-
环境持久性自由基(environmental persistent free radicals,EPFRs)是一类有较长寿命的自由基,广泛存在于大气颗粒物[1-2]、土壤[3]、飞灰[4]、生物炭[5]、石油[6]、焦炭[7]等环境介质中. EPFRs具有较强的氧化活性,一旦进入肌体,会对人体健康造成不利影响.近年来,随着经济的快速发展,我国环境空气质量恶化,城市灰霾现象频发. PM2.5浓度升高是导致的城市灰霾的主要原因,PM2.5的来源和组成非常复杂,已成为现阶段大气环境化学研究的热点和难点[8-10].
PM2.5不仅恶化环境空气质量,还能危害人体健康. 这因为一方面PM2.5是一些有毒有害物质的载体,如含有一些有机物、金属等污染物,另一方面PM2.5是一些大气污染物的转化媒介[11-13],如PM2.5会改变一些气态污染物的大气迁移转化行为. 有关PM2.5的化学组分分析,现阶段大多集中在有机碳(organic carbon,OC)、元素碳(elementary carbon,EC)、水溶性离子
${\rm{NO}}_3^- $ 、${\rm{SO}}_4^{2-} $ 、Cl−、${\rm{NH}}_4^+ $ 、Na+、K+、Ca2+、Mg2+等)、金属元素(Al、Fe、Cu、Pb、V等)以及有机单体等,少量课题组开展了PM2.5中EPFRs的测定.这些研究结果表明,EPFRs浓度具有很强的季节分布特征,更易存在于超细颗粒物中,且EPFRs常伴含金属和芳香族有机物[14-15]。此外,EPFRs表现出较强的大气稳定性及生物毒性[16-19]. 虽然,这些研究使我们对PM2.5中EPFRs有了初步的认识,但对EPFRs的组成、来源认知较为匮乏,对EPFRs的大气迁移、转化规律的研究则更少.本研究在北京市怀柔区进行了大气环境PM2.5样品的采集,分析了PM2.5中EPFRs和共存的化学组分,探讨了EPFRs与共存化学组分的相关关系,并结合气态污染物和气象参数信息,研究了EPFRs及共存组分的变化规律和来源.
北京怀柔PM2.5中环境持久性自由基及共存健康风险物质的污染特征
Pollution characteristics of environmental persistent free radicals and coexisting health risk substances in PM2.5 in Huairou, Beijing
-
摘要: 北京怀柔科学城的建设加快了区域城市化的进程.为探究此过程对空气质量的影响,于2018年在怀柔地区采集了大气PM2.5样品,分析了PM2.5中环境持久性自由基(environmental persistent free radicals, EPFRs)及其共存组分的季节变化特征.结果表明,冬、春、夏、秋四季EPFRs的浓度数量级均为1013 spins·m−3,呈现春>冬>秋>夏的分布特征;冬、春、秋季的g因子均值为2.0038,夏季为2.0035,表明EPFRs主要是含氧的碳中心自由基或碳中心、氧中心自由基混合态;夏季g因子均值略低且分布广,可能因为夏季大气光化学反应活跃、大气热力交换剧烈.利用回归分析和物种示踪法,解析出冬季EPFRs主要源自机动车尾气和燃煤排放;春季风起扬尘对EPFRs浓度有显著影响. PM2.5中含碳物质(OC、EC)均呈现冬≈春>秋≈夏的分布特征,夏季OC/EC日间变化幅度最大;
${\rm{NO}}_3^- $ 、$ {\rm{SO}}_4^{2-}$ 及${\rm{NH}}_4^{+} $ 是PM2.5中水溶性离子的主要成分,但三者的季节分布特征有显著差异;PM2.5中金属元素均呈现春>冬>秋>夏的分布特征,且少许金属的人为来源主要是燃煤和机动车尾气.Abstract: The construction of Beijing Huairou Science City has accelerated the process of regional urbanization. In order to explore the impact of this process on air quality, atmospheric PM2.5 samples were collected in Huairou in 2018, and environmental persistent free radicals in PM2.5 were analyzed (Environmental Persistent Free Radicals, EPFRs) and the seasonal variation characteristics of their coexisting components. The results show that the concentration of EPFRs in the four seasons of winter, spring, summer, and autumn are all 1013 spins·m−3, showing spring>winter>autumn>summer Distribution characteristics; the mean g-factor in winter, spring, and autumn is 2.0038 and 2.0035 in summer, indicating EPFRs mainly exist in the form of oxygen-containing carbon center free radicals or the mixture of carbon center and oxygen center free radicals; the mean value of g-factor in summer is slight low and wide distribution due to higher photochemical reaction rate and more frequent convection in summer. EPFRs in winter are mainly from vehicle exhaust and coal-burning emissions via regression analysis and chemical-tracer method; the dust raised by the spring wind has a significant impact on the concentration of EPFRs. PM2.5 Carbon-containing substances (OC, EC) all present the distribution characteristics of winter≈spring>autumn≈summer, and the OC/EC changes the most during the day in summer;${\rm{NO}}_3^- $ ,${\rm{SO}}_4^{2-} $ and${\rm{NH}}_4^{+} $ are the water-soluble ions in PM2.5 The main components, but the seasonal distribution characteristics of the three are significantly different; the seasonal trends of all metal elements in PM2.5 are spring>winter>autumn>summer, and the results of the enrichment factor show that the mainly anthropogenic sources of metals are coal-burning and vehicle exhaust. -
