-
近年来,我国城市近地面大气臭氧(ozone,O3)污染形势严峻,尤其是在夏季,臭氧已成为导致部分城市空气质量超标的首要污染因子。挥发性有机物(volatile organic compounds,VOCs)和氮氧化物(nitrogen oxides,NOx)的光化学反应是对流层臭氧的主要来源[1-2]。NOx主要来自于发电厂、燃煤锅炉、机动车等排放过程,经过严格治理,近年来全国的NOx 污染状况明显转好,据2015—2019年《中国生态环境状况公报》报道,全国337个城市NO2超标天数比例从2015的1.6%降至2019年的0.6%,但是臭氧污染问题仍然突出,2019年全国337个城市O3-8 h年均浓度为148 μg·m−3,较2015年上升10.45%[3]。VOCs作为臭氧和二次有机气溶胶(secondary organic aerosol,SOA)生成的重要前体物被广泛关注。VOCs来源十分广泛,主要分为天然源和人为源两大类。天然源主要有植物排放,人为源主要有燃料燃烧、溶剂使用、机动车尾气排放、汽油等液体燃料挥发、工业排放等[4]。VOCs成分复杂,包含数百种组分,每种组分具有不同的光化学反应活性,因此,研究挥发性有机物污染特征及其光化学反应特性对臭氧和雾霾污染治理具有十分重要的指导意义。
目前,挥发性有机物的研究主要集中在珠三角、长三角、京津冀等经济高速发展的地区,而西部地区的相关研究相对较少。宁夏回族自治区因其具有丰富的煤炭等资源,成为西部大开发中的重要发展对象,西部大开发以来,宁夏的工业化进程不断加快,能源、新型煤化工、新材料等产业发展迅速,与此同时,光化学污染问题在宁夏日益突出,2015—2019年《宁夏生态环境公报》显示,2019年全区五地市PM10、PM2.5年均浓度较2015年分别下降了24.53%、31.91%,而2019年O3-8 h年均浓度较2015年上升了5.19%(142 μg·m−3),可见,O3正成为宁夏的主要大气污染物之一[5]。为建立协同联动的发展机制,宁夏回族自治区预计2022年前打造完成以银川为核心、辐射带动石嘴山、吴忠、宁东基地协同发展的银川都市圈,银川都市圈的臭氧污染成为大气污染治理的重要对象。
本研究在银川都市圈内6个典型站点开展了挥发性有机物的观测,分析了采样期间挥发性有机物的污染特征、臭氧生成潜势、二次有机气溶胶生成潜势及VOCs潜在来源等,以期为银川都市圈臭氧和雾霾污染治理提供理论依据。
银川都市圈大气挥发性有机物的污染特征及臭氧生成潜势初步分析
Preliminary analysis of pollution characteristics of ambient volatile organic compounds and ozone formation potential in Yinchuan metropolitan area
-
摘要: 2019年6月和8月在宁夏回族自治区银川市及周边6个点位进行了环境空气挥发性有机物(VOCs)的观测研究。利用苏码罐采样-三级冷阱预浓缩-GC-MS/FID技术测定环境空气样品中56种挥发性有机物组分;分析该地区环境空气中挥发性有机物的污染特征和来源,计算各组分臭氧和二次有机气溶胶的生成潜势。结果表明,工业区、商业/交通/居民混合区以及工业/交通混合区采样点环境空气中挥发性有机物的浓度和组成有共性也有其特殊性,各采样点均受到机动车尾气排放的影响;短链烷烃和长链烷烃占比较高,分别为TVOCs的30.85%—45.21%和15.17%—48.79%,烯烃在宁东煤化工区采样点占比(43.77%)最高,而炔烃、芳香烃在平罗采样点占比最高,分别为29.98%和14.00%。烯烃对各采样点臭氧生成潜势(OFP)贡献率为23.20%—85.26%,芳香烃对各采样点二次有机气溶胶生成潜势(SOAP)贡献最大(61.49%—89.52%)。Abstract: Ambient Volatile Organic Compounds (VOCs) were measured in June and August 2019 at six sites of Yinchuan City and its surrounding areas of Ningxia Hui Autonomous Region. The SUMMA canister sampling and GC-MS/FID coupled with a three-stage preconcentration was used to determinate 56 kinds of VOCs. The pollution characteristics and source attribution of ambient VOCs in this area were investigated, and the formation potential for Ozone (O3) and Secondary Organic Aerosols (SOA) was calculated. The results showed that the concentration and composition of ambient VOCs at sampling sites in industrial areas, commercial/traffic/residential mixed areas, and industrial/traffic mixed areas had similarities and specificities. Ambient Volatile Organic Compounds concentrations in all sampling sites were affected by vehicle exhaust emissions. Short-chain alkanes and long-chain alkanes had relatively high proportion, accounting for 30.85%—45.21% and 15.17%—48.79% of the total VOCs respectively. Alkenes had the highest proportion(43.77%)at the sampling site of Ningdong Coal Chemical Industry Zone, while alkynes and aromatics had the highest proportion in the sampling site of Pinluo, accounting for 29.98% and 14.00% respectively. Alkenes contributed more prominently to the Ozone Formation Potential (OFP) in each sampling site, with a contribution rate of 23.2%—85.26%. The Secondary Organic Aerosol Formation Potential (SOAP) in each sampling site was mainly attributed to aromatics, with contribution rate of 61.49%—89.52%.
