[1] |
KOSMA C I, LAMBROPOULOU D A, ALBANIS T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 804-817.
|
[2] |
LIU J L , WONG M H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China[J]. Environment International, 2013, 59: 208-224.
|
[3] |
EGGEN R I L,HOLLENDER J,JOSS A,et al. Reducing the discharge of micropollutants in the aquatic environment:The benefits of upgrading wastewater treatment plants [J]. Environmental Science & Technology, 2014, 48(14): 7683-7689.
|
[4] |
LUO Y L, GUO W S, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. The Science of the Total Environment, 2014, 473/474: 619-641. doi: 10.1016/j.scitotenv.2013.12.065
|
[5] |
HERNANDO M D, MEZCUA M, FERNANDEZ A A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments [J]. Talanta, 2006, 69(2): 334-342. doi: 10.1016/j.talanta.2005.09.037
|
[6] |
RAJAPAKSHA A U, VITHANAGE M, LIM J E, et al. Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil [J]. Chemosphere, 2014, 111: 500-504. doi: 10.1016/j.chemosphere.2014.04.040
|
[7] |
VITHANAGE M, RAJAPAKSHA A U, TANG X, et al. Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar [J]. Journal of Environmental Management, 2014, 141: 95-103. doi: 10.1016/j.jenvman.2014.02.030
|
[8] |
GONZALEZ G L, MAURICIO I M, CARBALLA M, et al. Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems [J]. Water Research, 2018, 142: 115-128. doi: 10.1016/j.watres.2018.05.032
|
[9] |
BULLOCH D N, NELSON E D, CARR S A, et al. Occurrence of halogenated transformation products of selected pharmaceuticals and personal care products in secondary and tertiary treated wastewaters from southern California [J]. Environmental Science & Technology, 2015, 49(4): 2044-2051.
|
[10] |
EVGENIDOU E N, KONSTANTINOU I K, LAMBROPOULOU D A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review [J]. The Science of the Total Environment, 2015, 505: 905-926. doi: 10.1016/j.scitotenv.2014.10.021
|
[11] |
TIWARI B, SELLAMUTHU B, OUARDA Y, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach [J]. Bioresource Technology, 2017, 224: 1-12. doi: 10.1016/j.biortech.2016.11.042
|
[12] |
WANNER O, GUJER W. A multispecies biofilm model [J]. Biotechnology and Bioengineering, 1986, 28(3): 314-328. doi: 10.1002/bit.260280304
|
[13] |
HENZE M, GRADY C P L, GUJER W, et al. Activated sludge model No. 1, iawprc scientific and technical report, No. 1[M]London: IAWPRC, 1997: 10Ш-707Х.
|
[14] |
GUJER W, HENZE M, MINO T, et al. The activated sludge model No. 2: biological phosphorus removal [J]. Water Science and Technology, 1995, 31(2): 1-11. doi: 10.2166/wst.1995.0061
|
[15] |
WANNER O, REICHERT P. Mathematical modeling of mixed-culture biofilms [J]. Biotechnology and Bioengineering, 1996, 49(2): 172-184. doi: 10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N
|
[16] |
HENZE M, GUJER W, MINO T, et al. Activated sludge model no. 2d, ASM2d [J]. Water Science and Technology, 1999, 39(1): 165-182. doi: 10.2166/wst.1999.0036
|
[17] |
GUJER W, HENZE M, MINO T, et al. Activated Sludge Model No. 3 [J]. Water Science and Technology, 1999, 39(1): 183-193. doi: 10.2166/wst.1999.0039
|
[18] |
PLÓSZ B G, LEKNES H, THOMAS K V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment [J]. Environmental Science & Technology, 2010, 44(2): 734-742.
|
[19] |
GAO F, NAN J, LI S, et al. Modeling and simulation of a biological process for treating different COD: N ratio wastewater using an extended ASM1 model [J]. Chemical Engineering Journal, 2018, 332: 671-681. doi: 10.1016/j.cej.2017.09.137
|
[20] |
WANG Z, CHEN X M, NI B J, et al. Model-based assessment of chromate reduction and nitrate effect in a methane-based membrane biofilm reactor [J]. Water Research X, 2019, 5: 100037. doi: 10.1016/j.wroa.2019.100037
|
[21] |
PENG L, NGO H H, SONG S, et al. Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation [J]. Journal of Environmental Management, 2019, 242(JULa15): 309-314.
