-
高氯酸盐化学性质稳定,水溶性高,吸附性低,广泛存在于环境介质中。由于高氯酸盐具有与碘离子相似的离子半径和相同的电荷数,可以与碘离子竞争钠/碘同向转运体(NIS)的结合位点,从而抑制碘的吸收,干扰甲状腺激素的合成,引起机体代谢的紊乱[1-2]。欧洲食品安全局(EFSA)评估人体暴露高氯酸盐的风险,结果表明长期摄入高氯酸存在潜在风险,尤其是孕妇、胚胎、婴儿及碘缺乏的年轻群体最容易受到危害[3]。
我国是世界上最大的茶叶种植国,也是第二大茶叶出口国。2016年初中国出口欧盟的茶叶中频繁检出高含量的高氯酸盐,对中国茶叶出口产生极大负面影响。此前,美国环保局(US EPA)将高氯酸的参考剂量设定为0.0007 mg·(kg ·d)−1[4],欧盟建议成员国的干茶中
${\rm{ClO}}_4^ - $ 的参考限量暂定为0.75 mg·kg−1,欧洲食品安全局建议人体每日容许${\rm{ClO}}_4^ - $ 摄入量(tolerable daily intake,TDI)为0.0003 mg·(kg·d)−1[3,5]。现阶段,关于高氯酸盐的检测方法主要有离子色谱法、离子色谱串联质谱法(IC-MS/MS)、液相色谱串联质谱法(LC-MS/MS)等[6-9],所涉及的基质主要集中在水、土壤、底泥等环境样品和少量食品如奶粉、牛奶中[10-13]。针对茶叶样品中高氯酸盐分析的方法研究相对较少,并且多为LC-MS/MS方法[14],然而常见的C18色谱柱对高氯酸盐选择性差,高氯酸盐在其中保留较差或无保留,同时茶叶比较复杂的基质可能干扰高氯酸盐的准确测定,此时改善色谱分离和样品处理方法,提高高氯酸盐的提取率并且降低共存离子的干扰,就成为分析成败的关键。对于LC-MS/MS方法,多选择修饰离子交换基团的液相色谱柱来增强高氯酸盐的保留,以此改善高氯酸盐和基质的分离,前处理方法选择含乙酸溶液提取以防止在去除基质时高氯酸盐的损失[15-16]。相比之下,在各种环境基质高氯酸盐分析中具有广泛应用的IC-MS/MS法则具有更强的选择性,该方法通过电导检测的色谱图可以实时监测复杂基体样本中高氯酸盐与杂质离子的分离情况,减少在质谱检测时共淋洗物质对高氯酸盐信号的抑制,进而提高方法的抗干扰能力。在茶叶样品前处理方面,由于高氯酸盐属于无机阴离子,在水中溶解度高,因此选用高纯水提取茶叶中高氯酸盐。茶叶基质复杂,往往含有多种有机化合物和无机矿物元素,高纯水在提取高氯酸盐时也导致许多水溶性物质溶解在提取液中。因此,为了防止其它共存物质干扰检测结果,本研究首先用OnGuard Ⅱ RP柱处理,去除提取液中有机物,以达到离子色谱的进样要求,减少样品对色谱柱耐受的影响。然后选用对高氯酸盐专属性较好的离子色谱柱进行分离,良好的色谱分离极大减少了共存离子的干扰,提高了测定准确度。另外,用纯水直接对高氯酸盐进行提取亦可很好地模拟泡茶的过程,更能体现人体通过饮用茶水摄入高氯酸盐的真实水平。通过实验条件优化,建立了快速准确的茶叶样品中高氯酸盐的离子色谱-串联质谱分析方法,为茶叶检测分析提供方法学参考。
茶叶中高氯酸盐的离子色谱串联质谱分析
The determination of perchlorate in tea using IC-MS/MS
-
摘要: 本研究建立了茶叶中高氯酸盐的离子色谱串联质谱分析方法。对样品前处理方法进行了优化,结果表明用20 mL高纯水振荡提取15 min,重复3次,第3次高氯酸盐浸出量仅为总浸出量的2.3%—3.0%,因此可认为茶叶经3次浸提后高氯酸盐浸出接近完全。样品萃取液选用AS20色谱柱进行分离和电喷雾串联质谱(ESI-MS/MS)检测,样品在加标100、300、600 μg·kg−1的情况下,高氯酸盐回收率分别在94.6%—133%、101%—118%和101%—109%之间。方法在0.05—50 μg·L−1之间具有良好的线性关系,定量限为6 μg·kg−1。最后将方法用于不同类茶叶中高氯酸盐的分析,均检出不同浓度高氯酸盐的存在,浓度在97.0—2.71×103 μg·kg−1之间,通过茶叶摄入高氯酸盐对人体造成的暴露需引起人们的关注。Abstract: A method was established for the determination of perchlorate in tea using ion chromatography coupled with tandem mass spectrometry. The result showed that the amount of perchlorate after the third extraction process accounts only 2.3%—3.0% of the total amount of perchlorate by shaking extraction with 20 mL high purity water for 15 min and repeating for three times. Therefore, the perchlorate in tea was considered to be completely extracted after three times extraction. After extraction, the sample was separated using an AS20 column with the detection using electrospray tandem mass spectrometry (ESI-MS/MS). The recoveries of perchlorate were within the ranges of 94.6%—133%, 101%—118% and 101%—109% when the sample was spiked with the concentrations of 100, 300 and 600 μg·kg−1, respectively. The method showed a good linear range between 0.05—50 μg·L−1 with the limit of quantification at 6 μg·kg−1. Finally, the proposed method was successfully applied to determine perchlorate in different types of tea. The result showed that perchlorate could be detected in all samples with the concentrations between 97.0 μg·kg−1 and 2.71×103 μg·kg−1. The human exposure risks of perchlorate through tea intake needs to be concerned.