-
Key words:
- volatile organic compounds /
- ambient air /
- ozone /
- secondary organic aerosols /
- formation potential
-
表 1 采样点信息汇总
Table 1. Summary of sampling information
功能区
Functional area采样点
Sampling points经纬度
Latitude and longitude样本量
Sample size工业区
Industrial areas宁东 106.62 °E,38.20 °N 12 永宁 106.26 °E,38.37 °N 12 商业/交通/居民混合区
Commercial, traffic, and residential mixed areas上海东路 106.29 °E,38.50 °N 12 大武口 106.38 °E,39.01 °N 12 工业/交通混合区
Industrial and traffic mixed areas平罗 106.50 °E,38.96 °N 12 青铜峡 105.89 °E,37.91 °N 12 表 2 观测期间各采样点气象条件
Table 2. Meteorological conditions at each sampling point during the observation period
采样点
Sampling points项目
Project2019年6月 2019年8月 最小值
Minimum value最大值
Maximum value平均值
Average value最小值
Minimum value最大值
Maximum value平均值
Average value宁东
Ningdong温度/℃ 19 31 26.5 19 32 27.17 相对湿度/% 24 70 40 33 67 44.5 主导风向 东南风 西北风 永宁
Yongning温度/℃ 19 33 27.67 — — — 相对湿度/% 26 81 44.33 — — — 主导风向 东南风 西北风 上海东路
Shanghai East Road温度/℃ 26 32 28.67 25 34 29.5 相对湿度/% 16 42 30.83 18 59 34 主导风向 东南风 西北风 大武口
Dawukou温度/℃ 20 25 22.33 — — — 相对湿度/% 17 33 25.5 — — — 主导风向 西北风 西北风 平罗
Pingluo温度/℃ 18 31 26.83 23 31 28.83 相对湿度/% 28 80 44.33 31 69 46.83 主导风向 西北转北风 西北风 青铜峡
Qingtongxia温度/℃ 22 32 27 21 33 29.5 相对湿度/% 32 62 42.67 21 64 37.5 主导风向 西北转北风 西北风 注:“—”代表数据缺失.means data is missing.
-
[1] ATKINSON R. Atmospheric chemistry of VOCs and NOx [J]. Atmospheric Environment, 2000, 34(12/14): 2063-2101. [2] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420 [3] 中华人民共和国生态环境部. 中国生态环境状况公报[R]. 2015—2019. Ministry of Ecology and Environment of the People’s Republic of China. Bulletin on the State of China’s Ecological Environment[R]. 2015—2019(in Chinese).
[4] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070 [5] 宁夏回族自治区生态环境厅. 宁夏生态环境状况公报[R]. 2015—2019. Department of Ecological Environment of Ningxia Hui Autonomous Region. Bulletin of Ningxia Ecological Environment[R]. 2015—2019(in Chinese).
[6] USEPA. Compendium method TO-14A: Determination of volatile organic compounds (VOCs) in ambient air using specially prepared canisters with subsequent analysis by gas chromatography[S]. 1999. [7] USEPA. Compendium method TO-15: Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS)[S]. 1999. [8] 马伟, 王章玮, 郭佳, 等. 一个沿海城市大气臭氧的本地生成过程及其对前体物的敏感性 [J]. 环境科学学报, 2019, 39(11): 3593-3599. MA W, WANG Z W, GUO J, et al. Sensitivity of ambit atmospheric ozone to precoursor species and locate fort sociation [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3593-3599(in Chinese).