|
[22] |
FRIEDRICH M and TAKACS I. A new interpretation of endogenous respiration profiles for the evaluation of the endogenous decay rate of heterotrophic biomass in activated sludge [J]. Water Research, 2013, 47(15): 5639-5646. doi: 10.1016/j.watres.2013.06.043
|
[23] |
VAN L M C M, LOPEZ V C M, MEIJER S C F, et al. Twenty-five years of ASM1: Past, present and future of wastewater treatment modelling [J]. Journal of Hydroinformatics, 2015, 17(5): 697-718. doi: 10.2166/hydro.2015.006
|
[24] |
MURAT H S, INSEL G, UBAY C E, et al. COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1241-1249.
|
[25] |
DULEKGURGEN E, DOGRUEL S, KARAHAN O, et al. Size distribution of wastewater COD fractions as an index for biodegradability [J]. Water Research, 2006, 40(2): 273-282. doi: 10.1016/j.watres.2005.10.032
|
[26] |
CRAMER M, SCHELHORN P, KOTZBAUER U, et al. Degradation kinetics and COD fractioning of agricultural wastewaters from biogas plants applying biofilm respirometry [J]. Environmental Technology, 2021,42(15): 1-2401.
|
[27] |
SU P, HE J, ZUO X, et al. Modelling the simultaneous effects of organic carbon and ammonium on two-step nitrification within a downward flow biofilm reactor [J]. Process Safety and Environmental Protection, 2019, 125: 251-259. doi: 10.1016/j.psep.2019.03.027
|
[28] |
DIONISI D, BORNORONI L, MAINELLI S, et al. Theoretical and experimental analysis of the role of sludge age on the removal of adsorbed micropollutants in activated sludge processes [J]. Industrial & Engineering Chemistry Research, 2008, 47(17): 6775-6782.
|
[29] |
ABZAZOU T, ARAUJO R M, AUSET M, et al. Tracking and quantification of nitrifying bacteria in biofilm and mixed liquor of a partial nitrification MBBR pilot plant using fluorescence in situ hybridization [J]. The Science of the Total Environment, 2016, 541: 1115-1123. doi: 10.1016/j.scitotenv.2015.10.007
|
[30] |
KINET R, DZAOMUHO P, BAERT J, et al. Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation [J]. Bioresource Technology, 2016, 214: 450-459. doi: 10.1016/j.biortech.2016.04.131
|
[31] |
QIN Y, HAN B, CAO Y, et al. Impact of substrate concentration on anammox-UBF reactors start-up[J] Bioresource Technology, 2017, 239: 422-429.
|
[32] |
STEUERNAGEL L, DE L G E L, AZIZAN A, et al. Availability of carbon sources on the ratio of nitrifying microbial biomass in an industrial activated sludge [J]. International Biodeterioration & Biodegradation, 2018, 129: 133-140.
|
[33] |
LI Z H, HANG Z Y, LU M, et al. Difference of respiration-based approaches for quantifying heterotrophic biomass in activated sludge of biological wastewater treatment plants [J]. Science of the Total Environment, 2019, 664: 45-52. doi: 10.1016/j.scitotenv.2019.02.007
|
[34] |
SNIP L J, FLORES A X, PLÓSZ B G, et al. Modelling the occurrence, transport and fate of pharmaceuticals in wastewater systems [J]. Environmental Modelling & Software, 2014, 62: 112-127.
|
[35] |
PLÓSZ B G, LANGFORD K H, THOMAS K V. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): Assessment of diclofenac and carbamazepine [J]. Biotechnology and Bioengineering, 2012, 109(11): 2757-2769. doi: 10.1002/bit.24553
|
[36] |
POLESEL F, ANDERSEN H R, TRAPP S, et al. Removal of antibiotics in biological wastewater treatment systems—A critical assessment using the activated sludge modeling framework for xenobiotics (ASM-X) [J]. Environmental Science & Technology, 2016, 50(19): 10316-10334.
