微塑料的提取分离方法研究进展

宋小卫, 吴晓凤, 宋小平, 石翠杰, 张正东. 微塑料的提取分离方法研究进展[J]. 环境化学, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401
引用本文: 宋小卫, 吴晓凤, 宋小平, 石翠杰, 张正东. 微塑料的提取分离方法研究进展[J]. 环境化学, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401
SONG Xiaowei, WU Xiaofeng, SONG Xiaoping, SHI Cuijie, ZHANG Zhengdong. Research progress on the extraction and separation methods of microplastics[J]. Environmental Chemistry, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401
Citation: SONG Xiaowei, WU Xiaofeng, SONG Xiaoping, SHI Cuijie, ZHANG Zhengdong. Research progress on the extraction and separation methods of microplastics[J]. Environmental Chemistry, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401

微塑料的提取分离方法研究进展

    通讯作者: Tel:010-64524980,E-mail:zhanghzengdong@nim.ac.cn
  • 基金项目:
    中国计量科学研究院基本科研业务费(28-AKYZZ2028-20)资助

Research progress on the extraction and separation methods of microplastics

    Corresponding author: ZHANG Zhengdong, zhanghzengdong@nim.ac.cn
  • Fund Project: the Basic Research Foundation of National Institute of Metrology, China (28-AKYZZ2028-20).
  • 摘要: 微塑料作为海洋环境和陆生生态系统中的新型污染物,引起了广泛关注。然而目前微塑料的分析方法尚未标准化,不同研究结果间可比性较低。如何准确、高效地提取分离样品中的微塑料,是探究微塑料的环境行为及生态毒理学效应的关键前提。本文系统地综述了环境样品和水生生物样品中微塑料的前处理分析方法,包括筛分过滤法、密度分离法、消解法以及文献报道的其他方法,并对不同方法的优缺点及研究趋势进行了讨论和分析。结合不同前处理方法的优势,开展多种方法组合、比较等研究有利于微塑料分析方法的标准化。
  • 多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类环境中广泛存在的有机污染物,主要来自于人为源,如石油泄漏、汽车排放、化石燃料和生物质燃烧、工业过程以及化学制造,也有部分来自火山活动、森林火灾和成岩作用等自然源[1-2]. 这类污染物因其分布广、生物累积性和对人类的潜在生态风险[3]而受到广泛关注. 16种PAHs被美国环境保护署(USEPA)列为优先控制的污染物[4]. 其中,含有2—3个苯环的低分子量PAHs被认为是非致癌物,而含有4—6个环的7个高分子量PAHs被列为致癌物[5]. PAHs一旦释放到环境中,能够通过水和空气进行长距离的迁移,扩散到全球范围的土壤[6-7]、沉积物[8-9]、水[10]和大气[11-12]中. PAHs不易降解,容易被土壤颗粒吸附[13-14],因此土壤埋藏了环境中90%以上的PAHs,是一个重要的汇[15].

    尽管存在一些自然来源,造成全球范围内PAHs污染的主要原因仍是与城市化密切相关的人为排放[16]. 许多发展中国家,尤其是中国,正处于城市化兴起与快速发展的过渡时期. 由于大规模的城市化和工业化,我国城市地区大量人口密集,随之出现工业活动加剧、汽车使用激增等现象,从而导致大量PAHs通过大气沉降进入城市土壤[17-18]. 此外,PAHs在城市土壤中的分布主要归因于其释放源的类型和位置[19-20]. 因此,加剧的人类活动可能会改变城市土壤环境中PAHs的组成和分布. 基于不同PAH毒性的差异性,组成的改变也可能会引起暴露人群健康风险的变化. 然而,这个问题迄今为止较少引起关注[21].

    研究表明,城市化可能是影响城市土壤中PAHs环境行为的关键因素. Wang等[22]通过分析土壤PAHs浓度、城市化指标以及土壤理化性质之间的相关性,提出人口密度是影响南京城市土壤PAHs含量的关键因素之一. Cao等[21]基于苏南一个快速发展的城镇土壤中2009年和2014年PAHs的浓度,将其含量、组成和来源的变化归因于城市化进程. Jensen等[23]发现挪威南部邻近奥斯陆的地区,因其人口较多和城市化程度较高,土壤中PAHs浓度高于位于挪威北部,人口较少的地区. 此外,也有一些学者[19, 24-26]利用湖泊和水库中的柱状沉积物,以及不同城市化阶段或不同深度的土壤样品,探讨PAHs的环境行为与城市化过程之间的关系. 然而,深入探讨某个特定时期城市化进程对城市土壤中PAHs浓度、来源和暴露风险影响的研究却很少.

    2008年至2012年,天津市处在城市化最快的时期[27],且2012年以前,全市生产总值(GDP)增速均保持在16%以上,为近15年来最高水平[28]. 本研究基于天津市近郊地区(包括西青区、津南区、北辰区和东丽区)土壤中的16种优先控制PAHs的浓度数据,利用正定矩阵因子分解(positive matrix factorization, PMF)模型和终身累积癌症风险(incremental lifetime cancer risk, ILCR)模型定量解析出2008年和2012年天津市近郊地区土壤中PAHs的来源组成以及人体暴露风险,并将两个年份的解析结果进行对比分析. 旨在通过定点定期的监测结果,探讨在经济高速发展的背景下,快速城市化过程中区域土壤中PAHs排放源的变化及其引起的浓度、组成和生态风险的改变,进而揭示人类活动对城市环境的影响.

    2008年8月[29]和2012年10月[30]在天津市近郊地区(西青区、津南区、北辰区和东丽区)使用不锈钢勺分别采集获得83个和60个土壤样品(表层0—10 cm,各1 kg),并储存在聚乙烯密封袋中. 每1个样品由10—20个采自于站位点周边10×10 m2范围内的子样品混合而成. 每次采样之前使用丙酮冲洗不锈钢勺防止沾污. 所有土壤样品均放置在暗处,并尽快运送到实验室,经风干、研磨、过筛(50目)之后,于−20 ℃环境下保存.

    采用加速溶剂萃取法(accelerated solvent extraction, ASE)对土壤样品进行萃取. 取16 g冻干土壤样品和5 g二氧化硅混匀后倒入34 mL ASE样品瓶,以丙酮与二氯甲烷(1:1体积比)混合溶液为萃取溶剂,将样品在温度和压力分别为120 °C和1500 psi的条件下萃取2次,每次5分钟,所得的提取液蒸发至近干,加入9 mL环己烷与丙酮(1:1体积比)的混合溶液. 替换溶剂之后的提取液依次使用凝胶色谱(LCTech Geremany)和弗罗里硅固相萃取柱进行纯化,所得洗脱液经氮吹浓缩至1 mL转入棕色安捷伦进样瓶中上机分析. 采用GC-MS方法对PAHs进行定量分析,仪器参数和分析方法的质量控制见文献[29]. 16种PAHs包括萘(NAP)、苊(ACE)、芴(FLO)、二氢苊(ACY)、菲(PHE)、蒽(ANT)、荧蒽(FLA)、芘(PYR)、䓛(CHR)、苯并(a)蒽(BaA)、苯并(b)荧蒽(BbF)、苯并(k)荧蒽(BkF)、苯并(a)芘(BaP)、二苯并(a,h)蒽(DahA)、苯并(g,h,i)苝(BghiP)和茚苯(1,2,3-cd)芘(IcdP). PAHs加标回收率和指示物回收率分别为62.2%—116.7%和70.6%—119.1%.

    PMF是由Paatero和Tapper[31]开发的,基于主成分分析的非负约束受体模型,常用于环境中PAHs的源解析[32]. 该模型的矩阵方程式为:

    X=G×F+E

    式中,X代表由n个样品的m种化合物的浓度组成的样品浓度数据矩阵;G代表主要源的贡献率矩阵(n×pp为源的个数);F代表主要源的成分谱矩阵(p×m);E代表残差矩阵(n×m),定义为:

    eij=xijpk=1gikfkj

    式中,eijxijgikfkj分别为EXGF中的对应元素. 在对FG进行非负约束的同时,对每个数据点的不确定性进行加权. Q是模型的判据之一,当其收敛时才可进一步分析,且多次运行选Q较小的值来继续分析. Q的计算公式为:

    Q=ni=1mj=1(eijσij)2

    式中σij为第i个样品中第j种化合物的不确定性,其他项含义如前文所述.