表 1 水溶性离子的四季浓度(μg·m−3)
Table 1. Seasonal concentrations of water-soluble ions(μg·m−3)
春
Spring夏
Summer秋
Autumn冬
Winter全年
All year$ {\rm{NO}}_3^{-}$ 5.02 2.59 4.76 3.82 4.04 $ {\rm{SO}}_4^{2-}$ 1.84 4.12 1.37 1.07 1.38 $ {\rm{NH}}_4^{+}$ 1.70 2.30 2.22 1.52 0.38 Na+ 0.22 0.18 0.09 0.20 0.05 K+ 0.28 0.16 0.26 0.29 0.05 Mg2+ 0.14 0.35 0.06 0.07 0.13 Ca2+ 1.23 0.55 0.55 0.56 0.33 Cl- 0.26 0.16 0.07 0.82 0.33 SNA/WSIIs 80.16% 86.59% 88.94% 76.76% 83.25% SNA., 离子 、${\rm{NO}}_3^{-} $ 和$ {\rm{SO}}_4^{2-}$ 质量浓度之和;WSIIs., 所测八种水溶性离子质量浓度之和。$ {\rm{NH}}_4^{+}$
SNA., the sum of mass concentrations of sulfate, nitrate and ammonium; WSIIs., the sum of mass concentrations of eight water-soluble ions.表 2 金属元素的全年浓度均值及EF值
Table 2. The average annual concentration of metal elements and their EF values
元素
Elements观测质量浓度
C sample/(ng·m−3)地壳含量[21]
C crust/(mg·kg−1)富集因子(EF) 春
Spring夏
Summer秋
Autumn冬
Winter全年
All yearFe 312.40±272.99 ~29700 6.4 0.3 2.5 2.5 2.9 Al 251.62±263.94 ~69900 1 1 1 1 1 K 243.21±126.84 ~19300 4.2 0.8 4.9 4.1 3.5 Ca 197.04±123.93 ~15200 6.1 0.6 4.3 3.4 3.6 Mg 109.63±97.71 ~12700 5.4 0.3 1.9 2.1 2.4 Na 103.69±57.62 ~13100 2.2 0.6 2.5 3.5 2.2 Zn 25.69±11.39 102.6 52.5 42.5 112.3 71.0 69.5 Mn 11.20±4.49 705 6.1 1.9 4.9 4.7 4.4 Cu 3.34±1.86 23.6 31.6 17.2 69.1 39.5 39.4 Cr 2.48±2.14 68.1 6.4 2.2 22.5 9.4 10.1 Rb 0.79±0.36 99 2.8 0.7 2.5 2.8 2.2 As 1.02±0.3 9.7 30.1 18.5 39.4 29.2 29.3 V 0.87±0.28 79.2 4.5 2.6 2.6 2.4 3.0 Ni 1.32±0.66 29.0 8.4 6.2 19.0 17.0 12.6 Cd 0.21±0.08 0.074 672.0 421.2 905.1 1123.6 780.5 Pb 10.85±5.34 25.4 96.5 48.0 150.5 179.8 118.7 -
[1] YANG L, LIU G R, ZHENG M H, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere [J]. Environmental Science & Technology, 2017, 51: 7936-7944. [2] ARANGIO A M, TONG H J, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles [J]. Atmospheric Chemistry and Physics, 2016, 16: 13105-13119. doi: 10.5194/acp-16-13105-2016 [3] DELA C, COOK, ROBERT L, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals [J]. Environmental Science & Technology, 2012, 46: 5971-5978. [4] CHEN Q C, WANG M M, SUN H Y, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China [J]. Environment International, 2018, 121: 260-268. doi: 10.1016/j.envint.2018.09.012 [5] RUAN X X, SUN Y Q, DU W M, et al. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review [J]. Bioresource Technology, 2019, 281: 457-468. doi: 10.1016/j.biortech.2019.02.105 [6] KIRURI L W, DELLINGER B, LOMNICKI S, et al. Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering [J]. Environmental Science & Technology, 2013, 47: 4220-4226. [7] INGRAM DJE, TAPLEY J G, JACKSON R, et al. Paramagnetic resonance in carbonaceous solids [J]. Nature, 1954, 174: 797-798. doi: 10.1038/174797a0 [8] GUAN L F, GENG X K, SHEN J M, et al. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids [J]. Oncotarget, 2018, 9(3): 3765-3778. doi: 10.18632/oncotarget.23347 [9] TALBI A, KERCHICH Y, KERBACHI R, et al. Assessment of annual air pollution levels withPM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria [J]. Environmental Pollution, 2018, 232: 252-263. doi: 10.1016/j.envpol.2017.09.041 [10] CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi'an, Northwestern China [J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015 [11] BALAKRISHNA, LOMINCLI, MCAVEY K M, et al. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity [J]. Particle and Fibre Toxicology, 2009, 6: 14. doi: 10.1186/1743-8977-6-14 [12] WANG Y Q, LI S P, WANG M M, et al. Source apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi'an, China [J]. Science of the Total Environment, 2019, 689: 193-202. doi: 10.1016/j.scitotenv.2019.06.424 [13] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 第二版. 北京: 高等教育出版社, 2006: 75-721. TANG X Y, ZHANG Y H, SHAO M, et al. Atmospheric environmental chemistry[M]. The Second Edition. Beijing: Higher Education Press, 2006 : 75-721 ( in Chinese) .
[14] FELD COOK, BOVENKAMP, LISA, et al. Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation [J]. Environmental Science & Technology, 2007, 51: 10396-10402. [15] GEHLING W, DELLIGINER B. Environmentally persistent free radicals and their lifetimes in PM2.5 [J]. Environmental Science & Technology, 2013, 47: 8172-8178. [16] DOU J, LIN P, KUANG B Y, et al. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: enhancement effects by pyridine, imidazole, and their derivatives [J]. Environmental Science & Technology, 2015, 49: 6457-6465. [17] LAKEY, BERKEMEIER, TONG H J, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract[J]. Scientific Reports2016, 6: 1-6. [18] KELLY, FUSSELL, JULIA C, et al. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter [J]. Atmospheric Environment, 2012, 60: 504-526. doi: 10.1016/j.atmosenv.2012.06.039 [19] SARAVIA J, LEE G I, LOMNICKI S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: A review [J]. Journal of Biochemical & Molecular Toxicology, 2013, 27(1): 56-68. [20] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. China Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[21] 李豪, 陈庆彩, 孙浩堯. 西安市PM2.5中环境持久性自由基污染特征 [J]. 中国环境科学, 2020, 40(3): 967-974. doi: 10.3969/j.issn.1000-6923.2020.03.005 Li H, CHEN Q C, SUN H Y. Characteristics of persistent free radical pollution in PM2.5 of Xi'an City [J]. China Environmental Science, 2020, 40(3): 967-974(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.03.005
[22] WANG C, HUANG Y P, et al. Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves[J]Environmental Pollution, 2020, 257: 1-10. [23] JIA H Z, LI S S, WU L, et al. Cytotoxic Free radicals on air-borne soot particles generated by burning wood or low-maturity coals[J]Environmental Science & Technology, 2020, 54: 5608-5618. [24] XU Y, YANG L L, WANG X P, et al. Risk evaluation of environmentally persistent free radicals in airborne particulate matter and influence of atmospheric factors[J]Ecotoxicology and Environmental Safety, 2020, 196: 1-9. [25] DELLINGER B, LONINICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31: 521-528. doi: 10.1016/j.proci.2006.07.172 [26] 王庆良, 李倩倩, 童东革, 等. 光化学反应中自由基的作用及反应影响因素的研究进展 [J]. 环境化学, 2020, 39(2): 301-316. doi: 10.7524/j.issn.0254-6108.2019061802 WANG Q L, LI Q Q, TONG D G, et al. Research progress on the role of free radicals in photochemical reactions and reaction factors [J]. Environmental Chemistry, 2020, 39(2): 301-316(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061802
[27] 杨莉莉, 郑明辉, 许杨, 等. 环境持久性自由基的污染特征与生成机理 [J]. 中国科学:化学, 2018, 48(10): 1226-1235. YANG L L, ZHENG M H, XU Y, et al. Pollution characteristics and generation mechanism of environmental persistent free radicals [J]. Science in China:Chemistry, 2018, 48(10): 1226-1235(in Chinese).