|
[37] |
MONTEITH H D, PARKER W J, BELL J P, et al. Modeling the fate of pesticides in municipal wastewater treatment [J]. Water Environment Research, 1995, 67(6): 964-970. doi: 10.2175/106143095X133194
|
[38] |
BOEIJE G, SCHOWANEK D and VANROLLEGHEM P. Adaptation of the SimpleTreat chemical fate model to single-sludge biological nutrient removal wastewater treatment plants [J]. Water Science and Technology, 1998, 38(1): 211-218. doi: 10.2166/wst.1998.0051
|
[39] |
BYRNS G. The fate of xenobiotic organic compounds in wastewater treatment plants [J]. Water Research, 2001, 35(10): 2523-2533. doi: 10.1016/S0043-1354(00)00529-7
|
[40] |
YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge-sorption and biodegradation [J]. Water Research, 2012, 46(4): 1301-1308. doi: 10.1016/j.watres.2011.12.035
|
[41] |
FERNANDEZ-FONTAINA E, PINHO I, CARBALLA M, et al. Biodegradation kinetic constants and sorption coefficients of micropollutants in membrane bioreactors [J]. Biodegradation, 2013, 24(2): 165-177. doi: 10.1007/s10532-012-9568-3
|
[42] |
BAALBAKI Z, TORFS E, YARGEAU V, et al. Predicting the fate of micropollutants during wastewater treatment: Calibration and sensitivity analysis [J]. Science of the Total Environment, 2017: 601-602,874-885.
|
[43] |
PENG L, CHEN X M, XU Y F, et al. Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal: A model-based evaluation [J]. Journal of Membrane Science, 2015, 494: 39-47. doi: 10.1016/j.memsci.2015.07.043
|
[44] |
BARATPOUR P and MOUSSAVI G. The accelerated biodegradation and mineralization of acetaminophen in the H2O2-stimulated upflow fixed-bed bioreactor (UFBR) [J]. Chemosphere, 2018, 210: 1115-1123. doi: 10.1016/j.chemosphere.2018.07.135
|
[45] |
NGUYEN P Y, CARVALHO G, POLESEL F, et al. Bioaugmentation of activated sludge with achromobacter denitrificans PR1 for enhancing the biotransformation of sulfamethoxazole and its human conjugates in real wastewater: Kinetic tests and modelling [J]. Chemical Engineering Journal, 2018, 352: 79-89. doi: 10.1016/j.cej.2018.07.011
|
[46] |
PENG L, KASSOTAKI E, LIU Y, et al. Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture [J]. Chemical Engineering Science, 2017, 173: 465-473. doi: 10.1016/j.ces.2017.08.015
|
[47] |
XU Y F, YUAN Z G, NI B J. Biotransformation of acyclovir by an enriched nitrifying culture [J]. Chemosphere, 2017, 170: 25-32. doi: 10.1016/j.chemosphere.2016.12.014
|
[48] |
XU Y F, CHEN X M, YUAN Z G, et al. Modeling of pharmaceutical biotransformation by enriched nitrifying culture under different metabolic conditions [J]. Environmental Science & Technology, 2018, 52(5): 2835-2843.
|
[49] |
PENG L, DAI X H, LIU Y W, et al. Model-based assessment of estrogen removal by nitrifying activated sludge [J]. Chemosphere, 2018, 197: 430-437. doi: 10.1016/j.chemosphere.2018.01.035
|
[50] |
VANDERMARKEN T, CROES K, van LANGENHOVE K, et al. Endocrine activity in an urban river system and the biodegradation of estrogen-like endocrine disrupting chemicals through a bio-analytical approach using DRE- and ERE-CALUX bioassays [J]. Chemosphere, 2018, 201: 540-549. doi: 10.1016/j.chemosphere.2018.03.036
|
[51] |
WANG X X, WANG W L, DAO G H, et al. Mechanism and kinetics of methylisothiazolinone removal by cultivation of Scenedesmus sp. LX1 [J]. Journal of Hazardous Materials, 2020, 386: 121959. doi: 10.1016/j.jhazmat.2019.121959
|
[52] |
FERNANDEZ-FONTAINA E, CARBALLA M, OMIL F, et al. Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors [J]. Water Research, 2014, 65: 371-383. doi: 10.1016/j.watres.2014.07.048
|
[53] |
OGUNLAJA O O, PARKER W J. Modeling the biotransformation of trimethoprim in biological nutrient removal system [J]. Water Science and Technology, 2017, 2017(1): 144-155.
|
[54] |
CHEN X J, VOLLERTSEN J, NIELSEN J L, et al. Degradation of PPCPs in activated sludge from different WWTPs in Denmark [J]. Ecotoxicology, 2015, 24(10): 2073-2080. doi: 10.1007/s10646-015-1548-z
|
[55] |
LI A, CAI R, DI C, et al. Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, Pseudomonas sp. CBZ-4 [J]. Journal of Environmental Sciences (China), 2013, 25(11): 2281-2290. doi: 10.1016/S1001-0742(12)60293-9
|
[56] |
SATHYAMOORTHY S, CHANDRAN K, RAMSBURG C A. Biodegradation and cometabolic modeling of selected beta blockers during ammonia oxidation [J]. Environmental Science & Technology, 2013, 47(22): 12835-12843.