    本研究利用USEPA开发的PMF模型软件5.0,基于83(样品)×16(PAHs)数据集和60(样品)×16(PAHs)数据集,分别对2008年和2012年天津市近郊地区土壤中PAHs来源进行识别. 模型解析目标设置为计算出3到6个因子,且每次运行都用不同的起始点进行初始化. 对于每次运行,正定矩阵因子分解模型的样品数符合模型对最少样本量的需求,即样本数大于物种数的3倍[33].

    利用ILCR模型可定量评估城市居民通过摄入、皮肤接触和吸入3种方式暴露于土壤PAHs的潜在健康风险[34-35]. 基于USEPA标准模型计算潜在癌症风险的方程式[36-37]如下.

    ILCRingestion=CS×(CSFingestion×3BW/70)×IRingestion×EF×EDBW×AT×106ILCRdermal=CS×(CSFdermal×3BW/70)×SA×AF×ABS×EF×EDBW×AT×106ILCRinhalation=CS×(CSFinhalation×3BW/70)×IRinhalation×EF×EDBW×AT×106

    其中,CS是土壤中PAHs基于BaP的毒性当量[1](toxic equivalency factor, TEF)计算的转换浓度之和(mg·kg−1);CSF是致癌物斜率因子(mg·kg−1·d−1−1, 根据BaP的致癌能力进行测定;BW是体重;IRingestion和IRinhalation人体土壤摄入效率和吸入效率;EF代表暴露频率;ED是暴露时长;SA是皮肤表面积;AF是真皮粘附因子;ABS为真皮吸附因子;AT为平均寿命;PEF为颗粒释放因子(见表1). BaP的CSFingestion、CSFdermal和CSFinhalation分别为7.3、25、3.85(mg·kg−1·d−1-1[38].

    表 1  ILCR评估模型参数值[39]
    Table 1.  Parameters used in the ILCR assessment[39]
    暴露参数Exposure parameter单位Unit儿童Child青少年Adolescent成人Adult
    BWkg13.9546.7558.78
    IRingestionmg·d−1200100100
    IRinhalationm3·d−110.917.717.5
    EFd·a−1350350350
    EDa61430
    SAcm2280028005700
    AFmg·cm−20.20.20.07
    ABS0.130.130.13
    ATd255502555025550
    PEFm3·kg−11.36×1091.36×1091.36E×109
     | Show Table
    DownLoad: CSV

    1991年USEPA发布的指南指出[37],百万分之一的癌症发病几率(ILCR = 10−6)是可接受的阈值. 因此,依据ILCR的判断标准如下:ILCR ≤ 10−6时代表可忽略风险;10−6 < ILCR < 10−4表示低风险;ILCR ≥ 10−4表示癌症高风险,需要特别关注. 在本研究中,依据年龄将居民分为儿童(0—10岁)、青少年(11—18岁)和成人(19—70岁)的3个群体进行癌症风险评估.

    利用Origin2019软件进行数据记录、数据处理以及表格制作;利用USEPA PMF 5.0软件进行PAHs来源识别及贡献计算. 天津市及其区县社会经济发展的数据分别引自2009年、2013年、2014年和2015年天津统计年鉴[28].

    2008年至2012年,天津市近郊地区表层土壤中16种PAHs浓度呈倍数增长,7种致癌PAHs浓度也呈上升趋势. 如表2所示,五环化合物的浓度占比大幅度下降,而二环和四环化合物的占比均显著增加, 低分子量组分的比例由28.6%上升到34.8%. 优势化合物由苯并(b)荧蒽、荧蒽和苯并(g, h, i)苝转变为菲、萘和荧蒽. 萘、二氢苊、菲等低分子量PAHs的浓度明显增加. 虽然PAHs被认为是持久性有机污染物能长期存在于环境中,但其仍可通过光化学降解、生物降解和挥发作用从土壤中去除[40]. 以往的研究发现[21, 41],PAHs在土壤中长期埋藏后,浓度会显著下降. 另外,具有不同个数苯环的PAHs在土壤中表现出不同的环境行为[15]. 高分子量的PAHs通常能在土壤中埋藏较长时间,其降解速率随着分子量的增加而降低[42],而低分子量的更容易被光降解或生物降解. 因此,总浓度以及低分子量组分占比的增加,表明土壤环境中存在持续不断的PAHs输入,且污染状况趋于严重,这与该地区5年内经济高速发展,城市化进程加快有着密切的关系. 2008年西青区、津南区、北辰区和东丽区的常住人口总计228.59万,区县生产总值(GDP)共计1336.66亿元[28]. 2012年,4个区的常住人口增加到283.03万,区县生产总值(GDP)增加了近一倍,达到2552.27亿元[28]. 通常来说,人为源是环境中PAHs急剧增加的主要原因. 城市土壤中的PAHs主要来源于工业活动、机动车排放以及居民烹饪和取暖,因此,其受到区域经济发展水平、人口和工业化程度的影响[22, 43].

    表 2  天津市近郊区土壤中PAHs毒性当量因子、含量及组成
    Table 2.  Toxic equivalent factors, composition, and concentrations of PAHs in surface soils from suburban Tianjin in 2008 and 2012
    PAHs环数Aromatic ring毒性当量因子TEF2008(n = 83)2012(n = 60)
    均值/(ng·g−1)Mean范围/(ng·g−1)Range组成占比/%Proportion均值/(ng·g−1)Mean范围/(ng·g−1)Range组成占比/%Proportion
    20.00118.72.72—1336.068.2ND—44110.8
    二氢苊30.0013.96ND—42.61.035.2ND—6974.1
    30.0013.10ND—19.21.34.44ND—31.00.5
    30.00117.01.23—86.58.412.8ND—78.02.0
    30.00136.51.98—3368.41317.45—109116.4
    30.0116.60.502—3063.611.60.450—1071.0
    荧蒽40.00163.42.39—7929.4255ND—327815.6
    40.00156.91.17—7288.01541.00—19779.0
    苯并(a)蒽*40.133.10.225—3865.268.70.470—8413.9
    *40.0146.10.717—5066.497.90.850—12106.7
    苯并(b)荧蒽*50.1103ND—101013.61181.38—13628.1
    苯并(k)荧蒽*50.143.6ND—6695.543.30.230—5492.6
    苯并(a)芘*5152.2ND—7286.886.60.370—11184.8
    二苯并(a, h)蒽*5122.9ND—2524.033.4ND—3482.4
    茚苯(1, 2, 3-cd)芘*60.123.3ND—2443.11062.37—12377.1
    苯并(g, h, i)苝60.0166.3ND—8869.270.01.23—7754.9
    二环化合物18.72.72—1336.068.2ND—44110.8
    三环化合物77.26.34—70122.61957.90—158624.0
    四环化合物1998.53—241329.15752.32—730635.2
    五环化合物221ND—244530.02811.98—337717.9
    六环化合物89.6ND—112912.31764.90—201212.0
    Σ7-carPAHs3245.03—358244.75547.98—666635.6
    Σ16PAHs60629.7—6705100129622.9—14722100
      注:“*”代表7种具有致癌作用的PAHs;“ND”代表未检出;“Σ7-carPAHs”代表7种具有致癌作用PAHs总含量;“Σ16PAHs”代表16种PAHs总含量.  * stands for 7 carcinogenic PAHs, ND stands for not detected, Σ7-carPAHs stands for total concentrations of 7 carcinogenic PAHs, Σ16PAHs stands for total concentrations of 16 PAHs.
     | Show Table
    DownLoad: CSV

