品包括防腐剂、杀菌剂/消毒剂、驱虫剂、防晒剂、香水等[1-2]。污水处理厂出水排放是PPCPs进入水环境的主要途径之一[3-4]。尽管污水中PPCPs浓度不高(ng L−1—μg L−1),但PPCPs长期暴露会对生态环境[5]和人体健康[6-7]产生不利影响,因此提高污水中PPCPs的去除效果是急需解决的问题。
活性污泥和生物膜法是最常用的两种污水处理工艺,主要为去除碳氮磷等常规水污染物设计,无法完全去除PPCPs等新型污染物。污水处理过程PPCPs的迁移转化机制复杂[8],且去除效果与污水处理工艺条件、运行参数、水质参数等多种因素密切相关[9-10],采用实验优化难以获取最佳去除效果的参数组合[11]。数学模型是预测并精准调控复杂条件下污染物去除规律的重要手段。国际水协会(Intemational Water Association,IWA)于1986年起相继推出活性污泥1、2、2D、3号模型和生物膜一维、二维、三维模型[12-17],这两种工艺模型利用矩阵表达系统中涉及的关键组分和过程,通过定量描述与物质降解、微生物生长等过程相关的动力学和化学计量系数,解释系统内部的各个主要活动,并能外推出其他实验条件下的过程,进行更有效的实验设计。活性污泥和生物膜模型已广泛应用于预测碳氮磷等传统物质的去除。随着污水中PPCPs等新型污染物的不断增加及其潜在的不利影响,如何修改和扩展已有的活性污泥和生物膜模型以强化PPCPs在污水中的去除引起了国内外研究者们的广泛关注。Plósz等[18]提出可用于评价外源痕量物质去除的活性污泥模型(ASM-X),该模型仅包括液相中母体化合物和可逆转化化合物以及固相中的吸附化合物三个组分,不考虑其余可溶性化合物和生物量组分。ASM-X能够预测PPCPs及其转化产物在污水中的浓度变化,但该模型无法解释PPCPs降解机制,也无法优化PPCPs去除条件。
如何在原有模型基础上研发适用于预测并强化污水中PPCPs去除的数学模型是今后研究的重要方向。PPCPs去除模型的建立可以解决污水中PPCPs难以定量的问题,准确预测出水中PPCPs及其转化产物在不同条件下的浓度变化,并深入探究PPCPs在生物处理系统中的微生物降解性能、降解机制和主要限速因素,模拟不同运行参数对去除效果的影响,从而获得最有利于PPCPs去除的污水处理工艺参数组合。本文综述了PPCPs去除模型在评价不同微生物降解性能,探究PPCPs生物降解机制及限制因素,以及优化PPCPs去除参数方面的应用,为精准调控污水中PPCPs去除提供参考。
活性污泥和生物膜模型预测污水中PPCPs去除研究进展
Prediction of PPCPs removal in wastewater by activated sludge and biofilm models
-
摘要: 药品及个人护理用品(pharmaceutical and personal care products,PPCPs)在污水中广泛检出,低浓度的PPCPs即可对生态环境和人体健康产生不利影响,污水处理厂出水排放是水环境PPCPs的重要源。活性污泥和生物膜工艺是目前最常用的污水生物处理工艺,这两种工艺涉及的生化过程复杂,影响因素众多,难以有效去除PPCPs。数学模型是污水处理工艺运行优化的重要工具。本文系统阐述了PPCPs去除模型的建立方法,包括物质和微生物组分及PPCPs去除过程的确定、动力学方程及关键系数的测定与校准、活性污泥和生物膜模型的异同等;综述了污水中PPCPs去除模型的应用研究进展,包括用于评价不同微生物对PPCPs的降解性能、探究污水中PPCPs的生物降解机制及限制因素、优化影响PPCPs去除的参数等,为精准调控污水中PPCPs去除提供参考。
-
关键词:
- 污水 /
- 药品及个人护理用品(PPCPs) /
- 去除模型 /
- 活性污泥 /
- 生物膜
Abstract: Pharmaceutical and personal care products (PPCPs) are often detected in wastewater. Low concentrations of PPCPs can cause toxicity to the ecological environment and human health. The effluent discharge from wastewater treatment plants is an important source of PPCPs into water environment. Activated sludge and biofilm processes are currently the most commonly used wastewater treatment processes. These two processes involve complex biochemical processes and have many operation parameters, making it difficult to remove PPCPs. Mathematical model is an important tool for the operation optimization in wastewater treatment plants. This study elaborates the establishment methods of PPCPs removal model, including the determination of components and processes, the calibration of kinetic coefficients, the differences between activated sludge models and biofilm models. In addition, the application of PPCPs removal model in evaluating different microbial degradation performance, including PPCPs biotransformation mechanisms, and optimization of operation parameters are reviewed. This study provides a reference for regulation of PPCPs removal in wastewater treatment plants.-
Key words:
- sewage /
- pharmaceutical and personal care products(PPCPs) /
- removal model /
- activated sludge /
- biofilm
-
表 1 不同类型PPCPs在不同处理工艺中适用的降解动力学表达式
Table 1. Degradation kinetics equations of different PPCPs in different treatments
PPCPs 处理工艺
Treatment process降解动力学
Degradation kinetics参考文献
References磺胺甲恶唑 好氧活性污泥 Monod动力学 [45-46] 厌氧活性污泥 伪一阶动力学 [45] 阿昔洛韦 硝化活性污泥 伪一阶动力学 [47] Monod动力学 [48] 雌激素 硝化活性污泥 Monod动力学 [49] 天然水体 Logistic动力学 [50] 甲基异噻唑啉酮 微藻Scenedesmus sp. LX1 Logistic动力学 [51] 红霉素 硝化活性污泥 伪一阶动力学 [52] 罗红霉素 佳乐麝香 吐纳麝香 氟西汀 布洛芬 硝化活性污泥 Monod动力学 [52] 甲氧萘丙酸 甲氧苄氧嘧啶 好氧活性污泥 伪一阶动力学 [53] 非诺洛芬 好氧活性污泥 伪一阶动力学 [54] 卡马西平 纯菌Pseudomonas sp. CBZ-4 Monod动力学 [55] 阿替洛尔 硝化活性污泥 Monod动力学 [48,56] 对乙酸氨基酚 基于H2O2的UFBR Michaelis-Menten动力学 [44] 各类药物 MABR Michaelis-Menten动力学 [43] 各类PPCPs 好氧活性污泥和部分硝化厌氧氨氧化 伪一阶动力学 [57] -
