-
罗丹明B(RhB)又称玫瑰红B,水溶液呈碱性,性质稳定,具有致畸、致癌和诱变性,广泛应用于有色玻璃,纺织、涂料等行业。由于其难以被生物降解,若富含RhB的废水未经有效处理直接排放,将会对人类身体健康和环境造成潜在危害[1-2]。近年来,研究者们越发关注过硫酸盐(PS)高级氧化技术,这是因为PS被活化后能产生强氧化性的
$ {\rm{SO}}_4^ - \cdot $ ,可以无选择性地降解水中的有机污染物,具有反应高效,无污染等特点[3]。截至目前,已知活化PS的方式有:热活化、紫外活化、电活化、过渡金属活化和炭活化等[3-4]。生物炭是生物质残渣(植物、果壳、木屑等)限氧热解产生的一种炭材料[5],与活性炭结构相似,利用其活化PS,不仅成本更低,且自身的吸附性能可以协同去除水中污染物[6]。而作为一种重要的农业废弃物资源,目前以动物粪便为原料制备生物炭的研究较少,随着我国规模化养殖业迅速发展,畜禽粪便的不合理排放已经成为农业面源污染的主要来源,需要迫切的解决其带来的环境污染问题[7-8]。
因此,本研究以RhB为目标污染物,选用猪粪为原料制备生物炭,利用“硫酸/氢氧化钾+超声波+高温活化”进行改性处理,对材料进行表征分析,探寻其活化PS去除RhB的最优体系及影响因素,以期获得一种低成本的废水处理方法,达到以废治废的目的。
改性猪粪制生物炭活化过硫酸盐(PS)去除罗丹明B
Removal of Rhodamine B by modified pig manure made biochar-activated persulfate(PS)
-
摘要: 为了探究生物炭活化过硫酸盐(PS)去除罗丹明B(RhB)的效能,实验以猪粪为原料,采用限氧热解法(700 ℃)制备生物炭并进行酸碱改性,通过扫描电镜(SEM),比表面积分析仪(BET),傅里叶红外光谱仪(FTIR)和X射线衍射仪(XRD)对材料进行了表征分析,同时探究了生物炭吸附RhB的机理以及作为催化剂活化PS脱色RhB的最佳体系,影响因素和反应机制。结果表明,改性后生物炭的比表面积,总孔体积显著增加,含有丰富的含氧官能团;生物炭吸附RhB的过程受表面吸附和颗粒内扩散共同控制,更符合二级动力学,是一种化学吸附过程;体系“SBC(硫酸改性生物炭)+PS”脱色RhB的效果最优,酸性条件更有利于反应进行,RhB去除率随着生物炭和PS投加量的增大而增大; SBC重复利用效能良好,可以作为活化PS的有效催化剂,体系“SBC+PS”中可能同时存在自由基和非自由基两种机制协同降解RhB。综上,本研究致力于探索一种低成本的废水处理方案,以期达到以废治废的目的。Abstract: In order to investigate the effectiveness of biochar activated persulfate (PS) for Rhodamine B (RhB) removal, biochar was prepared by oxygen-limited pyrolysis (700 ℃) using pig manure as raw material and modified with acid-base. The paper also investigated the mechanism of RhB adsorption on biochar and the optimal system for the activation of PS decolorization of RhB as a catalyst, the influencing factors and the reaction mechanism. The results showed that, The specific surface area and total pore volume of the modified biochar increased significantly and contained abundant oxygen-containing functional groups; The adsorption of RhB by biochar was controlled by both surface adsorption and intraparticle diffusion, which was more in line with secondary kinetics and was a chemisorption process; The "SBC (Sulfuric acid-modified biochar)+PS" system has the best effect on RhB decolorization, the acidic condition is more favorable to the reaction, and the removal rate of RhB increases with the increase of biochar and PS dosage; SBC has good reuse efficiency and can be used as an effective catalyst for activation of PS, and there may be both free radicals and non-free radicals in the "SBC+PS" system. In conclusion, this study is dedicated to explore a low-cost solution for wastewater treatment in order to achieve the goal of treating waste with waste.