    2008年PAHs来源成分谱如图1所示,模型筛选出5个因子. 因子1中表征炼焦生产的芴[44]占比达到71.2%,推断该因子代表炼焦排放,其贡献为6.0%. 因子2中蒽和菲的占比较高,分别为61.6%和52.5%,符合生物质燃烧的排放特征[16, 45],推断因子2为生物质燃烧排放,其贡献为14.5%. 因子3中优势组分为萘、苊和二氢苊,占比分别为54.6%、63.9%和66.9%. 萘是原油和石油产品的重要组成部分[46-48],并且二环和三环PAHs多与石油类来源有关[49-51]. 因此,因子3表示石油源,其贡献为5.1%. 因子4中荧蒽(69.5%)、芘(70.8%)、䓛(56.2%)、苯并(a)蒽(72.9%)、苯并(b)荧蒽(67.1%)、苯并(k)荧蒽(55.6%)和苯并(a)芘(70.7%)占比较高,符合煤燃烧排放特征[16, 52-55]. 因此,因子4表示燃煤源,其贡献为51.3%. 因子5中表征汽车尾气[16, 56-57]的二苯并(a,h)蒽、茚苯(1,2,3-cd)芘和苯并(g,h,i)苝占比较高,分别为94.6%、51.2%和71.0%,推断该因子代表机动车排放,其贡献为23.1%.

    图 1  2008年天津市近郊区土壤中PAHs来源成分谱
    Figure 1.  Profiles of each deductive source in 2008 obtained from PMF model

    2012年PAHs来源成分谱如图2所示,模型也筛选出5个因子. 因子1中荧蒽、芘、䓛、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽和苯并(a)芘占比较高,分别为61.1%、56.8%、52.0%、57.5%、52.4%、55.0%和59.6%,符合煤燃烧排放特征[16, 52-55]. 因此,因子1表示燃煤源,其贡献为41.0%. 因子2中表征原油和石油产品的萘[46-48]占比达83.2%,推断该因子为石油源,其贡献为22.3%. 因子3中苊、芴和菲占比相对较高,其中芴和菲的占比分别为42.6%和26.8%,是炼焦生产的表征化合物[44, 55]. 因此,因子3应该与焦炭的生产密切相关,其贡献为4.7%. 因子4中生物质燃烧过程排放的优势化合物二氢苊[44-45]占比高达91.8%,推断该因子代表生物质燃烧排放,其贡献为3.6%. 因子5中的优势组分为二苯并(a,h)蒽、茚苯(1,2,3-cd)芘和苯并(g,h,i)苝,占比分别为78.7%、38.3%和33.2%,符合汽车尾气排放特征[16, 56-57]. 因此,推断该因子代表机动车排放,其贡献为28.4%.

    图 2  2012年天津市近郊区土壤中PAHs来源成分谱
    Figure 2.  Profiles of each deductive source in 2012 obtained from PMF model

    基于上述PMF的解析结果发现,天津市近郊区域土壤中PAHs来源贡献率变化较大的是燃煤源、生物质燃烧排放和石油源. 其中,燃煤源和生物质燃烧排放的贡献率分别由2008年的51.3%和14.5%下降到2012年的41.0%和3.6%(图3). 虽然煤炭是天津市工业的主要能源,但是燃煤源的贡献率在5年内下降了10.3%. 此外,根据地理位置和居民的生活习惯,调查区域的生物质燃烧应与露天焚烧秸秆和居民烹饪有关. 2008年天津市启动生态城市建设行动计划,包括生态区县建设,改善水、空气、生态环境质量,提升固体废物综合利用水平,加强农村环境污染防治,发展循环经济等7个方面. 为了实现节能减排、改善城市环境质量,很多企业在生产过程中使用电力、天然气等清洁能源取代了煤炭,到2012年,天津市单位工业增加值能耗由2008年的1.16吨标准煤每万元下降到0.95吨标准煤每万元. 因此,燃煤源贡献率的下降可能与该区域工业化发展过程中能源结构的变化、装备和技术的不断发展有关. 另一方面,生物质燃烧排放贡献率的下降则可能与禁止露天生物质燃烧,以及电力和液化石油气取代了生物质作为烹饪燃料有关.

    图 3  PAHs来源贡献率变化趋势
    Figure 3.  Comparison of the source contributions for 2008 and 2012

    但是,5年内石油源的贡献率却由5.1%上升到22.3%. 天津作为我国北部重要的工业城市,石油化工是其优势产业之一. 2008年天津市石油化工联合其他五大优势产业完成工业总产值8323.89亿元,而到2012年仅石油化工这一项优势产业就完成产值3626.63亿元. 2017年发布的天津市石油和化学工业发展“十三五”规划纲要指出,2015年全市拥有石化企业711家,资产总额3756.57亿元,全年实现产值4024.32亿元,约占全市规模以上工业的15%. 到2020年,石油化工产业总产值将超过6000亿元. 同时,天津市也因天津港成为我国北部最重要的国际航运物流中心之一. 2020年天津港口货物吞吐量突破5亿吨,集装箱吞吐量突破1800万标准箱,均在全国港口中居第六位,“十三五”时期集装箱吞吐量年均增长5.4%,稳居全球集装箱港口十强. 因此,石油化工产业和航运物流产业的快速扩张与发展可能是石油源贡献率迅速增长的一个重要原因.

    ILCR模型解析结果表明,2008年和2012年天津市近郊地区居民土壤PAHs暴露风险值ILCRsinhalation的数量级在10-14—10-10之间,远低于10−6. 因此,居民通过吸入方式接触到土壤中PAHs而导致的健康风险可以忽略.

    表3所示,2008年近郊地区居民土壤PAHs暴露风险值ILCRsingestion和ILCRsdermal的范围分别为1.19 × 10−9—5.89 × 10−6和2.84 × 10−9—1.00 × 10−5,它们最大值分别出现在儿童和成人. 根据不同年龄段暴露人群的统计结果,分别有32.5%、24.1%和36.1%的土壤样品的儿童、青少年和成人暴露总风险值ILCRstotal处于低风险判定区间内. 2012年居民各暴露途径的风险值ILCRs均高于2008年,ILCRsingestion的范围为2.84 × 10−9—9.51 × 10−6,ILCRsdermal的范围为6.79 × 10−9—1.62 × 10−5,两者最大值出现的年龄段和2008年一致. 儿童、青少年和成人暴露总风险值ILCRstotal大于10−6的土壤样品比例分别为41.7%、36.7%和45.0%,较2008年均有不同程度的增长. 值得注意的是,2008年和2012年居民土壤PAHs暴露风险值ILCRsdermal均高于ILCRsingestion,并且2012年青少年和成人暴露风险值ILCRsdermal的均值较2008年增长了一个数量级. 上述结果表明,2008年到2012年,天津市近郊地区居民土壤PAHs暴露风险在不断增加,且皮肤接触是主要的暴露途径;儿童因其对致癌物的高敏感性应归为最敏感的亚群体. 人群暴露风险的增加可能与机动车排放源贡献率增加有关. 根据PMF解析结果,虽然2012年机动车排放贡献率较2008年仅增加了5.3%,但是其估算排放量是2008年的2.6倍. 机动车排放量大幅度的增加导致更多的具有强致癌效力的特征组分[1, 56-57],如苯并(a)芘、二苯并(a, h)蒽和茚苯(1, 2, 3-cd)芘进入到土壤中,增加暴露人群的健康风险. 另一方面,石油源的贡献率和估算排放量的增幅虽然最大,但其排放至环境中的组分主要是致癌效力较低的低分子量PAHs.

