-
六溴环十二烷(HBCD)是一种高含溴量的添加型阻燃剂,其产量仅次于多溴联苯醚(decaBDE)和四溴双酚A(TBBPA),被广泛用于建筑、纺织材料、电子设备、塑料制品等产品中[1]。基于其广泛污染及具有富集性、远距离迁移性、生物毒性等特点,HBCD作为持久性有机污染物,于2013年被列入斯德哥尔摩公约受控名单[2]。
HBCD具有手性中心,理论而言共含有16种同分异构体,常见的有α-HBCD、β-HBCD和γ-HBCD,以及其相应的(+)和(−)对映体。不同立体构型的HBCD在环境中的富集、代谢和毒性行为均存在差异[3]。一般而言,在土壤[4]和水体[5]等非生物介质中γ-HBCD含量较高,在生物介质中α-HBCD则占主导。尽管β-HBCD在环境介质中的检出浓度一般不是最高的,但有研究表明,其累积能力和毒性作用不容忽视。对斜生栅藻[6]和玉米[7]的研究发现,β-HBCD在其体内的累积动力学速率和最高吸收量均高于α-和γ-HBCD。奥斯卡鱼肠对β-和γ-HBCD的吸收速率也高于对α-HBCD的吸收[8]。在生物毒性方面,Palace等[9]发现,与α-HBCD相比,β和γ-HBCD会显著增高鱼体内脱碘酶的活性,从而降低鱼对碘的吸收能力。对人肝细胞L02和人肝癌细胞HepG2的研究表明β-HBCD的毒性影响高于γ-和α-HBCD[10]。可见,在特定环境下β-HBCD的富集能力及生物毒性高于其他异构体。同时,在生物体内亦有研究表明,γ-HBCD会发生向β-HBCD的异构体转化,导致β-构型浓度增加[11],加剧其环境生态风险。因此,在研究HBCD的环境行为及影响时,对β-HBCD的考察需要引起重视。而目前关于β-HBCD的毒性研究较为匮乏,亟待开展更多工作。
有关HBCD植物毒性方面的考察相对较少,植物是生态系统中的第一营养级,植物对污染物的吸收及其迁移转化、环境影响和归趋均有重要作用,研究HBCD对植物的毒性作用具有深远意义。Zhang等[12]研究了商品HBCD混合物对拟南芥的基因表达和蛋白功能的毒性作用,发现机体能量产生-转化和氨基酸转运-代谢方面均受到不同程度的负面影响。Huang等[13]在体外研究α-和γ-HBCD对玉米细胞色素P450(CYP)酶的影响表明,(−)/(+)γ-HBCD会诱导CYP酶活性增加,α-HBCD则表现为抑制,且(−)α-HBCD对CYP酶活性的抑制高于(+)α-HBCD。本团队前期研究发现HBCD可诱导玉米体内羟基自由基产生,造成一定程度的DNA损伤,其中β-HBCD的毒性高于γ-HBCD[7];在对映体水平上也分别考察了α-和γ-HBCD对玉米的生长、形态改变、抗氧化酶和DNA损伤方面的对映体选择性影响[14-15]。然而遗憾的是上述研究均未开展对β-HBCD对映体的相关探讨,不同光旋纯活性的β-HBCD是否会对植物产生选择性毒性还需要进一步判断。
本研究选择玉米为受试植物,采用不同浓度梯度的β-HBCD及其对映体对玉米开展水培暴露研究,通过玉米体内抗氧化物质活性及含量变化,从抗氧化酶系统和非酶抗氧化系统两方面说明机体对β-HBCD选择性毒性的响应,结合细胞内典型活性氧(ROS)物质超氧阴离子(
${\rm{O}}_2^{\cdot -} $ )水平和植物根系活力,判断暴露后玉米体内ROS失衡对其生长代谢的对映体选择性影响机制,为全面评价HBCD的环境生态风险提供重要信息。
β-六溴环十二烷对玉米生长代谢的对映体选择性影响
Enantioselective effects of β-HBCD on the growth metabolism of maize
-
摘要: 为了探讨不同光旋纯活性的β-HBCD对植物生长代谢的对映体选择性影响,本研究采用高效液相色谱法(HPLC)优化分离并制备得到β-六溴环十二烷(β-HBCD)单一对映体((+)β-HBCD和(−)β-HBCD),开展了不同浓度梯度的(+)、(rac)和(−)β-HBCD溶液对玉米幼苗的水培暴露实验。随着β-HBCD暴露浓度的增加,玉米体内超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性(除(−)β-HBCD处理外)、以及花青素含量均呈现显著的先增加后减少的趋势,表明β-HBCD诱发了玉米机体的抗氧化酶系统和非酶系统的应激反应,其中(+)β-HBCD诱导SOD、APX活性和花青素水平增加量最大,在玉米根部分别达到空白对照组的1.85、5.26、3.55倍,(−)β-HBCD处理增加量最小,分别达到空白对照组的1.63、3.90、2.28倍;玉米体内的活性氧(ROS)平衡被破坏,超氧阴离子(
${\rm{O}}_2^{\cdot -} $ )水平被显著诱导,诱导量为(+)β-HBCD > (rac)β-HBCD > (−)β-HBCD;幼苗根系活力受到显著的抑制,(+)、(rac)和(−)β-HBCD处理组的抑制量均在最高暴露浓度时达到最大,分别较空白对照组减少了65.1%、39.7%和28.5%,推测${\rm{O}}_2^{\cdot -} $ 水平失衡,根系活力下降,是导致植物生长代谢受阻的重要影响因素。综上所有证据表明β-HBCD对玉米的生长代谢产生了对映体选择性影响,毒性顺序为(+)β-HBCD > (rac)β-HBCD > (−)β-HBCD。本研究对综合评价HBCD的环境行为和生态风险具有重要意义。