[1] |
YANG L, LIU G R, ZHENG M H, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere [J]. Environmental Science & Technology, 2017, 51: 7936-7944.
|
[2] |
ARANGIO A M, TONG H J, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles [J]. Atmospheric Chemistry and Physics, 2016, 16: 13105-13119. doi: 10.5194/acp-16-13105-2016
|
[3] |
DELA C, COOK, ROBERT L, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals [J]. Environmental Science & Technology, 2012, 46: 5971-5978.
|
[4] |
CHEN Q C, WANG M M, SUN H Y, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China [J]. Environment International, 2018, 121: 260-268. doi: 10.1016/j.envint.2018.09.012
|
[5] |
RUAN X X, SUN Y Q, DU W M, et al. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review [J]. Bioresource Technology, 2019, 281: 457-468. doi: 10.1016/j.biortech.2019.02.105
|
[6] |
KIRURI L W, DELLINGER B, LOMNICKI S, et al. Tar balls from deep water horizon oil spill: environmentally persistent free radicals (EPFR) formation during crude weathering [J]. Environmental Science & Technology, 2013, 47: 4220-4226.
|
[7] |
INGRAM DJE, TAPLEY J G, JACKSON R, et al. Paramagnetic resonance in carbonaceous solids [J]. Nature, 1954, 174: 797-798. doi: 10.1038/174797a0
|
[8] |
GUAN L F, GENG X K, SHEN J M, et al. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids [J]. Oncotarget, 2018, 9(3): 3765-3778. doi: 10.18632/oncotarget.23347
|
[9] |
TALBI A, KERCHICH Y, KERBACHI R, et al. Assessment of annual air pollution levels withPM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria [J]. Environmental Pollution, 2018, 232: 252-263. doi: 10.1016/j.envpol.2017.09.041
|
[10] |
CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi'an, Northwestern China [J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015
|
[11] |
BALAKRISHNA, LOMINCLI, MCAVEY K M, et al. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity [J]. Particle and Fibre Toxicology, 2009, 6: 14. doi: 10.1186/1743-8977-6-14
|
[12] |
WANG Y Q, LI S P, WANG M M, et al. Source apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi'an, China [J]. Science of the Total Environment, 2019, 689: 193-202. doi: 10.1016/j.scitotenv.2019.06.424
|
[13] |
唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 第二版. 北京: 高等教育出版社, 2006: 75-721.
TANG X Y, ZHANG Y H, SHAO M, et al. Atmospheric environmental chemistry[M]. The Second Edition. Beijing: Higher Education Press, 2006 : 75-721 ( in Chinese) .
|
[14] |
FELD COOK, BOVENKAMP, LISA, et al. Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation [J]. Environmental Science & Technology, 2007, 51: 10396-10402.
|
[15] |
GEHLING W, DELLIGINER B. Environmentally persistent free radicals and their lifetimes in PM2.5 [J]. Environmental Science & Technology, 2013, 47: 8172-8178.
|
[16] |
DOU J, LIN P, KUANG B Y, et al. Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: enhancement effects by pyridine, imidazole, and their derivatives [J]. Environmental Science & Technology, 2015, 49: 6457-6465.
|
[17] |
LAKEY, BERKEMEIER, TONG H J, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract[J]. Scientific Reports2016, 6: 1-6.
|
[18] |
KELLY, FUSSELL, JULIA C, et al. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter [J]. Atmospheric Environment, 2012, 60: 504-526. doi: 10.1016/j.atmosenv.2012.06.039
|
[19] |
SARAVIA J, LEE G I, LOMNICKI S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: A review [J]. Journal of Biochemical & Molecular Toxicology, 2013, 27(1): 56-68.
|
[20] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
China Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
|
[21] |
李豪, 陈庆彩, 孙浩堯. 西安市PM2.5中环境持久性自由基污染特征 [J]. 中国环境科学, 2020, 40(3): 967-974. doi: 10.3969/j.issn.1000-6923.2020.03.005
Li H, CHEN Q C, SUN H Y. Characteristics of persistent free radical pollution in PM2.5 of Xi'an City [J]. China Environmental Science, 2020, 40(3): 967-974(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.03.005
|
[22] |
WANG C, HUANG Y P, et al. Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves[J]Environmental Pollution, 2020, 257: 1-10.
|
[23] |
JIA H Z, LI S S, WU L, et al. Cytotoxic Free radicals on air-borne soot particles generated by burning wood or low-maturity coals[J]Environmental Science & Technology, 2020, 54: 5608-5618.
|
[24] |
XU Y, YANG L L, WANG X P, et al. Risk evaluation of environmentally persistent free radicals in airborne particulate matter and influence of atmospheric factors[J]Ecotoxicology and Environmental Safety, 2020, 196: 1-9.