    表 3  不同群体暴露于土壤PAHs的潜在癌症风险
    Table 3.  Age-specific potential cancer risk via exposure to soil PAHs in 2008 and 2012
    20082012
    人群Population均值Mean最小值Min最大值Max均值Mean最小值Min最大值Max
    儿童ChildILCRingestion4.87 × 10−72.28 × 10−95.89 × 10−67.84 × 10−75.45 × 10−99.51 × 10−6
    ILCRdermal6.07 × 10−72.84 × 10−97.34 × 10−69.78 × 10−76.79 × 10−91.19 × 10−5
    ILCRtotal1.09 × 10−65.12 × 10−91.32 × 10−51.76 × 10−61.22 × 10−82.14 × 10−5
    青少年AdolescentILCRingestion2.53 × 10−71.19 × 10−93.07 × 10−64.09 × 10−72.84 × 10−94.95 × 10−6
    ILCRdermal6.32 × 10−72.96 × 10−97.65 × 10−61.02 × 10−67.08 × 10−91.24 × 10−5
    ILCRtotal8.85 × 10−74.14 × 10−91.07 × 10−51.43 × 10−69.92 × 10−91.73 × 10−5
    成人AdultILCRingestion4.66 × 10−72.18 × 10−95.65 × 10−67.52 × 10−75.22 × 10−99.11 × 10−6
    ILCRdermal8.28 × 10−73.88 × 10−91.00 × 10−51.34 × 10−69.28 × 10−91.62 × 10−5
    ILCRtotal1.29 × 10−66.06 × 10−91.57 × 10−52.09 × 10−61.45 × 10−82.53 × 10−5
      注:ILCRtotal = ILCRingestion + ILCRdermal
     | Show Table
    DownLoad: CSV

    2008年至2012年,天津市近郊地区城市化发展在一定程度上改变了土壤中PAHs的来源、含量和组成.

    (1) 土壤中16种PAHs的总含量均值增加了1倍,菲、萘和荧蒽取代苯并(b)荧蒽、荧蒽和苯并(g, h, i)苝成为优势组分,萘、二氢苊、菲等低分子量PAHs的浓度明显增加.

    (2) 五环化合物占比大幅度下降,而二环和四环化合物占比均显著增加.

    (3) PMF解析结果表明,燃煤源和生物质燃烧排放的贡献率均减少10%以上,石油源的贡献率增加17.2%.

    (4) 当地居民土壤PAHs暴露风险在不断增加,儿童作为最敏感的亚群体应受到关注,皮肤接触是主要的暴露途径. 机动车排放源贡献率的增加可能的导致暴露风险上升的重要原因.

  • 图 1  Imhof等报道的塑料泥沙分离装置。[32]

    Figure 1.  The Munich Plastic Sediment Separator (MPSS) reported by Imhof et al. [32]

    图 2  Coppock等报道的便携式沉积物中微塑料分离装置[40]

    Figure 2.  The Sediment-Microplastic Isolation reported by Coppock et al. [40]

    表 1  样品前处理方法汇总

    Table 1.  Summary of methods for sample pretreatment.