Abstract: In order to explore the enantioselective effects of β-HBCD with different optical activity on plant growth metabolism, the optimized separation and preparation of (+) β-HBCD and (−) β-HBCD were performed by high performance liquid chromatography (HPLC). Hydroponic exposure experiments of maize seedlings were conducted at solutions of (+), (rac) and (−) β-HBCDs with different concentrations. The activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) (except for (−) β-HBCD treatments) and anthocyanin content in maize increased significantly at first and then decreased with the increasing exposure concentrations of β-HBCD, indicating that β-HBCD induced stress response of antioxidant enzyme system and non-enzymatic system in maize. The strongest induced effects on SOD, APX activity and anthocyanin level were found in (+) β-HBCD treatments, which reached 1.85, 5.26 and 3.55 times higher than blank control group in maize roots, respectively. The induced effects of (−) β-HBCD treatments were the smallest, reaching 1.63, 3.90 and 2.28 times higher than blank control group, respectively. The ROS balance in maize was destroyed, and${\rm{O}}_2^{\cdot -} $ level was significantly induced in the order of (+) β-HBCD > (rac) β-HBCD > (−) β-HBCD. The root activity of seedlings was significantly inhibited, and the maximum inhibition reached at the highest exposure concentration treatment, which decreased by 65.1%, 39.7% and 28.5%, respectively, compared with blank control group for (+), (rac) and (−) β-HBCD treatments. It is speculated that the imbalance of${\rm{O}}_2^{\cdot -} $ level and the decrease of root activity are the important factors that affect the growth and metabolism of plants. All the results demonstrated the significant enantioselective effects of β-HBCD on maize growth and metabolism with the toxicity order of (+) β-HBCD > (rac) β-HBCD > (−) β-HBCD. This study is of great significance for comprehensive assessment of the environmental behavior and ecological risk of HBCD.-
Key words:
- β-hexabromocyclododecanes /
- enantioselectivity /
- antioxidant enzyme /
- superoxide anion /
- root activity
-
-
[1] ZHANG Y Q, LI Q F, LU Y L, et al. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in north China: Correlation between diastereoisomer profiles and industrial activities [J]. Chemosphere, 2016, 148: 504-510. doi: 10.1016/j.chemosphere.2016.01.051 [2] SINDIKU O, BABAYEMI O, OSIBANJO O, et al. Polybrominated diphenyl ethers listed as Stockholm Convention POPs, other brominated flame retardants and heavy metals in e-waste polymers in Nigeria [J]. Environmental Science and Pollution Research, 2015, 22(19): 14489-14501. doi: 10.1007/s11356-014-3266-0 [3] ZHANG Y W, SUN H W, LIU F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure [J]. Chemosphere, 2013, 93(8): 1561-1568. doi: 10.1016/j.chemosphere.2013.08.004 [4] HUANG H L, WANG D, WAN W N, et al. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China: Occurrence, diastereomer- and enantiomer-specific profiles, and metabolization [J]. Environmental Science and Pollution Research, 2017, 24(27): 21625-21635. doi: 10.1007/s11356-017-9792-9 [5] XIANG N, CHEN L, MENG X Z, et al. Occurrence of hexabromocyclododecane (HBCD) in sewage sludge from Shanghai: Implications for source and environmental burden [J]. Chemosphere, 2015, 118: 207-212. doi: 10.1016/j.chemosphere.2014.08.058 [6] ZHANG Y W, SUN H W, ZHU H K, et al. Accumulation of hexabromocyclododecane diastereomers and enantiomers in two microalgae, Spirulina subsalsa and Scenedesmus obliquus [J]. Ecotoxicology and Environmental Safety, 2014, 104: 136-142. doi: 10.1016/j.ecoenv.2014.02.027 [7] WU T, WANG S, HUANG H L, et al. Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize [J]. Journal of Agricultural and Food Chemistry, 2012, 60(34): 8528-8534. doi: 10.1021/jf302682p [8] LUO X J, RUAN W, ZENG Y H, et al. Trophic dynamics of hexabromocyclododecane diastereomers and enantiomers in fish in a laboratory feeding study [J]. Environmental Toxicology and Chemistry, 2013, 32(11): 2565-2570. [9] PALACE V, PARK B, PLESKACH K, et al. Altered thyroxine metabolism in rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane (HBCD) [J]. Chemosphere, 2010, 80(2): 165-169. doi: 10.1016/j.chemosphere.2010.03.016 [10] HUANG X M, CHEN C, SHANG Y, et al. In vitro study on the biotransformation and cytotoxicity of three hexabromocyclododecane diastereoisomers in liver cells [J]. Chemosphere, 2016, 161: 251-258. doi: 10.1016/j.chemosphere.2016.07.001 [11] SZABO D T, DILIBERTO J J, HAKK H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma: Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2010 , 117: 282–293. [12] ZHANG X, HERGER A G, REN Z et al. Resistance effect of flavonols and toxicology analysis of hexabromocyclododecane based on soil-microbe-plant system [J]. Chemosphere, 2020, 257: 127248. doi: 10.1016/j.chemosphere.2020.127248 [13] HUANG H L, WANG D, WEN B, et al. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies [J]. Science of the Total Environment, 2019, 656: 364-372. doi: 10.1016/j.scitotenv.2018.11.351 [14] 武彤, 田柳, 崔建升, 等. 六溴环十二烷对映体对玉米的生理和基因损伤研究 [J]. 环境科学学报, 2018, 38(12): 4864-4872. WU T, TIAN L, CUI J S, et al. Physiological and genetic damage effects of hexabromocyclododecane enantiomers on maize [J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4864-4872(in Chinese).