[1] KOSMA C I, LAMBROPOULOU D A, ALBANIS T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 804-817. [2] LIU J L , WONG M H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224. [3] EGGEN R I L,HOLLENDER J,JOSS A,et al. Reducing the discharge of micropollutants in the aquatic environment:The benefits of upgrading wastewater treatment plants [J]. Environmental Science & Technology, 2014, 48(14): 7683-7689. [4] LUO Y L, GUO W S, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. The Science of the Total Environment, 2014, 473/474: 619-641. doi: 10.1016/j.scitotenv.2013.12.065 [5] HERNANDO M D, MEZCUA M, FERNANDEZ A A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta, 2006, 69(2): 334-342. doi: 10.1016/j.talanta.2005.09.037 [6] RAJAPAKSHA A U, VITHANAGE M, LIM J E, et al. Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil [J]. Chemosphere, 2014, 111: 500-504. doi: 10.1016/j.chemosphere.2014.04.040 [7] VITHANAGE M, RAJAPAKSHA A U, TANG X, et al. Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar [J]. Journal of Environmental Management, 2014, 141: 95-103. doi: 10.1016/j.jenvman.2014.02.030 [8] GONZALEZ G L, MAURICIO I M, CARBALLA M, et al. Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems [J]. Water Research, 2018, 142: 115-128. doi: 10.1016/j.watres.2018.05.032 [9] BULLOCH D N, NELSON E D, CARR S A, et al. Occurrence of halogenated transformation products of selected pharmaceuticals and personal care products in secondary and tertiary treated wastewaters from southern California [J]. Environmental Science & Technology, 2015, 49(4): 2044-2051. [10] EVGENIDOU E N, KONSTANTINOU I K, LAMBROPOULOU D A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review [J]. The Science of the Total Environment, 2015, 505: 905-926. doi: 10.1016/j.scitotenv.2014.10.021 [11] TIWARI B, SELLAMUTHU B, OUARDA Y, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach [J]. Bioresource Technology, 2017, 224: 1-12. doi: 10.1016/j.biortech.2016.11.042 [12] WANNER O, GUJER W. A multispecies biofilm model [J]. Biotechnology and Bioengineering, 1986, 28(3): 314-328. doi: 10.1002/bit.260280304 [13] HENZE M, GRADY C P L, GUJER W, et al. Activated sludge model No. 1, iawprc scientific and technical report, No. 1[M]London: IAWPRC, 1997: 10Ш-707Х. [14] GUJER W, HENZE M, MINO T, et al. The activated sludge model No. 2: biological phosphorus removal [J]. Water Science and Technology, 1995, 31(2): 1-11. doi: 10.2166/wst.1995.0061 [15] WANNER O, REICHERT P. Mathematical modeling of mixed-culture biofilms [J]. Biotechnology and Bioengineering, 1996, 49(2): 172-184. doi: 10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N [16] HENZE M, GUJER W, MINO T, et al. Activated sludge model no. 2d, ASM2d [J]. Water Science and Technology, 1999, 39(1): 165-182. doi: 10.2166/wst.1999.0036 [17] GUJER W, HENZE M, MINO T, et al. Activated Sludge Model No. 3 [J]. Water Science and Technology, 1999, 39(1): 183-193. doi: 10.2166/wst.1999.0039 [18] PLÓSZ B G, LEKNES H, THOMAS K V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment [J]. Environmental Science & Technology, 2010, 44(2): 734-742. [19] GAO F, NAN J, LI S, et al. Modeling and simulation of a biological process for treating different COD: N ratio wastewater using an extended ASM1 model [J]. Chemical Engineering Journal, 2018, 332: 671-681. doi: 10.1016/j.cej.2017.09.137 [20] WANG Z, CHEN X M, NI B J, et al. Model-based assessment of chromate reduction and nitrate effect in a methane-based membrane biofilm reactor [J]. Water Research X, 2019, 5: 100037. doi: 10.1016/j.wroa.2019.100037 [21] PENG L, NGO H H, SONG S, et al. Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation [J]. Journal of Environmental Management, 2019, 242(JULa15): 309-314. [22] FRIEDRICH M and TAKACS I. A new interpretation of endogenous respiration profiles for the evaluation of the endogenous decay rate of heterotrophic biomass in activated sludge [J]. Water Research, 2013, 47(15): 5639-5646. doi: 10.1016/j.watres.2013.06.043 [23] VAN L M C M, LOPEZ V C M, MEIJER S C F, et al. Twenty-five years of ASM1: Past, present and future of wastewater treatment modelling [J]. Journal of Hydroinformatics, 2015, 17(5): 697-718. doi: 10.2166/hydro.2015.006 [24] MURAT H S, INSEL G, UBAY C E, et al. COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1241-1249. [25] DULEKGURGEN E, DOGRUEL S, KARAHAN O, et al. Size distribution of wastewater COD fractions as an index for biodegradability [J]. Water Research, 2006, 40(2): 273-282. doi: 10.1016/j.watres.2005.10.032 [26] CRAMER M, SCHELHORN P, KOTZBAUER U, et al. Degradation kinetics and COD fractioning of agricultural wastewaters from biogas plants applying biofilm respirometry [J]. Environmental Technology, 2021,42(15): 1-2401. [27] SU P, HE J, ZUO X, et al. Modelling the simultaneous effects of organic carbon and ammonium on two-step nitrification within a downward flow biofilm reactor [J]. Process Safety and Environmental Protection, 2019, 125: 251-259. doi: 10.1016/j.psep.2019.03.027 [28] DIONISI D, BORNORONI L, MAINELLI S, et al. Theoretical and experimental analysis of the role of sludge age on the removal of adsorbed micropollutants in activated sludge processes [J]. Industrial & Engineering Chemistry Research, 2008, 47(17): 6775-6782. [29] ABZAZOU T, ARAUJO R M, AUSET M, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization [J]. The Science of the Total Environment, 2016, 541: 1115-1123. doi: 10.1016/j.scitotenv.2015.10.007 [30] KINET R, DZAOMUHO P, BAERT J, et al. Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation [J]. Bioresource Technology, 2016, 214: 450-459. doi: 10.1016/j.biortech.2016.04.131 [31] QIN Y, HAN B, CAO Y, et al. Impact of substrate concentration on anammox-UBF reactors start-up[J] Bioresource Technology, 2017, 239: 422-429. [32] STEUERNAGEL L, DE L G E L, AZIZAN A, et al. Availability of carbon sources on the ratio of nitrifying microbial biomass in an industrial activated sludge [J]. International Biodeterioration & Biodegradation, 2018, 129: 133-140. [33] LI Z H, HANG Z Y, LU M, et al. Difference of respiration-based approaches for quantifying heterotrophic biomass in activated sludge of biological wastewater treatment plants [J]. Science of the Total Environment, 2019, 664: 45-52. doi: 10.1016/j.scitotenv.2019.02.007 [34] SNIP L J, FLORES A X, PLÓSZ B G, et al. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems [J]. Environmental Modelling & Software, 2014, 62: 112-127. [35] PLÓSZ B G, LANGFORD K H, THOMAS K V. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): Assessment of diclofenac and carbamazepine [J]. Biotechnology and Bioengineering, 2012, 109(11): 2757-2769. doi: 10.1002/bit.24553 [36] POLESEL F, ANDERSEN H R, TRAPP S, et al. Removal of antibiotics in biological wastewater treatment systems—A critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X) [J]. Environmental Science & Technology, 2016, 50(19): 10316-10334. [37] MONTEITH H D, PARKER W J, BELL J P, et al. Modeling the fate of pesticides in municipal wastewater treatment [J]. Water Environment Research, 1995, 67(6): 964-970. doi: 10.2175/106143095X133194 [38] BOEIJE G, SCHOWANEK D and VANROLLEGHEM P. Adaptation of the SimpleTreat chemical fate model to single-sludge biological nutrient removal wastewater treatment plants [J]. Water Science and Technology, 