    前处理方法Pretreatment methods样品基质Sample matrix优点Advantages缺点Disadvantage参考文献Reference
    筛分过滤法过滤筛分水、固体样品浮选上清液可快速分离;通过不同孔径滤网,可对微塑料按照粒径分类没有标准化的孔径尺寸,不同研究可比性低[4, 28-30]
    密度分离法NaCl水、土、沉积物、生物无毒、无害、成本低对高密度微塑料提取效率低[26, 27, 31- 32]
    NaI水、土、沉积物、生物密度高、安全、可重复使用、提取效率高价格昂贵[31, 33-36]
    ZnCl2水、土、沉积物、生物密度高、提取效率高、成本低腐蚀性、危害性[32, 37-40]
    甲酸钾水、土、沉积物、生物稳定性好、成本低目前应用研究较少[41-42]
    聚钨酸钠水、土、沉积物、生物密度高、成本较低吸湿性强[43-44]
    土、沉积物成本低、易操作需要对微塑料进行进一步清洗;目前应用研究较少[45-47]
    密度分离浮选装置土、沉积物直接分离,能够有效减小样品量需要与密度浮选液结合,还需进一步验证及优化[32, 40, 48]
    消解法酸消解 (HCl)水、土、沉积物、生物不能破坏所有有机质[49-52]
    酸消解 (HNO3水、土、沉积物、生物能够去除大部分有机质可能会造成PET等聚合物溶解[34, 49, 53-56]
    碱消解 (NaOH/KOH)水、土、沉积物、生物能去除大部分有机质;对大部分聚合物没有破坏性可能使塑料变色;沉积残留物对光谱信号产生干扰[51-54, 56-61]
    氧化消解 (H2O2水、土、沉积物、生物能去除大部分有机质;对部分聚合物有破坏性[31, 50, 52, 59, 62]
    氧化消解 (Fenton试剂)水、土、沉积物、生物能去除有机质、提取效率高、对光谱信号无影响[27, 63]
    酶消解水、土、沉积物、生物危害小、不会对聚合物造成损害成本高、耗时长[51-52, 63-64]
    其他方法静电分离装置沉积物能够将样品量减小99%不适用于少量样品[65]
    磁提取法水、沉积物对大部分聚合物提取效率高对于复杂样品需与其他方法结合,更适用于饮用水等基质简单的样品;需进一步优化[66]
    前处理方法Pretreatment methods样品基质Sample matrix优点Advantages缺点Disadvantage参考文献Reference
    筛分过滤法过滤筛分水、固体样品浮选上清液可快速分离;通过不同孔径滤网,可对微塑料按照粒径分类没有标准化的孔径尺寸,不同研究可比性低[4, 28-30]
    密度分离法NaCl水、土、沉积物、生物无毒、无害、成本低对高密度微塑料提取效率低[26, 27, 31- 32]
    NaI水、土、沉积物、生物密度高、安全、可重复使用、提取效率高价格昂贵[31, 33-36]
    ZnCl2水、土、沉积物、生物密度高、提取效率高、成本低腐蚀性、危害性[32, 37-40]
    甲酸钾水、土、沉积物、生物稳定性好、成本低目前应用研究较少[41-42]
    聚钨酸钠水、土、沉积物、生物密度高、成本较低吸湿性强[43-44]
    土、沉积物成本低、易操作需要对微塑料进行进一步清洗;目前应用研究较少[45-47]
    密度分离浮选装置土、沉积物直接分离,能够有效减小样品量需要与密度浮选液结合,还需进一步验证及优化[32, 40, 48]
    消解法酸消解 (HCl)水、土、沉积物、生物不能破坏所有有机质[49-52]
    酸消解 (HNO3水、土、沉积物、生物能够去除大部分有机质可能会造成PET等聚合物溶解[34, 49, 53-56]
    碱消解 (NaOH/KOH)水、土、沉积物、生物能去除大部分有机质;对大部分聚合物没有破坏性可能使塑料变色;沉积残留物对光谱信号产生干扰[51-54, 56-61]
    氧化消解 (H2O2水、土、沉积物、生物能去除大部分有机质;对部分聚合物有破坏性[31, 50, 52, 59, 62]
    氧化消解 (Fenton试剂)水、土、沉积物、生物能去除有机质、提取效率高、对光谱信号无影响[27, 63]
    酶消解水、土、沉积物、生物危害小、不会对聚合物造成损害成本高、耗时长[51-52, 63-64]
    其他方法静电分离装置沉积物能够将样品量减小99%不适用于少量样品[65]
    磁提取法水、沉积物对大部分聚合物提取效率高对于复杂样品需与其他方法结合,更适用于饮用水等基质简单的样品;需进一步优化[66]
    下载: 导出CSV
  • [1] PlasticsEurope, Plastics - the Facts 2017: An analysis of European plastics production, demand and waste data[R], 2017. Available from: https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf
    [2] CARPENTER E, SMITH K L. Plastics on the Sargasso Sea surface [J]. Science, 1972, 175(4027): 1240-1241. doi: 10.1126/science.175.4027.1240
    [3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838-838. doi: 10.1126/science.1094559
    [4] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075.
    [5] ZHANG W W, ZHANG S F, ZHANG Z Y, et al. Microplastic pollution in the surface waters of the Bohai Sea, China [J]. Environmental Pollution, 2017, 231: 541-548. doi: 10.1016/j.envpol.2017.08.058
    [6] EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs [J]. Water Research, 2015, 75: 63-82. doi: 10.1016/j.watres.2015.02.012
    [7] BLETTLER M C M, ABRIAL E, KHAN F R, et al. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps [J]. Water Research, 2018, 143: 416-424. doi: 10.1016/j.watres.2018.06.015
    [8] LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection [J]. Water Research, 2018, 137: 362-374. doi: 10.1016/j.watres.2017.12.056
    [9] KOELMANS A A, MOHAMED N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality [J]. Water Research, 2019, 155: 410-422. doi: 10.1016/j.watres.2019.02.054
    [10] PRATA J C, DA C J P, DUARTE A C, et al. Methods for sampling and detection of microplastics in water and sediment: A critical review [J]. Trends in Analytical Chemistry, 2019, 110: 150-159. doi: 10.1016/j.trac.2018.10.029
    [11] DING L, MAO R F, GUO X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China [J]. Science of the Total Environment, 2019, 667: 427-434. doi: 10.1016/j.scitotenv.2019.02.332
    [12] HE D F, LUO Y M, LU S B, et al. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks [J]. Trends in Analytical Chemistry, 2018, 109: 163-172. doi: 10.1016/j.trac.2018.10.006
    [13] MÖLLER J N, LÖDER M G J, LAFORSCH C. Finding microplastics in soils: A review of analytical methods [J]. Environmental Science & Technology, 2020, 54(4): 2078-2090.
    [14] RIBEIRO F, O'BRIEN J W, GALLOWAY T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms [J]. Trends in Analytical Chemistry, 2018, 111: 139-147.
    [15] SHAHABALDIN R, JUNBOUM P, MOHD F M D, et al. Microplastics pollution in different aquatic environments and biota: A review of recent studies [J]. Marine Pollution Bulletin, 2018, 133: 191-208. doi: 10.1016/j.marpolbul.2018.05.022
    [16] BROWNE M A, DISSANAYAKE A, GALLOWAY T, et al. Ingested microscopic plastic translocates to the circulatory system of the Mussel, Mytilus edulis (L. ) [J]. Environmental Science & Technology, 2008, 42(13): 5026-5031.
    [17] DERRAIK J G B. The Pollution of the marine environment by plastic debris: A review [J]. Marine Pollution Bulletin, 2002, 44(9): 842-852. doi: 10.1016/S0025-326X(02)00220-5
    [18] TEUTEN E L, SAQUING J M, KNAPPE D R, et al. Transport and release of chemicals from plastics to the environment and to wildlife [J]. Philosophical transactions - Royal Society. Biological Sciences, 2009, 364(1526): 2027-2045. doi: 10.1098/rstb.2008.0284
    [19] SUHRHOFF T J, SCHOLZ-BOTTCHER B M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment [J]. Marine Pollution Bulletin, 2016, 102(1): 84-94. doi: 10.1016/j.marpolbul.2015.11.054
    [20] KOELMANS A A, BESSELING E, FOEKEMA E M. Leaching of plastic additives to marine organisms [J]. Environmental Pollution, 2014, 187: 49-54. doi: 10.1016/j.envpol.2013.12.013
    [21] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654.
    [22] LIU X M, SHI H H, XIE B, et al. Microplastics as both a sink and a source of Bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196.
    [23] ROCHMAN C M, MANZANO C, HENTSCHEL B T, et al. Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment [J]. Environmental Science & Technology, 2013, 47(24): 13976-13984.
    [24] WARDROP P, SHIMETA J, NUGEGODA D, et al. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish [J]. Environmental Science & Technology, 2016, 50(7): 4037-4044.
    [25] SONG X W, WU X F, SONG X P, et al. Sorption and desorption of petroleum hydrocarbons on biodegradable and nondegradable microplastics [J]. Chemosphere, 2020,273: 128553.
    [26] MSFD Technical Subgroup on Marine Litter, Guidance on monitoring of marine litter in european seas. A guidance document within the common implementation strategy for the marine strategy framework directive[M]. European Commission, 2013.
    [27] MASURA J, BAKER J, FOSTER G, et al. Laboratory methods for the analysis of microplastics in the marine environment: Recommendations for quantifying synthetic particles in waters and sediments[R], NOAA Technical Memorandum, 2015. Available from: https://marinedebris.noaa.gov/sites/ default/files/publications-files/noaa_microplastics_methods_manual.pdf.
    [28] CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian coast [J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204. doi: 10.1016/j.marpolbul.2011.06.030
    [29] KUSUI T, NODA M. International survey on the distribution of stranded and buried litter on beaches along the Sea of Japan [J]. Marine Pollution Bulletin, 2003, 47(1/6): 175-179.
    [30] SUL J A I D, SPENGLER A, COSTA M F. Here, there and everywhere. Small plastic fragments and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic) [J]. Marine Pollution Bulletin, 2009, 58(8): 1236-1238. doi: 10.1016/j.marpolbul.2009.05.004
    [31] NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments [J]. Environmental Pollution, 2014, 184: 161-169. doi: 10.1016/j.envpol.2013.07.027
    [32] IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments [J]. Limnology & Oceanography Methods, 2012, 10: 524-537.
    [33] CRAWFORD C B, QUINN B. 9-Microplastic separation techniques[M]. Microplastic Pollutants. Amsterdam: Elsevier Science, 2017: 203-218.
    [34] CLAESSENS M, VAN C L, VANDEGEHUCHTE M B, et al. New techniques for the detection of microplastics in sediments and field collected organisms [J]. Marine Pollution Bulletin, 2013, 70(1/2): 227-233.
    [35] KEDZIERSKI M, LE T V, C G, et al. Efficient microplastics extraction from sand. A cost-effective methodology based on sodium iodide recycling [J]. Marine Pollution Bulletin, 2017, 115(1/2): 120-129.
    [36] QUINN B, MURPHY F, EWINS C. Validation of density separation for the rapid recovery of microplastics from sediment [J]. Analytical Methods, 2016, 9(9): 1491-1498.
    [37] DRIS R, IMHOF H, SANCHEZ W, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles [J]. Environmental Chemistry, 2015, 12(5): 539-550. doi: 10.1071/EN14172
    [38] IMHOF H K, WIESHEU A C, ANGER P M, et al. Variation in plastic abundance at different lake beach zones-A case study [J]. Science of the Total Environment, 2017, 613/614: 530-537.
    [39] HORTON A A, SVENDSEN C, WILLIAMS R J, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK-Abundance, sources and methods for effective quantification [J]. Marine Pollution Bulletin, 2016, 114(1): 218-226.
    [40] COPPOCK R L, COLE M, LINDEQUE P K, et al. A small-scale, portable method for extracting microplastics from marine sediments [J]. Environmental Pollution, 2017, 230: 829-837. doi: 10.1016/j.envpol.2017.07.017
    [41] ZHANG K, SU J, XIONG X, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China [J]. Environmental Pollution, 2016, 219: 450-455. doi: 10.1016/j.envpol.2016.05.048
    [42] XIONG X, ZHANG K, CHEN X C, et al. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake [J]. Environmental Pollution, 2018, 235: 899-906. doi: 10.1016/j.envpol.2017.12.081
    [43] CORCORAN P L, BIESINGER M C, GRIFI M. Plastics and Beaches: A Degrading Relationship [J]. Marine Pollution Bulletin, 2009, 58(1): 80-84. doi: 10.1016/j.marpolbul.2008.08.022
    [44] PAGTER E, FRIAS J, NASH R. Microplastics in Galway Bay: A comparison of sampling and separation methods [J]. Marine Pollution Bulletin, 2018, 135: 932-940. doi: 10.1016/j.marpolbul.2018.08.013
    [45] CRICHTON E M, NOL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments [J]. Analytical Methods, 2017, 9(9): 1419-1428. doi: 10.1039/C6AY02733D
    [46] MANI T, FREHLAND S, KALBERER A, et al. Using castor oil to separate microplastics from four different environmental matrices [J]. Analytical Methods, 2019, 11(13): 1788-1794. doi: 10.1039/C8AY02559B
    [47] KARLSSON T M, VETHAAK A D, ALMROTH B C, et al. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation [J]. Marine Pollution Bulletin, 2017, 122(1/2): 403-408.
    [48] ZOBKOV M B, ESIUKOVA E E. Evaluation of the munich plastic sediment separator efficiency in extraction of microplastics from natural marine bottom sediments [J]. Limnology & Oceanography Methods, 2017, 15(11): 967-978.
    [49] DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by Zooplankton in the Northeast Pacific Ocean [J]. Archives of Environmental Contamination & Toxicology, 2015, 69(3): 320-330.
    [50] ZHAO S Y, DANLEY M, WARD J E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy [J]. Analytical Methods, 2016, 9(9): 1470-1478.
    [51] MAES T, JESSOP R, WELLNER N, et al. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red [J]. Scientific Reports, 2017, 7: 44501. doi: 10.1038/srep44501
    [52] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. doi: 10.1016/j.marpolbul.2011.09.025
    [53] CATARINO A I, THOMPSON R, SANDERSON W, et al. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues [J]. Environmental Toxicology and Chemistry, 2017, 36(4): 947-951. doi: 10.1002/etc.3608
    [54] DEHAUT A, CASSONE A L, FRERE L, et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization [J]. Environmental Pollution, 2016, 215: 223-233. doi: 10.1016/j.envpol.2016.05.018
    [55] NAIDOO T, GOORDIYAL K, GLASSOM D, Are nitric acid (HNO3) digestions efficient in isolating microplastics from Juvenile Fish? [J]. Water Air & Soil Pollution, 2017, 228(12): 470.
    [56] MUNNO K, HELM P A, JACKSON D A, et al. Impacts of temperature and selected chemical digestion methods on microplastic particles [J]. Environmental Toxicology & Chemistry, 2017, 37(1): 91-98.
    [57] 李陵云, 朱静敏, 李佳娜, 等. 水生生物样品中微塑料的提取和分离方法综述 [J]. 海洋环境科学, 2019, 38(2): 187-191. doi: 10.12111/j.mes20190204