|
[25] |
DELLINGER B, LONINICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31: 521-528. doi: 10.1016/j.proci.2006.07.172
|
[26] |
王庆良, 李倩倩, 童东革, 等. 光化学反应中自由基的作用及反应影响因素的研究进展 [J]. 环境化学, 2020, 39(2): 301-316. doi: 10.7524/j.issn.0254-6108.2019061802
WANG Q L, LI Q Q, TONG D G, et al. Research progress on the role of free radicals in photochemical reactions and reaction factors [J]. Environmental Chemistry, 2020, 39(2): 301-316(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061802
|
[27] |
杨莉莉, 郑明辉, 许杨, 等. 环境持久性自由基的污染特征与生成机理 [J]. 中国科学:化学, 2018, 48(10): 1226-1235.
YANG L L, ZHENG M H, XU Y, et al. Pollution characteristics and generation mechanism of environmental persistent free radicals [J]. Science in China:Chemistry, 2018, 48(10): 1226-1235(in Chinese).
|
[28] |
赵力, 梁妮, 张绪超, 等. 不同热处理条件对亚麻酸中持久性自由基产生的影响[J]. 环境化学, 2019, 38(6): 1207-1213.
ZHAO L, LIANG N, ZHANG X C, et al. The effect of different heat treatment conditions on the generation of persistent free radicals in linolenic acid[J]Environmental Chemistry, 2019, 38(6): 1207-1213(in Chinese).
|
[29] |
乔宝文, 刘子锐, 胡波, 等. 北京冬季 PM2.5中金属元素浓度特征和来源分析 [J]. 环境科学, 2017, 38(3): 876-883.
QIAO B W, LIU Z R, HU B, et al. Concentration characteristics and source analysis of metal elements in PM2.5 in winter in Beijing [J]. Environmental Science, 2017, 38(3): 876-883(in Chinese).
|
[30] |
WATSON J G, CHOW J C, HOUCK J E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995[J]Chemosphere, 2001, 43 : 1141-1151.
|
[31] |
ZHANG Y Y, SHAO M, ZHANG Y H, et al. Source profiles of particulate organic matters emitted from cereal straw burnings [J]. Environmental Science, 2007, 19: 167-175. doi: 10.1016/S1001-0742(07)60027-8
|
[32] |
ZHANG Y Y, SCHAUER J J, ZHANG Y H, et al. Characteristics of particulate carbon emissions from real-world Chinese coal combustion [J]. Environmental Science & Technology, 2008, 42: 5068-5073.
|
[33] |
LU K D, FUCHS H, HOFZUMAHAUS, et al. Fast photochemistry in wintertime haze: consequences for pollution mitigation strategies [J]. Environmental Science & Technology, 2019, 53: 10676-10684.
|
[34] |
姬亚芹, 朱坦, 冯银厂, 等. 应用地质累积指数分析城市颗粒物源解析土壤风沙尘的污染 [J]. 农业环境科学学报, 2006, 25(4): 949-953. doi: 10.3321/j.issn:1672-2043.2006.04.026
JI Y Q, ZHU T, FENG Y C, et al. Pollution analysis of soil dusts of source apportionment using geo accumulation index (Igeo)in China [J]. Journal of Agro-Environment Science, 2006, 25(4): 949-953(in Chinese). doi: 10.3321/j.issn:1672-2043.2006.04.026
|
[35] |
TOSCANO G, MORET I, GAMBARO A, et al. Distribution and seasonal variability of trace elements in atmospheric particulate in the Venice Lagoon [J]. Chemosphere, 2011, 85(9): 1518-1524. doi: 10.1016/j.chemosphere.2011.09.045
|
[36] |
TIAN H Z, WANG Y, XUE Z G, et al. Trend and characteristics of atmospheric emissions of Hg, S and Se from coal combustion in China, 1980—2007 [J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11905-11919. doi: 10.5194/acp-10-11905-2010
|
[37] |
谭吉华, 段菁春. 中国大气颗粒物重金属污染、来源及控制建议 [J]. 中国科学院研究生院学报, 2013, 30(2): 145-155.
TAN J H, DUAN J C. Pollution, sources and control recommendations of heavy metals in China's atmospheric particulate matter [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2013, 30(2): 145-155(in Chinese).
|
[38] |
夏志勇, 侯鲁健, 高素莲, 等. 济南市PM2.5中金属元素的污染特征、潜在生态风险及来源分析 [J]. 生态环境学报, 2020, 29(5): 971-976.
XIA Z Y, HOU L J, GAO SU L, et al. Pollution characteristics, potential ecological risks and source analysis of metal elements in PM2.5in Jinan City [J]. Journal of Eco-Environment, 2020, 29(5): 971-976(in Chinese).
|