1998, 38(1): 211-218. doi: 10.2166/wst.1998.0051 [39] BYRNS G. The fate of xenobiotic organic compounds in wastewater treatment plants [J]. Water Research, 2001, 35(10): 2523-2533. doi: 10.1016/S0043-1354(00)00529-7 [40] YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation [J]. Water Research, 2012, 46(4): 1301-1308. doi: 10.1016/j.watres.2011.12.035 [41] FERNANDEZ-FONTAINA E, PINHO I, CARBALLA M, et al. Biodegradation kinetic constants and sorption coefficients of micropollutants in membrane bioreactors [J]. Biodegradation, 2013, 24(2): 165-177. doi: 10.1007/s10532-012-9568-3 [42] BAALBAKI Z, TORFS E, YARGEAU V, et al. Predicting the fate of micropollutants during wastewater treatment: Calibration and sensitivity analysis [J]. Science of the Total Environment, 2017: 601-602,874-885. [43] PENG L, CHEN X M, XU Y F, et al. Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal: A model-based evaluation [J]. Journal of Membrane Science, 2015, 494: 39-47. doi: 10.1016/j.memsci.2015.07.043 [44] BARATPOUR P and MOUSSAVI G. The accelerated biodegradation and mineralization of acetaminophen in the H2O2-stimulated upflow fixed-bed bioreactor (UFBR) [J]. Chemosphere, 2018, 210: 1115-1123. doi: 10.1016/j.chemosphere.2018.07.135 [45] NGUYEN P Y, CARVALHO G, POLESEL F, et al. Bioaugmentation of activated sludge with achromobacter denitrificans PR1 for enhancing the biotransformation of sulfamethoxazole and its human conjugates in real wastewater: Kinetic tests and modelling [J]. Chemical Engineering Journal, 2018, 352: 79-89. doi: 10.1016/j.cej.2018.07.011 [46] PENG L, KASSOTAKI E, LIU Y, et al. Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture [J]. Chemical Engineering Science, 2017, 173: 465-473. doi: 10.1016/j.ces.2017.08.015 [47] XU Y F, YUAN Z G, NI B J. Biotransformation of acyclovir by an enriched nitrifying culture [J]. Chemosphere, 2017, 170: 25-32. doi: 10.1016/j.chemosphere.2016.12.014 [48] XU Y F, CHEN X M, YUAN Z G, et al. Modeling of pharmaceutical biotransformation by enriched nitrifying culture under different metabolic conditions [J]. Environmental Science & Technology, 2018, 52(5): 2835-2843. [49] PENG L, DAI X H, LIU Y W, et al. Model-based assessment of estrogen removal by nitrifying activated sludge [J]. Chemosphere, 2018, 197: 430-437. doi: 10.1016/j.chemosphere.2018.01.035 [50] VANDERMARKEN T, CROES K, van LANGENHOVE K, et al. Endocrine activity in an urban river system and the biodegradation of estrogen-like endocrine disrupting chemicals through a bio-analytical approach using DRE- and ERE-CALUX bioassays [J]. Chemosphere, 2018, 201: 540-549. doi: 10.1016/j.chemosphere.2018.03.036 [51] WANG X X, WANG W L, DAO G H, et al. Mechanism and kinetics of methylisothiazolinone removal by cultivation of Scenedesmus sp. LX1 [J]. Journal of Hazardous Materials, 2020, 386: 121959. doi: 10.1016/j.jhazmat.2019.121959 [52] FERNANDEZ-FONTAINA E, CARBALLA M, OMIL F, et al. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors [J]. Water Research, 2014, 65: 371-383. doi: 10.1016/j.watres.2014.07.048 [53] OGUNLAJA O O, PARKER W J. Modeling the biotransformation of trimethoprim in biological nutrient removal system [J]. Water Science and Technology, 2017, 2017(1): 144-155. [54] CHEN X J, VOLLERTSEN J, NIELSEN J L, et al. Degradation of PPCPs in activated sludge from different WWTPs in Denmark [J]. Ecotoxicology, 2015, 24(10): 2073-2080. doi: 10.1007/s10646-015-1548-z [55] LI A, CAI R, DI C, et al. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4 [J]. Journal of Environmental Sciences (China), 2013, 25(11): 2281-2290. doi: 10.1016/S1001-0742(12)60293-9 [56] SATHYAMOORTHY S, CHANDRAN K, RAMSBURG C A. Biodegradation and cometabolic modeling of selected beta blockers during ammonia oxidation [J]. Environmental Science & Technology, 2013, 47(22): 12835-12843. [57] TABOADA S A, BEHERA C R, SIN G. , et al. Assessment of the fate of organic micropollutants in novel wastewater treatment plant configurations through an empirical mechanistic model [J]. the Science of the Total Environment, 2020, 716: 137079.1-137079.14. [58] WANG H C, CHENG H Y, WANG S S, et al. Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis [J]. Journal of Environmental Sciences (China), 2016, 39: 198-207. doi: 10.1016/j.jes.2015.10.014 [59] XU Y F, YUAN Z G, NI B J. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes [J]. The Science of the Total Environment, 2016, 566/567: 796-805. doi: 10.1016/j.scitotenv.2016.05.118 [60] YU L, CHEN S, CHEN W, et al. Experimental investigation and mathematical modeling of the competition among the fast-growing 'r-strategists' and the slow- growing 'K-strategists' ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in nitrification [J]. the Science of the Total Environment, 2020, 702: 135049.1-135049.9. [61] NI B J, YU H Q, SUN Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules [J]. Water Research, 2008, 42(6/7): 1583-1594. [62] REIJKEN C, GIORGI S, HURKMANS C, et al. Incorporating the influent cellulose fraction in activated sludge modelling [J]. Water Research, 2018, 144: 104-111. doi: 10.1016/j.watres.2018.07.013 [63] ZHANG M, LI N, CHEN W J, et al. Steady-state and dynamic analysis of the single-stage anammox granular sludge reactor show that bulk ammonium concentration is a critical control variable to mitigate feeding disturbances [J]. Chemosphere, 2020, 251: 126361. doi: 10.1016/j.chemosphere.2020.126361 [64] MENG J, LI J, LI J, et al. The effects of influent and operational conditions on nitrogen removal in an upflow microaerobic sludge blanket system: A model-based evaluation [J]. Bioresource Technology, 2020, 295: 122225. doi: 10.1016/j.biortech.2019.122225 [65] HORN H, LACKNER S. Modeling of biofilm systems: A review [J]. Advances in Biochemical Engineering/Biotechnology, 2014, 146: 53-76. [66] WANNER O and MORGENROTH E. Biofilm modeling with AQUASIM [J]. Water Science and Technology, 2004, 49(11-12): 137-144. doi: 10.2166/wst.2004.0824 [67] VASILIADOU I A, MOLINA R, MARTINEZ F, et al. Experimental and modeling study on removal of pharmaceutically active compounds in rotating biological contactors [J]. Journal of Hazardous Materials, 2014, 274: 473-482. doi: 10.1016/j.jhazmat.2014.04.034 [68] NI B J, YUAN Z. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems [J]. Journal of Membrane Science, 2013, 428: 163-171. doi: 10.1016/j.memsci.2012.10.049 [69] NI B J, SMETS B F, YUAN Z, et al. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor [J]. Journal of Membrane Science, 2013, 446: 332-340. doi: 10.1016/j.memsci.2013.06.047 [70] TANG Y N, ZHAO H P, MARCUS A K, et al. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: Model development and numerical solution [J]. Environmental Science & Technology, 2012, 46(3): 1598-1607. [71] LIU T, GUO J H, HU S H, et al. Model-based investigation of membrane biofilm reactors coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation [J]. Environment International, 2020, 137: 105501. doi: 10.1016/j.envint.2020.105501 [72] LIU Y W, LI C Y, LACKNER S, et al. The role of interactions of effective biofilm surface area and mass transfer in nitrogen removal efficiency of an integrated fixed-film activated sludge system [J]. Chemical Engineering Journal, 2018, 350: 992-999. doi: 10.1016/j.cej.2018.06.053 [73] BOLTZ J P, MORGENROTH E, BROCKMANN D, et al. Systematic evaluation of biofilm models for engineering practice: components and critical assumptions [J]. Water Science and Technology, 2011, 64(4): 930-944. doi: 10.2166/wst.2011.709 [74] TRAN N H, URASE T, NGO H H, et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants [J]. Bioresource Technology, 2013, 146: 721-731. doi: 10.1016/j.biortech.2013.07.083 [75] CAMACHO-MUÑOZ D, MARTÍN J, SANTOS J L, et al. Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds [J]. Water, Air, & Soil Pollution, 2012, 223(5): 2611-2621. [76] LACKNER S, TERADA A, SMETS B F. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study [J]. Water Research, 2008, 42(4/5): 1102-1112. [77] WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures [J]. Environmental Science & Technology, 2011, 45(17): 7330-7337. [78] PÉREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study [J]. Water Research, 2014, 66: 208-218. doi: 10.1016/j.watres.2014.08.028 [79] WANG Z, ZHENG M, XUE Y, et al. Free ammonia shock treatment eliminates nitrite-oxidizing bacterial activity for mainstream biofilm nitritation process [J]. Chemical Engineering Journal, 2020: 124682. [80] GRANDCLÉMENT C, SEYSSIECQ I, PIRAM A, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review [J]. Water Research, 2017, 111: 297-317. doi: 10.1016/j.watres.2017.01.005 [81] BLAIR B, NIKOLAUS A, HEDMAN C, et al. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment [J]. Chemosphere, 2015, 134: 395-401. doi: 10.1016/j.chemosphere.2015.04.078 [82] FALÅS P, WICK A, CASTRONOVO S, et al. Tracing the limits of organic micropollutant removal in biological wastewater treatment [J]. Water Research, 2016, 95: 240-249. doi: 10.1016/j.watres.2016.03.009 [83] GULDE R, ANLIKER S, KOHLER H P E, et al. Ion trapping of amines in protozoa: A novel removal mechanism for micropollutants in activated sludge [J]. Environmental Science & Technology, 2018, 52(1): 52-60. [84] DAWAS-MASSALHA A, GUR-REZNIK S, LERMAN S, et al. Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment [J]. Bioresource Technology, 2014, 167: 336-342. doi: 10.1016/j.biortech.2014.06.003 [85] MEYERS R A. Molecular biology and biotechnology: A comprehensive desk reference[M]. John Wiley & Sons, 1995. [86] SU T, DENG H, BENSKIN J P, et al. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test [J]. Chemosphere, 2016, 148: 518-525. doi: 10.1016/j.chemosphere.2016.01.049 [87] QU S, KOLODZIEJ E P, LONG S A, et al. Product-to-parent reversion of trenbolone: Unrecognized risks for endocrine disruption [J]. Science, 2013, 342(6156): 347-351. doi: 10.1126/science.1243192 [88] GUSMAROLI L, MENDOZA E, PETROVIC M, et al. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? [J]. The Science of the Total Environment, 2020, 714: 136773. doi: 10.1016/j.scitotenv.2020.136773 [89] CHEN X M, GUO J H, XIE G J, et al. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility [J]. Water Research, 2015, 85: 295-303. doi: 10.1016/j.watres.2015.08.046 [90] FLORES-ALSINA X, FELDMAN H, MONJE V T, et al. Evaluation of anaerobic digestion post-treatment options using an integrated model-based approach [J]. Water Research, 2019, 156: 264-276. doi: 10.1016/j.watres.2019.02.035 [91] WISNIEWSKI K, DI B A, MUNZ G, et al. Kinetic characterization of hydrogen sulfide inhibition of suspended anammox biomass from a membrane bioreactor [J]. Biochemical Engineering Journal, 2019(143): 48-57. [92] ABTAHI S M, PETERMANN M, JUPPEAU FLAMBARD A, et al. Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass [J]. The Science of the Total Environment, 2018, 643: 1464-1480. doi: 10.1016/j.scitotenv.2018.06.303