    LI L L, ZHU J M, LI J N, et al. Review on methods for extraction and isolation of microplastics in aquatic organisms [J]. Marine Environmental Science, 2019, 38(2): 187-191(in Chinese). doi: 10.12111/j.mes20190204

    [58] FOEKEMA E M, GRUIJTER C D, MERGIA M T, et al. Plastic in North Sea Fish [J]. Environmental Science & Technology, 2013, 47(15): 8818-8824.
    [59] QIU Q X, TAN Z, WANG J D, et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment [J]. Estuarine Coastal & Shelf Science, 2016, 176: 102-109.
    [60] KUHN S, WERVEN V B, OYEN V A, et al. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms [J]. Marine Pollution Bulletin, 2017, 115(1/2): 86-90.
    [61] WAGNER J, WANG Z M, GHOSAL S, et al. Novel method for the extraction and identification of microplastics in Ocean Trawl and Fish Gut Matrices [J]. Analytical Methods, 2016, 9(9): 1479-1490.
    [62] AVIO C G, GORBI S, REGOLI F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea [J]. Marine Environmental Research, 2015, 111: 18-26. doi: 10.1016/j.marenvres.2015.06.014
    [63] HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices [J]. Environmental Science & Technology, 2018, 52(13): 7409-7417.
    [64] LÖDER M G J, GERDTS G. Methodology Used for the detection and identification of microplastics—A critical appraisal[B]. Springer, Cham, 2015: 201-227. https://doi.org/10.1007/978-3-319-16510-3_8
    [65] FELSING S, KOCHLEUS C, BUCHINGER S, et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior [J]. Environmental Pollution, 2018, 234: 20-28. doi: 10.1016/j.envpol.2017.11.013
    [66] GRBIC J, NGUYEN B, GUO E, et al. Magnetic extraction of microplastics from environmental samples [J]. Environmental Science & Technology Letters, 2019, 6(2): 68-72.
    [67] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展 [J]. 环境化学, 2017, 36(1): 27-36. doi: 10.7524/j.issn.0254-6108.2017.01.2016051704

    WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment [J]. Environmental Chemistry, 2017, 36(1): 27-36(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051704

    [68] MILLER M E, KROON F J, MOTTI C A. Recovering microplastics from marine samples: A review of current practices [J]. Marine Pollution Bulletin, 2017, 123(1/2): 6-18.
    [69] DEVRIESE L I, VAN D M, MYRA D, et al. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area [J]. Marine Pollution Bulletin, 2015, 98(1/2): 179-187.
    [70] LUSHER A, WELDEN N, SOBRAL P, et al. Sampling, isolating and identifying microplastics ingested by fish and invertebrates [J]. Analytical Methods, 2016, 9(9): 1346-1360.
  • 加载中
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 11.8 %DOWNLOAD: 11.8 %HTML全文: 84.6 %HTML全文: 84.6 %摘要: 3.7 %摘要: 3.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.8 %其他: 97.8 %XX: 1.0 %XX: 1.0 %上海: 0.1 %上海: 0.1 %东莞: 0.0 %东莞: 0.0 %临汾: 0.0 %临汾: 0.0 %保定: 0.0 %保定: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.2 %北京: 0.2 %南京: 0.1 %南京: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.1 %天津: 0.1 %广州: 0.0 %广州: 0.0 %张家口: 0.0 %张家口: 0.0 %成都: 0.0 %成都: 0.0 %扬州: 0.0 %扬州: 0.0 %沈阳: 0.0 %沈阳: 0.0 %洛杉矶: 0.0 %洛杉矶: 0.0 %海口: 0.0 %海口: 0.0 %深圳: 0.0 %深圳: 0.0 %烟台: 0.0 %烟台: 0.0 %珠海: 0.0 %珠海: 0.0 %石嘴山: 0.0 %石嘴山: 0.0 %红河: 0.0 %红河: 0.0 %聊城: 0.0 %聊城: 0.0 %苏州: 0.0 %苏州: 0.0 %西安: 0.1 %西安: 0.1 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.0 %运城: 0.0 %重庆: 0.0 %重庆: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.0 %长沙: 0.0 %青岛: 0.0 %青岛: 0.0 %黄冈: 0.0 %黄冈: 0.0 %其他XX上海东莞临汾保定内网IP北京南京哈尔滨大连天津广州张家口成都扬州沈阳洛杉矶海口深圳烟台珠海石嘴山红河聊城苏州西安赤峰运城重庆银川长春长沙青岛黄冈Highcharts.com
图( 2) 表( 1)
计量
  • 文章访问数:  12191
  • HTML全文浏览数:  12191
  • PDF下载数:  725
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2022-02-14
  • 刊出日期:  2022-03-27
宋小卫, 吴晓凤, 宋小平, 石翠杰, 张正东. 微塑料的提取分离方法研究进展[J]. 环境化学, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401
引用本文: 宋小卫, 吴晓凤, 宋小平, 石翠杰, 张正东. 微塑料的提取分离方法研究进展[J]. 环境化学, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401
SONG Xiaowei, WU Xiaofeng, SONG Xiaoping, SHI Cuijie, ZHANG Zhengdong. Research progress on the extraction and separation methods of microplastics[J]. Environmental Chemistry, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401
Citation: SONG Xiaowei, WU Xiaofeng, SONG Xiaoping, SHI Cuijie, ZHANG Zhengdong. Research progress on the extraction and separation methods of microplastics[J]. Environmental Chemistry, 2022, 41(3): 793-800. doi: 10.7524/j.issn.0254-6108.2020112401