-
Key words:
- biochar from pig manure /
- persulfate /
- Rhodamine B /
- modified
-
表 1 生物炭的表面特征测试结果
Table 1. Test results of surface characteristics of biochar
比表面积/(m2·g−1)
Specific surface area孔容/( cm3·g−1)
Pore volume微孔孔容/(cm3·g−1)
Micropore volume平均孔径/nm
Average pore diameterBC 17.756 0.052 0.005 11.824 KBC 73.965 0.103 0.022 5.576 SBC 106.611 0.193 0.013 7.236 表 2 生物炭吸附RhB的一级、二级动力学模型拟合参数
Table 2. Primary and secondary kinetic model fitting parameters for RhB adsorption on biochar
一级动力学模型
Primary kinetic model二级动力学模型
Secondary kinetic modelqe1/(mg·g−1) k1/[g·(mg·h−1)] $R_1^2$ qe2/(mg·g−1) k2/[g·(mg·h−1)] $R_2^2$ BC 9.007 0.091 0.939 9.437 0.015 0.990 KBC 12.254 0.230 0.919 12.702 0.031 0.969 SBC 19.111 0.117 0.894 20.042 0.009 0.968 表 3 生物炭吸附RhB的颗粒扩散模型拟合参数
Table 3. Fitting parameters of particle diffusion model for RhB adsorption by biochar
颗粒扩散模型
Particle diffusion modelk1/[mg·g−1·h−1/2] c1 R2 k2/[mg·g−1·h−1/2] c2 R2 BC 0.466 4.210 0.916 0.035 8.626 0.877 KBC 0.335 8.788 0.983 0.024 12.474 0.935 SBC 0.823 10.385 0.975 0.053 19.159 0.867 -
[1] 刘琦, 陈嘉磊, 张启灵, 等. 稻壳灰吸附剂对罗丹明B的吸附性能研究 [J]. 化学研究与应用, 2019, 31(8): 1482-1491. doi: 10.3969/j.issn.1004-1656.2019.08.013 LIU Q, CHEN J L, ZHANG Q L, et al. Studies on the adsorption of Rhodamine B by rice husk ash adsorbent [J]. Chemical Research and Application, 2019, 31(8): 1482-1491(in Chinese). doi: 10.3969/j.issn.1004-1656.2019.08.013
[2] RICHARDSON S D, WILLSON C S, RUSCH K A. Use of rhodamine water tracer in the marshland upwelling system [J]. Ground Water, 2004, 42(5): 678-688. doi: 10.1111/j.1745-6584.2004.tb02722.x [3] 王行梁, 李晓良, 王子, 等. 硫酸根自由基高级氧化技术的发展及应用[J]. 现代化工, 2020, 40(增刊1): 49-53. WANG X L, LI X L, WANG Z, et al. Development and application of advanced oxidation technology based on sulfate radical[J]. Modern Chemical Industry, 2020, 40(Sup 1): 49-53(in Chinese).
[4] 王肖磊, 吴根华, 方国东, 等. 过渡金属活化过硫酸盐在环境修复领域的研究进展 [J]. 生态与农村环境学报, 2021, 37(2): 145-154. WANG X L, WU G H, FANG G D, et al. Transition metal activated persulfate for environmental remediation: A review [J]. Journal of Ecology and Rural Environment, 2021, 37(2): 145-154(in Chinese).
[5] AZARGOHAR R, DALAI A K. Biochar as a precursor of activated carbon [J]. Applied Biochemistry and Biotechnology, 1996, 131(1/2/3): 762-773. [6] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. [7] 孙良媛, 刘涛, 张乐. 中国规模化畜禽养殖的现状及其对生态环境的影响 [J]. 华南农业大学学报(社会科学版), 2016, 15(2): 23-30. SUN L Y, LIU T, ZHANG L. The pollution of scale livestock and poultry breeding and its influence on eco-environment [J]. Journal of South China Agricultural University (Social Science Edition), 2016, 15(2): 23-30(in Chinese).
[8] 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析 [J]. 中国工程科学, 2018, 20(5): 103-111. doi: 10.15302/J-SSCAE-2018.05.016 WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China [J]. China Engineering Science, 2018, 20(5): 103-111(in Chinese). doi: 10.15302/J-SSCAE-2018.05.016
[9] 陈佼, 张建强, 陆一新, 等. 改性猪粪生物炭对水中Cr(Ⅵ)的吸附性能 [J]. 水处理技术, 2017, 43(4): 31-35,41. CHEN J, ZHANG J Q, LU Y X, et al. Adsorption properties of Cr(Ⅵ) in aquatic solutions by modified pig manure biochar [J]. Technology of Water Treatment, 2017, 43(4): 31-35,41(in Chinese).