|
[57] |
TABOADA S A, BEHERA C R, SIN G. , et al. Assessment of the fate of organic micropollutants in novel wastewater treatment plant configurations through an empirical mechanistic model [J]. the Science of the Total Environment, 2020, 716: 137079.1-137079.14.
|
[58] |
WANG H C, CHENG H Y, WANG S S, et al. Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis [J]. Journal of Environmental Sciences (China), 2016, 39: 198-207. doi: 10.1016/j.jes.2015.10.014
|
[59] |
XU Y F, YUAN Z G, NI B J. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes [J]. The Science of the Total Environment, 2016, 566/567: 796-805. doi: 10.1016/j.scitotenv.2016.05.118
|
[60] |
YU L, CHEN S, CHEN W, et al. Experimental investigation and mathematical modeling of the competition among the fast-growing 'r-strategists' and the slow- growing 'K-strategists' ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in nitrification [J]. the Science of the Total Environment, 2020, 702: 135049.1-135049.9.
|
[61] |
NI B J, YU H Q, SUN Y J. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules [J]. Water Research, 2008, 42(6/7): 1583-1594.
|
[62] |
REIJKEN C, GIORGI S, HURKMANS C, et al. Incorporating the influent cellulose fraction in activated sludge modelling [J]. Water Research, 2018, 144: 104-111. doi: 10.1016/j.watres.2018.07.013
|
[63] |
ZHANG M, LI N, CHEN W J, et al. Steady-state and dynamic analysis of the single-stage anammox granular sludge reactor show that bulk ammonium concentration is a critical control variable to mitigate feeding disturbances [J]. Chemosphere, 2020, 251: 126361. doi: 10.1016/j.chemosphere.2020.126361
|
[64] |
MENG J, LI J, LI J, et al. The effects of influent and operational conditions on nitrogen removal in an upflow microaerobic sludge blanket system: A model-based evaluation [J]. Bioresource Technology, 2020, 295: 122225. doi: 10.1016/j.biortech.2019.122225
|
[65] |
HORN H, LACKNER S. Modeling of biofilm systems: A review [J]. Advances in Biochemical Engineering/Biotechnology, 2014, 146: 53-76.
|
[66] |
WANNER O and MORGENROTH E. Biofilm modeling with AQUASIM [J]. Water Science and Technology, 2004, 49(11-12): 137-144. doi: 10.2166/wst.2004.0824
|
[67] |
VASILIADOU I A, MOLINA R, MARTINEZ F, et al. Experimental and modeling study on removal of pharmaceutically active compounds in rotating biological contactors [J]. Journal of Hazardous Materials, 2014, 274: 473-482. doi: 10.1016/j.jhazmat.2014.04.034
|
[68] |
NI B J, YUAN Z. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems [J]. Journal of Membrane Science, 2013, 428: 163-171. doi: 10.1016/j.memsci.2012.10.049
|
[69] |
NI B J, SMETS B F, YUAN Z, et al. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor [J]. Journal of Membrane Science, 2013, 446: 332-340. doi: 10.1016/j.memsci.2013.06.047
|
[70] |
TANG Y N, ZHAO H P, MARCUS A K, et al. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: Model development and numerical solution [J]. Environmental Science & Technology, 2012, 46(3): 1598-1607.
|
[71] |
LIU T, GUO J H, HU S H, et al. Model-based investigation of membrane biofilm reactors coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation [J]. Environment International, 2020, 137: 105501. doi: 10.1016/j.envint.2020.105501
|
[72] |
LIU Y W, LI C Y, LACKNER S, et al. The role of interactions of effective biofilm surface area and mass transfer in nitrogen removal efficiency of an integrated fixed-film activated sludge system [J]. Chemical Engineering Journal, 2018, 350: 992-999. doi: 10.1016/j.cej.2018.06.053
|
[73] |
BOLTZ J P, MORGENROTH E, BROCKMANN D, et al. Systematic evaluation of biofilm models for engineering practice: components and critical assumptions [J]. Water Science and Technology, 2011, 64(4): 930-944. doi: 10.2166/wst.2011.709
|
[74] |
TRAN N H, URASE T, NGO H H, et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants [J]. Bioresource Technology, 2013, 146: 721-731. doi: 10.1016/j.biortech.2013.07.083
|
[75] |
CAMACHO-MUÑOZ D, MARTÍN J, SANTOS J L, et al. Effectiveness of conventional and low-cost wastewater treatments in the removal of pharmaceutically active compounds [J]. Water, Air, & Soil Pollution, 2012, 223(5): 2611-2621.