微塑料的提取分离方法研究进展

    通讯作者: Tel:010-64524980,E-mail:zhanghzengdong@nim.ac.cn
  • 1. 中国计量科学研究院,环境计量中心,北京,100029
  • 2. 中国环境监测总站,国家环境保护环境监测质量控制重点实验室,北京,100012
基金项目:
中国计量科学研究院基本科研业务费(28-AKYZZ2028-20)资助

摘要: 微塑料作为海洋环境和陆生生态系统中的新型污染物,引起了广泛关注。然而目前微塑料的分析方法尚未标准化,不同研究结果间可比性较低。如何准确、高效地提取分离样品中的微塑料,是探究微塑料的环境行为及生态毒理学效应的关键前提。本文系统地综述了环境样品和水生生物样品中微塑料的前处理分析方法,包括筛分过滤法、密度分离法、消解法以及文献报道的其他方法,并对不同方法的优缺点及研究趋势进行了讨论和分析。结合不同前处理方法的优势,开展多种方法组合、比较等研究有利于微塑料分析方法的标准化。

English Abstract

  • 塑料制品在我们的生活中无处不在。2017年,全球塑料产量上升至3.35亿吨[1]。最常见的塑料制品包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚对苯二甲酸乙二酯(PET)、聚苯乙烯(PS)等。关于海洋中塑料的研究最早发表于20世纪70年代 [2]。在2004年,Thompson等[3]首次提出微塑料的概念,并引起了广泛关注。目前的研究表明微塑料存在于海洋环境[4-5]、淡水环境[6-9]、沉积物[10-11]、土壤[12-13]以及生物体内[14-15]。微塑料在被生物摄食后可造成挤压、占位等,从而导致生物摄食效率降低、生长缓慢、受伤或死亡等 [16-17]。微塑料本身也会释放塑化剂、阻燃剂、抗氧化剂等有毒物质 [18-22] 。此外,微塑料表面还能吸附环境中的疏水性有机污染物,在被水生生物摄食后,会对生物体产生毒性效应 [23-25]

    准确、高效的分析方法是研究微塑料的环境行为及生态毒理学效应的关键前提。欧盟海洋战略框架指令(MSFD)[26]以及美国国家海洋和大气管理局[27](NOAA)分别发布了监测海洋环境中微塑料的实验方法。然而,目前微塑料的提取和分离方法尚未标准化。

    本文综述了已有研究报道的水样、土壤和沉积物、水生生物样品中微塑料的前处理方法,并针对现有方法的优缺点进行比较(表1),对进一步的研究方向进行了讨论。

    • 筛分过滤法利用孔径较小的不锈钢或铜制滤网、筛网来截留微塑料,是水样中分离微塑料最常用的方法,也可用于样品密度分离上清液中微塑料的提取 [4, 28-30] 。在土壤或沉积物的预处理中,可通过较大的筛网进行预处理,减少样品体积,再进行密度分离,并通过过滤器或筛网过滤上清液,从而分离微塑料。过滤和筛分法采用的筛网孔径大小决定了分离微塑料的尺寸,文献报道的孔径范围一般在0.038 mm到4.75 mm之间[4, 28-30]。对于孔径较小的滤膜容易堵塞,一般在负压条件下进行,再通过异丙醇溶液(50%,体积分数)将滤膜上的微塑料洗脱,从而提高微塑料的分离效率 [67]。目前并没有标准化的孔径尺寸,导致不同研究结果之间难以进行比较。

    • 密度分离法的原理是利用样品中微塑料与矿物质等杂质的密度差异来实现提取分离。微塑料的密度范围从0.80 g·cm−3(如硅胶)到1.60 g·cm−3(如PVC、PET)不等,而沉积物的密度通常为2.65 g·cm−3 [4]。首先向样品中加入高密度的饱和盐溶液,充分振荡、搅拌混合均匀,随后静置沉淀直至轻组分微塑料与重组分杂质分层,最后收集上层溶液中的微塑料。目前,密度分离法广泛应用于水样、土壤和沉积物中微塑料的提取。不同的盐溶液密度不同,导致提取效率各不相同。

    • NaCl作为密度分离中使用最多的盐类之一,具有价廉易得、无害等优点 [31] ,是MSFD[26]和NOAA[27]推荐使用的前处理方法。PP(密度0.8 g·cm−3)、聚酰胺(PA,密度1.13 g·cm−3)等密度较低的聚合物可通过NaCl达到分离的效果 [32]。然而,由于NaCl溶液密度(1.2 g·cm−3)的局限性,导致高密度的微塑料包括PET(密度1.37—1.45 g·cm−3)和PVC(密度1.16—1.58 g·cm−3)的提取效率较低。而PET和PVC的产量几乎占世界塑料产量的17% [1],通过NaCl溶液进行样品前处理,可能会导致环境中PET和PVC等高密度微塑料的浓度被低估。

    • 碘化钠(NaI,密度1.8 g·cm−3)是一种用于分离微塑料的高密度溶液。NaI价格昂贵[33-34],研究人员通过减少样品量、回收NaI等方式来降低前处理的成本。Nuelle等[31]对样品通过NaCl分离结合空气溢流(AIO)进行预处理,使初始样品的质量降低80%,再用NaI进行密度分离。通过这两个步骤,既可以有效提取PVC、PET等高密度的微塑料,还能够减少NaI的使用量。Claessens等[34]将样品首先通过洗脱柱中向上的水流和曝气,从而减少样品量,再通过NaI进行密度分离,对PVC的提取效率大幅增加。为了研究NaI的可回收利用性,Kedzierski等[35]在10个循环使用过程后,测定了NaI的溶液密度和损失,发现NaI溶液的密度没有变化,损失为35.9%,证明通过回收NaI的方法可以大大降低前处理成本。Quinn等[36]对比了几种溶液(NaCl、NaBr、ZnBr2、NaI)对沉积物中微塑料的密度分离提取效率,发现NaCl和NaBr的回收率较低(<90%),而NaI和ZnBr2能够有效分离高密度的聚合物,可重现性高。此外,使用NaI和ZnBr2分离只需要对沉淀物进行一次洗涤,而NaCl需要3次洗涤 [36]

    • 氯化锌(ZnCl2,密度1.6—1.7 g·cm−3)也可用于微塑料的提取和分离,通常与密度分离装置相结合使用 [32, 37-39] ,微塑料的回收率很高,而且使用成本不高。Coppock等[40]比较了NaCl、NaI和ZnCl2溶液进行样品前处理的成本和提取效率,发现ZnCl2是最有效、最便宜的方法。但是,该物质具有很大的危害性和腐蚀性。因此,在使用ZnCl2进行样品前处理时,需谨慎处置并回收利用。

    • 饱和甲酸钾(K(HCOO))溶液的密度为1.6 g·cm−3,具有稳定性高、成本相对较低、粘度低、可通过过滤重复使用等特点,也被用于密度分离中[41-42]。二水钨酸钠(Na2WO4 ·2H2O)和聚钨酸钠(3 Na2WO4 ·9 WO3 2 H2O)在溶液中的密度都能达到1.4 g·cm−3,因此也可用于微塑料的密度分离[43-44]。但是,聚钨酸钠的价格相对昂贵,相比之下,一些研究者更推荐使用二水钨酸钠。

    • Crichton等[45]利用微塑料的亲脂性,建立了一种简单的油提取方法,从固体样品中提取微塑料。干燥的样品与水和菜籽油充分混匀,静置至油、水、矿物质完全分离,微塑料与油结合进入油层,经过转移过滤后提取微塑料,再用乙醇去除表面油脂。在不同环境样品(沉积物和海水)中,使用该油提取微塑料(纤维和碎片)的回收率达到92%—97%。近期,Mani等[46]的研究测试了蓖麻油对4种复杂环境基质中微塑料的分离效率,包括河流和海洋悬浮表面固体、海洋沙滩沉积物和农业土壤。加标回收试验中,该方法对几种微塑料的平均回收率为99%。Karlsson等[47]在盐饱和溶液中加入一滴橄榄油,促进收集上清液中的塑料颗粒,回收率从64%提高到82%。目前关于油提取的研究较少,在微塑料分离后还需洗涤剂清洗,似乎具有一定的局限性,但可以通过油与饱和溶液相结合,来提高微塑料回收率。油提取方法简单、安全、廉价、耗时短,是一种很有前景的方法,亟需进一步验证和优化。