[10] LIU X Q, DING H S, WANG Y Y, et al. Pyrolytic temperature dependent and ash catalyzed formation of sludge char with ultra-high adsorption to 1-naphthol [J]. Environmental Science & Technology, 2016, 50(5): 2602-2609. [11] WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism [J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059 [12] LIANG C J, LIN Y T, SHIN W H. Persulfate regeneration of trichloroethylene spent activated carbon [J]. Journal of Hazardous Materials, 2009, 168(1): 187-192. doi: 10.1016/j.jhazmat.2009.02.006 [13] 桑倩倩, 王芳君, 赵元添, 等. 铁硫改性生物炭去除水中的磷 [J]. 环境科学, 2021, 42(5): 2313-2323. SANG Q Q, WANG F J, ZHAO Y T, et al. Removal of phosphorus from water by iron-sulfur modified biochar [J]. Environmental Science, 2021, 42(5): 2313-2323(in Chinese).
[14] 李艳春, 张鹏会, 张强, 等. 4种生物炭对阳离子染料吸附性能 [J]. 环境科学与技术, 2020, 43(7): 101-110. LI Y C, ZHANG P H, ZHANG Q, et al. Adsorption of cationic dye in aqueous solution by four biochars [J]. Environmental Science & Technology, 2020, 43(7): 101-110(in Chinese).
[15] SANTAMARINA J C, KLEIN K A, WANG Y H, et al. Specific surface: Determination and relevance [J]. Canadian Geotechnical Journal, 2002, 39(1): 233-241. doi: 10.1139/t01-077 [16] ZHANG S Q, YANG X, LIU L, et al. Adsorption behavior of selective recognition functionalized biochar to Cd(Ⅱ) in wastewater [J]. Materials (Basel, Switzerland), 2018, 11(2): E299. doi: 10.3390/ma11020299 [17] 任洁青, 王朝旭, 张峰, 等. 改性稻壳生物炭对水中Cd2+的吸附性能研究 [J]. 生态与农村环境学报, 2021, 37(1): 73-79. REN J Q, WANG C X, ZHANG F, et al. Adsorption of Cd2+ from aqueous solution by modified rice husk-derived biochars [J]. Journal of Ecology and Rural Environment, 2021, 37(1): 73-79(in Chinese).
[18] 崔志文, 任艳芳, 王伟, 等. 碱和磁复合改性小麦秸秆生物炭对水体中镉的吸附特性及机制 [J]. 环境科学, 2020, 41(7): 3315-3325. CUI Z W, REN Y F, WANG W, et al. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar [J]. Environmental Science, 2020, 41(7): 3315-3325(in Chinese).
[19] 罗元, 谢坤, 冯弋洋, 等. 镧改性核桃壳生物炭制备及吸附水体磷酸盐性能 [J]. 化工进展, 2021, 40(2): 1121-1129. LUO Y, XIE K, FENG Y Y, et al. Preparation of lanthanum modified walnut shell biochar and adsorption of phosphate from aqueous solutions [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1121-1129(in Chinese).
[20] 桂向阳, 刘晨, 许吉宏, 等. 畜禽粪便生物炭的二维红外光谱分析 [J]. 光谱学与光谱分析, 2020, 40(11): 3606-3612. GUI X Y, LIU C, XU J H, et al. Two-dimensional perturbation correlation infrared spectroscopy analysis of animal manure biochar [J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3606-3612(in Chinese).