[15] 崔建升, 刘颖, 武彤, 等. γ-六溴环十二烷对映体对玉米的氧化损伤 [J]. 环境化学, 2016, 35(9): 1762-1768. doi: 10.7524/j.issn.0254-6108.2016.09.2016012606 CUI J S, LIU Y, WU T, et al. Oxidative damage of γ-hexabromocyclododecane enantiomers to maize [J]. Environmental Chemistry, 2016, 35(9): 1762-1768(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.09.2016012606
[16] ZHANG X L, YANG F X, CHAO X, et al. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell [J]. Toxicology in Vitro, 2008, 22(6): 1520-1527. doi: 10.1016/j.tiv.2008.05.006 [17] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding [J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. [18] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels [J]. Analytical Biochemistry, 1971, 44(1): 276-287. doi: 10.1016/0003-2697(71)90370-8 [19] NAKANO, Y, ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867-880. [20] JABS T, DIETRICH R A, DANGL J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide [J]. Science (New York, N. Y. ), 1996, 273(5283): 1853-1856. doi: 10.1126/science.273.5283.1853 [21] YAMAUCHI T, WATANABE K, FUKAZAWA A, et al. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions [J]. Journal of Experimental Botany, 2014, 65(1): 261-273. doi: 10.1093/jxb/ert371 [22] 刘冬峰. 砂梨对高温胁迫的响应及耐热机理研究[D]. 杭州: 浙江大学, 2014: 1-131. LIU D F. Studies on the resoponse of sand pear to high-temperature and high-tolerance mechanism[D], Hangzhou: Zhejiang University, 2014: 1-131 (in Chinese).
[23] FANG S, TAO Y, ZHANG Y Z, et al. Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings [J]. Chirality, 2018, 30(4): 469-474. doi: 10.1002/chir.22810 [24] LIU X L, ZHANG S Z, SHAN X Q, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination [J]. Ecotoxicology and Environmental Safety, 2007, 68(2): 305-313. doi: 10.1016/j.ecoenv.2006.11.001 [25] HUANG H L, ZHANG S Z, LV J T, et al. Experimental and theoretical evidence for diastereomer- and enantiomer-specific accumulation and biotransformation of HBCD in maize roots [J]. Environmental Science & Technology, 2016, 50(22): 12205-12213. [26] HONG H Z, LV D M, LIU W X, et al. Toxicity and bioaccumulation of three hexabromocyclododecane diastereoisomers in the marine copepod Tigriopus japonicas [J]. Aquatic Toxicology, 2017, 188: 1-9. doi: 10.1016/j.aquatox.2017.04.010 [27] 蔡珊, 黄亚梅, 张易华, 等. 花青素生理活性及其抗氧化机制 [J]. 陕西农业科学, 2018, 64(12): 40-43. doi: 10.3969/j.issn.0488-5368.2018.12.011 CAI S, HUANG Y M, ZHANG Y H, et al. Physiological activity and antioxidant mechanism of anthocyanin [J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(12): 40-43(in Chinese). doi: 10.3969/j.issn.0488-5368.2018.12.011
[28] BANERJEE B D, SETH V, AHMED R S. Pesticide-induced oxidative stress: perspectives and trends [J]. Reviews on Environmental Health, 2001, 16(1): 1-40. doi: 10.1515/REVEH.2001.16.1.1 [29] XU C M, CHEN L P, CHEN S, et al. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice [J]. Annals of Applied Biology, 2020, 177(1): 61-73. doi: 10.1111/aab.12589 [30] 李志霞, 秦嗣军, 吕德国, 等. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展 [J]. 植物生理学报, 2011, 47(10): 957-966. LI Z X, QIN S J, LV D G, et al. Research progress in root respiratorymetabolism of plant and the environmental influencing factors [J]. Plant Physiology Journal, 2011, 47(10): 957-966(in Chinese).
[31] CSERESNYÉS I, RAJKAI K, TAKÁCS T. Indirect monitoring of root activity in soybean cultivars under contrasting moisture regimes by measuring electrical capacitance [J]. Acta Physiologiae Plant, 2016, 38(5): 1-21. doi: 10.1007/s11738-016-2149-z [32] ZHANG H, LIU X L, ZHANG R X, et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L. ) [J]. Frontiers in Plant Science, 2017, 8: 1580. doi: 10.3389/fpls.2017.01580