    • 基于密度分离的浮选装置通常与密度分离液(如ZnCl2)结合使用,主要是通过气体或液体作为流动相,产生上升流带动样品上浮,在上浮的过程中使微塑料从沉积物中分离出来。Imhof等[32]研发了塑料沉积物分离器(MPSS,图1),配有过滤器支架的可移动样品室可将微塑料颗粒直接转移到过滤器上,从而将样品与ZnCl2密度浮选液分离,提取沉积物中的微塑料。然而,Zobkov和Esiukova[48]对MPSS装置进行了评估,发现原始塑料的回收率与Imhof等报道相似,但老化塑料的回收率却低得多,仅为13%—39%。 此外,ZnCl2具有危险性和腐蚀性,pH值低,可能与沉积物中的成分(尤其是碳酸盐)反应,从而导致起泡,严重阻碍分离过程,该MPSS装置还需进一步的测试及优化。Coppock等[40]设计了便携式的沉积物中微塑料分离装置(图2),由PVC管、PVC球阀以及磁力搅拌棒组成,与MPSS原理相似,以ZnCl2作为密度浮选液在浮选过程中分离微塑料,回收率高达92%—98%。然而该方法中PVC管的磨损可能会污染样品,从而影响环境中PVC微塑料的测定。

    • 样品中的有机质可能会对微塑料的测定产生干扰,因此需要在前处理过程中尽可能去除有机质,同时不影响微塑料聚合物的结构及形貌 [65,68] 。目前的研究中通常采用酸消解、碱消解、氧化消解以及酶消解等方法对样品进行预处理。

    • 酸消解可以去除样品中的有机质,常用的酸包括 HCl[49]、HNO3 [49]、及混合酸[69]。文献报道HCl不能破坏所有的有机质,因此消解效率不高[50-52]。HNO3被广泛用于酸性消解。然而,HNO3可能会留下油性残留物或组织碎片,导致聚合物的损失或变色[34,53-54]。此外,一些聚合物(如尼龙、PET)容易在高温和高浓度下被酸腐蚀,因此需要选择合适的浓度和温度,从而在合理的反应时间内有效去除样品中的有机质。Naidoo等[55]研究发现HNO3(55%)加热至80 ℃可使鱼组织的消化速度提高26倍。然而,当消解液加热至60℃以上时,可能会造成微塑料的损失,需格外小心[56]。总的来说,酸消解法可能会破坏样品中的聚合物,导致环境样品中的微塑料含量被低估,因此需要首先优化实验中酸的浓度及温度,并谨慎使用。

    • 利用NaOH或KOH等进行碱消解,可以水解化学键,使蛋白质变性从而消解水生生物组织[57]。使用KOH或NaOH[52]在60 ℃过夜[51]或60 ℃消解24 h[54],是有效的消解处理方法之一。KOH对有机质的去除和塑料的回收具有良好的效果[53,56]。Foekema等[58]研究了KOH溶液对北海鱼样品的消解,发现在2—3周后,有机质完全被破坏。但也有一些研究表明,碱消解会破坏或使塑料变色[54,56,59,60],留下油性残留物和骨质碎片[51,54],或在塑料表面重新沉积残留物,对样品的光谱信号产生干扰 [61]

    • 过氧化氢(H2O2,30%—35%)作为氧化剂,可有效消解有机质,并且对聚合物几乎没有降解作用[31,50,59]。消解温度是H2O2消解效率的关键因素。例如Cole等[52]报道,在室温下用H2O2 (35%)消解7 d,仅降解25%的有机质;而Avio等[62]报道用H2O2(15%)在50 ℃过夜,可有效去除有机质。除了通过H2O2进行氧化消解外,NOAA推荐采用H2O2(30%)与0.05 mol·L-1的硫酸亚铁溶液( Fenton试剂)在75 ℃下加热消解样品。Hurley等[63]研究了不同消解方法对富含有机质的污泥和土壤样品中8种常见微塑料的提取效率差异,包括H2O2、Fenton试剂氧化消解法,以及NaOH、KOH碱消解法。结果表明,H2O2(80.2%—108%)和Fenton试剂(86.9%—106%)对土壤及污泥中有机质的去除效率均优于NaOH(60.9%—68.6%)和KOH(34.5%—56.8%)。结合提取效率、对微塑料性质的影响以及对光谱信号的影响等多个因素的比较,最终发现Fenton试剂(40 ℃以下,pH值接近3)既能有效去除土壤和污泥中的有机组分,又不会破坏微塑料中的聚合物,具备高效、成本低以及消解快速等优点。

    • 酶消解法包括使用纤维素酶、脂肪酶、甲壳素酶和蛋白酶等去除有机质和减少部分生物组织[52,64]。与化学消解不同,酶消解的危害性较小,并且不易对微塑料造成损害[51]。对于0.2 g的少量样品,Cole等[52]应用蛋白酶进行酶消解,97%的有机质被降解。然而,这种酶的成本较高,更适用于少量样品的消解[63]。酶消解的另一个缺点是处理样品耗时长,并且每种酶都需要最佳温度和pH值[70]。此外,根据样品的基质不同,有些有机质不能完全消化,需要后续处理去除未消解的碎片。如Karlsson等[47]使用了酶消解法结合H2O2进行再处理,才能够有效破坏所有有机质。

    • Felsing等[65]利用塑料颗粒的静电行为达到样品中微塑料提取分离的目的。将样品加入静电金属-塑料分离器,在去除99%的原始样品量的同时,对几种常见微塑料的回收率高达近100%。近期的研究报道了一种磁性提取方法,利用微塑料与Fe纳米颗粒疏水性结合,进而达到磁性提取的目的[66]。该方法对于海水、淡水和沉积物中几种常见微塑料的回收率为78%—93%,可用于密度分离或消解处理后样品中微塑料的进一步提取或饮用水等基质简单的样品前处理。然而对于土壤或沉积物中存在的亲脂性物质可能会导致非特异性结合,从而降低该方法的有效性。此外,Fe纳米颗粒可能会干扰微塑料的后续分析,尽管通过超声处理可以从微塑料表面去除Fe纳米颗粒,但可能会同时破坏微塑料,还需进一步深入研究。

    • 环境样品和水生生物样品中微塑料的提取和分离方法并不统一,如何能够在去除样品杂质、不破坏微塑料性质的同时,保证微塑料回收率,是前处理的关键。几种提取分析方法并非独立,实验中应根据不同基质的样品,来选取最佳的前处理方法。针对水样、土壤和沉积物等样品,可使用Fenton试剂消解结合密度分离法,来提取分离微塑料。而处理生物样品时,则可使用KOH进行消解并结合密度分离法,去除杂质。未来的研究应从以下几个方面着手:

      (1)结合每种方法的优势,选择更适合的方法组合,来达到最佳的提取和分离效果。比如首先通过静电分离或密度浮选装置等来大大降低样品量,再使用碘化钠等价格昂贵的密度分离浮选液,对微塑料进行进一步的提取和分离。

      (2)对于文献最新报道的如油提取、磁提取、密度浮选装置等分离方法进行进一步的验证及优化。

      (3)对多种提取和分离方法的一致性和准确性进行比较研究。通过开展不同介质中前处理方法比较研究和效果评价,从而筛选出最佳的预处理方法。进而分别建立水样、土壤和沉积物、生物样品等不同介质中微塑料的预处理标准方法,为深入研究微塑料的环境行为及生态毒理学效应奠定基础。

    参考文献 (70)

返回顶部

目录

/

返回文章
返回