[21] 许利娜, 杨小华, 丁海阳, 等. 生物基N, S双掺杂荧光碳点的制备及其应用 [J]. 高校化学工程学报, 2019, 33(4): 951-956. doi: 10.3969/j.issn.1003-9015.2019.04.022 XU L N, YANG X H, DING H Y, et al. Synthesis and application of bio-based N, S co-doped fluorescent carbon dots [J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(4): 951-956(in Chinese). doi: 10.3969/j.issn.1003-9015.2019.04.022
[22] GU W, LI X D, XING M C, et al. Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III) [J]. Science of the Total Environment, 2018, 619/620: 42-48. doi: 10.1016/j.scitotenv.2017.11.098 [23] 姚淑华, 马锡春, 李士凤. 秸秆生物炭活化过硫酸盐氧化降解苯酚 [J]. 中国环境科学, 2018, 38(11): 4166-4172. doi: 10.3969/j.issn.1000-6923.2018.11.023 YAO S H, MA X C, LI S F. Straw biochar activated persulfate oxidation and degradation of phenol [J]. China Environmental Science, 2018, 38(11): 4166-4172(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.11.023
[24] 吴瑶. 水稻秸秆生物炭协同过硫酸钠降解水中苯胺和罗丹明B的效果与机制研究[D]. 南京: 南京农业大学, 2018. WU Y. Rapid degradation of aniline and rhodamine B in aqueous solution by persulfate combined with rice straw biochar and their mechanisms[D]. Nanjing: Nanjing Agricultural University, 2018(in Chinese).
[25] CHEN L Q, ZHANG Z H, WANG Y J, et al. Photocatalytic properties and electrochemical characteristic of a novel biomimetic oxygenase enzyme photocatalyst iron(II) tetrahydroxymethyl Tetra(1, 4-dithiin) porphyrazine for the degradation of organic pollutants [J]. Journal of Molecular Catalysis A:Chemical, 2013, 372: 114-120. doi: 10.1016/j.molcata.2013.02.013 [26] 刘冬冬, 李金铭, 赵博骏, 等. 秸秆水热炭与热裂解炭结构表征及铅吸附机制研究 [J]. 农业机械学报, 2020, 51(12): 304-314. doi: 10.6041/j.issn.1000-1298.2020.12.033 LIU D D, LI J M, ZHAO B J, et al. Pb2+ absorption mechanism and structure characterization of hydrochar and pyrochar from straw [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 304-314(in Chinese). doi: 10.6041/j.issn.1000-1298.2020.12.033
[27] 施超, 冯景伟, 彭书传, 等. 活性炭纤维对水中罗丹明B的吸附性能 [J]. 环境化学, 2013, 32(3): 394-401. SHI C, FENG J W, PENG S C, et al. Adsorption propreties of Rhodamine B by activater carbon fiber in aqueous solutions [J]. Environmental Chemistry, 2013, 32(3): 394-401(in Chinese).
[28] 王艳, 杨硕, 张米雪, 等. ZnFe/BC活化过硫酸盐降解金橙Ⅱ [J]. 环境化学, 2018, 37(12): 2630-2637. doi: 10.7524/j.issn.0254-6108.2018042504 WANG Y, YANG S, ZHANG M X, et al. Degradation of Orange Ⅱ by ZnFe/BC catalyzed persulfate [J]. Environmental Chemistry, 2018, 37(12): 2630-2637(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042504
[29] 王章鸿, 郭海艳, 沈飞, 等. 蚯蚓粪便制备生物炭及其对罗丹明B吸附的研究 [J]. 环境科学学报, 2015, 35(10): 3170-3177. WANG Z H, GUO H Y, SHEN F, et al. Production of biochar by vermicompost carbonization and its adsorption to Rhodamine-B [J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3170-3177(in Chinese).
[30] 李飞跃, 桂向阳, 刘晨, 等. 改性生物炭催化过硫酸盐脱色金橙Ⅱ [J]. 环境污染与防治, 2018, 40(11): 1207-1213. LI F Y, GUI X Y, LIU C, et al. Decoloration of dye acid orange 7 by modified biochar catalyzed persulfate [J]. Environmental Pollution & Control, 2018, 40(11): 1207-1213(in Chinese).
[31] YAN J C, LEI M, ZHU L H, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate [J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404. [32] VELO-GALA I, LÓPEZ-PEÑALVER J J, SÁNCHEZ-POLO M, et al. Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation [J]. Applied Catalysis B:Environmental, 2017, 207: 412-423. doi: 10.1016/j.apcatb.2017.02.028 [33] HU X Y, ZHOU K F, CHEN B Y, et al. Graphene/TiO2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity [J]. Applied Surface Science, 2016, 362: 329-334. doi: 10.1016/j.apsusc.2015.10.192