|
[76] |
LACKNER S, TERADA A, SMETS B F. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study [J]. Water Research, 2008, 42(4/5): 1102-1112.
|
[77] |
WINKLER M K H, KLEEREBEZEM R, KUENEN J G, et al. Segregation of biomass in cyclic anaerobic/aerobic granular sludge allows the enrichment of anaerobic ammonium oxidizing bacteria at low temperatures [J]. Environmental Science & Technology, 2011, 45(17): 7330-7337.
|
[78] |
PÉREZ J, LOTTI T, KLEEREBEZEM R, et al. Outcompeting nitrite-oxidizing bacteria in single-stage nitrogen removal in sewage treatment plants: A model-based study [J]. Water Research, 2014, 66: 208-218. doi: 10.1016/j.watres.2014.08.028
|
[79] |
WANG Z, ZHENG M, XUE Y, et al. Free ammonia shock treatment eliminates nitrite-oxidizing bacterial activity for mainstream biofilm nitritation process [J]. Chemical Engineering Journal, 2020: 124682.
|
[80] |
GRANDCLÉMENT C, SEYSSIECQ I, PIRAM A, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review [J]. Water Research, 2017, 111: 297-317. doi: 10.1016/j.watres.2017.01.005
|
[81] |
BLAIR B, NIKOLAUS A, HEDMAN C, et al. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment [J]. Chemosphere, 2015, 134: 395-401. doi: 10.1016/j.chemosphere.2015.04.078
|
[82] |
FALÅS P, WICK A, CASTRONOVO S, et al. Tracing the limits of organic micropollutant removal in biological wastewater treatment [J]. Water Research, 2016, 95: 240-249. doi: 10.1016/j.watres.2016.03.009
|
[83] |
GULDE R, ANLIKER S, KOHLER H P E, et al. Ion trapping of amines in protozoa: A novel removal mechanism for micropollutants in activated sludge [J]. Environmental Science & Technology, 2018, 52(1): 52-60.
|
[84] |
DAWAS-MASSALHA A, GUR-REZNIK S, LERMAN S, et al. Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment [J]. Bioresource Technology, 2014, 167: 336-342. doi: 10.1016/j.biortech.2014.06.003
|
[85] |
MEYERS R A. Molecular biology and biotechnology: A comprehensive desk reference[M]. John Wiley & Sons, 1995.
|
[86] |
SU T, DENG H, BENSKIN J P, et al. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test [J]. Chemosphere, 2016, 148: 518-525. doi: 10.1016/j.chemosphere.2016.01.049
|
[87] |
QU S, KOLODZIEJ E P, LONG S A, et al. Product-to-parent reversion of trenbolone: Unrecognized risks for endocrine disruption [J]. Science, 2013, 342(6156): 347-351. doi: 10.1126/science.1243192
|
[88] |
GUSMAROLI L, MENDOZA E, PETROVIC M, et al. How do WWTPs operational parameters affect the removal rates of EU Watch list compounds? [J]. The Science of the Total Environment, 2020, 714: 136773. doi: 10.1016/j.scitotenv.2020.136773
|
[89] |
CHEN X M, GUO J H, XIE G J, et al. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: A model-based investigation of feasibility [J]. Water Research, 2015, 85: 295-303. doi: 10.1016/j.watres.2015.08.046
|
[90] |
FLORES-ALSINA X, FELDMAN H, MONJE V T, et al. Evaluation of anaerobic digestion post-treatment options using an integrated model-based approach [J]. Water Research, 2019, 156: 264-276. doi: 10.1016/j.watres.2019.02.035
|
[91] |
WISNIEWSKI K, DI B A, MUNZ G, et al. Kinetic characterization of hydrogen sulfide inhibition of suspended anammox biomass from a membrane bioreactor [J]. Biochemical Engineering Journal, 2019(143): 48-57.
|
[92] |
ABTAHI S M, PETERMANN M, JUPPEAU FLAMBARD A, et al. Micropollutants removal in tertiary moving bed biofilm reactors (MBBRs): Contribution of the biofilm and suspended biomass [J]. The Science of the Total Environment, 2018, 643: 1464-1480. doi: 10.1016/j.scitotenv.2018.06.303
|