[28] 赵力, 梁妮, 张绪超, 等. 不同热处理条件对亚麻酸中持久性自由基产生的影响[J]. 环境化学, 2019, 38(6): 1207-1213. ZHAO L, LIANG N, ZHANG X C, et al. The effect of different heat treatment conditions on the generation of persistent free radicals in linolenic acid[J]Environmental Chemistry, 2019, 38(6): 1207-1213(in Chinese).
[29] 乔宝文, 刘子锐, 胡波, 等. 北京冬季 PM2.5中金属元素浓度特征和来源分析 [J]. 环境科学, 2017, 38(3): 876-883. QIAO B W, LIU Z R, HU B, et al. Concentration characteristics and source analysis of metal elements in PM2.5 in winter in Beijing [J]. Environmental Science, 2017, 38(3): 876-883(in Chinese).
[30] WATSON J G, CHOW J C, HOUCK J E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995[J]Chemosphere, 2001, 43 : 1141-1151. [31] ZHANG Y Y, SHAO M, ZHANG Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings [J]. Environmental Science, 2007, 19: 167-175. doi: 10.1016/S1001-0742(07)60027-8 [32] ZHANG Y Y, SCHAUER J J, ZHANG Y H, et al. Characteristics of particulate carbon emissions from real-world Chinese coal combustion [J]. Environmental Science & Technology, 2008, 42: 5068-5073. [33] LU K D, FUCHS H, HOFZUMAHAUS, et al. Fast photochemistry in wintertime haze: consequences for pollution mitigation strategies [J]. Environmental Science & Technology, 2019, 53: 10676-10684. [34] 姬亚芹, 朱坦, 冯银厂, 等. 应用地质累积指数分析城市颗粒物源解析土壤风沙尘的污染 [J]. 农业环境科学学报, 2006, 25(4): 949-953. doi: 10.3321/j.issn:1672-2043.2006.04.026 JI Y Q, ZHU T, FENG Y C, et al. Pollution analysis of soil dusts of source apportionment using geo accumulation index (Igeo)in China [J]. Journal of Agro-Environment Science, 2006, 25(4): 949-953(in Chinese). doi: 10.3321/j.issn:1672-2043.2006.04.026
[35] TOSCANO G, MORET I, GAMBARO A, et al. Distribution and seasonal variability of trace elements in atmospheric particulate in the Venice Lagoon [J]. Chemosphere, 2011, 85(9): 1518-1524. doi: 10.1016/j.chemosphere.2011.09.045 [36] TIAN H Z, WANG Y, XUE Z G, et al. Trend and characteristics of atmospheric emissions of Hg, S and Se from coal combustion in China, 1980—2007 [J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11905-11919. doi: 10.5194/acp-10-11905-2010 [37] 谭吉华, 段菁春. 中国大气颗粒物重金属污染、来源及控制建议 [J]. 中国科学院研究生院学报, 2013, 30(2): 145-155. TAN J H, DUAN J C. Pollution, sources and control recommendations of heavy metals in China's atmospheric particulate matter [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2013, 30(2): 145-155(in Chinese).
[38] 夏志勇, 侯鲁健, 高素莲, 等. 济南市PM2.5中金属元素的污染特征、潜在生态风险及来源分析 [J]. 生态环境学报, 2020, 29(5): 971-976. XIA Z Y, HOU L J, GAO SU L, et al. Pollution characteristics, potential ecological risks and source analysis of metal elements in PM2.5in Jinan City [J]. Journal of Eco-Environment, 2020, 29(5): 971-976(in Chinese).