[9] 黄海梅, 郭佳, 王章玮, 等. 贵阳市大气挥发性有机物的初步分析 [J]. 环境化学, 2018, 37(11): 2387-2396. doi: 10.7524/j.issn.0254-6108.2018012301 HUANG H M, GUO J, WANG Z W, et al. Preliminary analysis of ambient volatile organic compounds in Guiyang, China [J]. Environmental Chemistry, 2018, 37(11): 2387-2396(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012301
[10] ZHANG J, WANG T, CHAMEIDES W L, et al. Ozone production and hydrocarbon reactivity in Hong Kong, Southern China [J]. Atmospheric Chemistry and Physics, 2007, 7(73): 557-573. [11] 付琳琳, 邵敏, 刘源, 等. 机动车VOCs排放特征和排放因子的隧道测试研究 [J]. 环境科学学报, 2005, 25(7): 879-885. doi: 10.3321/j.issn:0253-2468.2005.07.004 FU L L, SHAO M, LIU Y, et al. Tunnel experimental study on the emission factors of volatile organic compounds (VOCs)from vehicles [J]. Acta Scientiae Circumstantiae, 2005, 25(7): 879-885(in Chinese). doi: 10.3321/j.issn:0253-2468.2005.07.004
[12] 乔月珍, 王红丽, 黄成, 等. 机动车尾气排放VOCs源成分谱及其大气反应活性 [J]. 环境科学, 2012, 33(4): 1071-1079. QIAO Y Z, WANG H L, HUANG C, et al. Source profile and chemical reactivity of volatile organic compounds from vehicle exhaust [J]. Environmental Science, 2012, 33(4): 1071-1079(in Chinese).
[13] 鲁君, 王红丽, 陈长虹, 等. 上海市机动车尾气VOCs组成及其化学反应活性 [J]. 环境污染与防治, 2010, 32(6): 32-39. doi: 10.3969/j.issn.1001-3865.2010.06.008 LU J, WANG H L, CHEN C H, et al. The composition and chemical reactivity of volatile organic compounds (VOCs) from vehicle exhaust in Shanghai, China [J]. Environmental Pollution & Control, 2010, 32(6): 32-39(in Chinese). doi: 10.3969/j.issn.1001-3865.2010.06.008
[14] HO K F, LEE S C, HO W K, et al. Vehicular emission of volatile organic compounds (VOCs) from a tunnel study in Hong Kong [J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7491-7504. doi: 10.5194/acp-9-7491-2009 [15] BROCCO D, FRATARCANGELI R, LEPORE L, et al. Determination of aromatic hydrocarbons in urban air of Rome [J]. Atmospheric Environment, 1997, 31(4): 557-566. doi: 10.1016/S1352-2310(96)00226-9 [16] CELESTE YaraMoreira dos Santos,DÉBORADE Almeida Azevedo,FRANCISCO Radlerde Aquino Neto. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station [J]. Atmospheric Environment, 2004, 38(9): 1247-1257. doi: 10.1016/j.atmosenv.2003.11.026 [17] BARLETTA B, MEINARDI S, ROWLAND F S, et al. Volatile organic compounds in 43 Chinese cities [J]. Atmospheric Environment, 2005, 39(32): 5979-5990. doi: 10.1016/j.atmosenv.2005.06.029 [18] LIU Y F, SONG M D, LIU X G, et al. Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China [J]. Environmental Pollution, 2020, 257(2020): 113-125. [19] JIANG Z H, ZHENG X, ZHAI H Q, et al. Seasonal and diurnal characteristics of carbonyls in the urban atmosphere of Changsha, a mountainous city in south-central China [J]. Environmental Pollution, 2019, 253: 259-267. [20] CARTER W P L. A detailed mechanism for the gas-phase atmospheric reactions of organic compounds [J]. Atmospheric Environment, 2007, 41: 80-117. [21] NING X Z, XIN H, WEI N, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China [J]. Atmospheric Environment, 2017, 168: 112-124. [22] CARTER W P L. Development of the SAPRC-07 chemical mechanism [J]. Atmospheric Environment, 2010, 44(40): 5324-5335. doi: 10.1016/j.atmosenv.2010.01.026 [23] AN J L, WANG Y S, WU F K, et al. Characterizations of volatile organic compounds during high ozone episodes in Beijing, China [J]. Environmental Monitoring and Assessment, 2012, 184(4): 1879-1889. doi: 10.1007/s10661-011-2086-7 [24] HUANG C, WANG H L, LI L, et al. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China [J]. Atmospheric Chemistry and Physics, 2015, 15(19): 11081-11096. doi: 10.5194/acp-15-11081-2015 [25] HAN T T, MA Z Q, XU W Y, et al. Characteristics and source implications of aromatic hydrocarbons at urban and background areas in Beijing, China [J]. Science of the Total Environment, 2020, 707: 136-148. [26] 张利慧, 毋振海, 李斌, 等. 北京市城区春季大气挥发性有机物污染特征 [J]. 环境科学研究, 2020, 33(3): 526-535. ZHANG L H, WU Z H, LI B, et al. Pollution characterizations of atmospheric volatile organic compounds in spring of Beijing urban area [J]. Research of Environmental Sciences, 2020, 33(3): 526-535(in Chinese).
[27] GROSJEAN D, SEINFELD J H. Parameterization of the formation potential of secondary organic aerosols [J]. Atmospheric Environment, 1989, 23(8): 1733-1747. doi: 10.1016/0004-6981(89)90058-9 [28] GROSJEAN D. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality [J]. Atmospheric Environment. Part A. General Topics, 1992, 26(6): 953-963. doi: 10.1016/0960-1686(92)90027-I