-
Key words:
- perchlorate /
- pretreatment /
- ion chromatography tandem mass spectrometry /
- tea
-
表 1 质谱检测条件
Table 1. Experimental conditions of electrospray tandem mass spectrometry
化合物
Compound离子对Q1/Q3
Q1/ Q3解簇电压/V
DP入口电压/V
EP碰撞入口电压/V
CE碰撞出口电压/V
CXPClO4− 98.8/82.8* −45 −8.8 −35 −9 100.8/84.9 −45 −8.5 −35 −9 Cl18O4− 106.9/88.8* −50 −10 −35 −5 注:*定量离子对.*quantitative ion pair 表 2 精密度与回收率实验结果
Table 2. Experimental results of precision and recovery
序号
Number未加标茶叶中高氯酸盐浓度 /(μg·kg−1)
Perchlorate concentration
in unspiked tea回收率/% Recovery 加标浓度100 μg·kg−1
Spiked concentration
at 100 μg·kg−1加标浓度300 μg·kg−1
Spiked concentration
at 300 μg·kg−1加标浓度600 μg·kg−1
Spiked concentration
at 600 μg·kg−11 285 96.8 101 101 2 276 133 118 103 3 287 100 103 108 4 280 95.9 107 104 5 273 95.7 102 107 6 283 94.6 101 109 7 282 97.9 102 103 平均 281 102 104 105 RSD 1.7% 14% 5.7% 2.9% 表 3 日均暴露量相关参数的意义及取值
Table 3. Meaning and values of related parameters of average daily dose
表 4 购买的16种茶叶中高氯酸盐对人体的日均暴露量(ADD)及危害商(HQ)
Table 4. The average daily dose (ADD) and hazard quotient (HQ) of perchlorate in 16 kinds of tea purchased
样品名称
Samples name茶叶中高氯酸盐浓度/(mg·kg−1)
Perchlorate concentration in tea日均暴露量/(mg·(kg·d)−1)
Average daily dose (ADD)危害商
Hazard quotient (HQ)蒲公英茶1 2.71 6.71×10−4 2.24 铁观音1 1.38 3.41×10−4 1.14 铁观音2 0.590 1.46×10−4 0.487 铁观音3 0.257 6.35×10−5 0.212 铁观音4 0.405 1.00×10−4 0.334 绿茶1 0.728 1.80×10−4 0.600 绿茶2 0.217 5.37×10−5 0.179 绿茶3 0.290 7.19×10−5 0.240 绿茶4 0.420 1.04×10−4 0.346 红茶1 0.210 5.20×10−5 0.173 红茶2 0.265 6.56×10−5 0.219 红茶3 0.970 2.40×10−5 0.0800 红茶4 0.115 2.85×10−5 0.0951 大红袍1 0.207 5.13×10−5 0.171 普洱茶1 0.169 4.19×10−5 0.140 肉桂茶1 0.200 4.96×10−5 0.165 -
[1] PLEUS R C, COREY L M. Environmental exposure to perchlorate: A review of toxicology and human health [J]. Toxicology and Applied Pharmacology, 2018, 358: 102-109. doi: 10.1016/j.taap.2018.09.001 [2] STEINMAUS C M. Perchlorate in water supplies: Sources, exposures, and health effects [J]. Current Environmental Health Reports, 2016, 3(2): 136-143. doi: 10.1007/s40572-016-0087-y [3] EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to public health related to the presence of perchlorate in food, in particular fruits and vegetables [J]. EFSA Journal, 2014, 12(10): 3869. doi: 10.2903/j.efsa.2014.3869 [4] EPA. Perchlorate (${\rm{ClO}}_4^ - $) and Perchlorate Salts[EB/OL]. [2020-9-19].https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=1007. [5] EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs [J]. EFSA Journal, 2015, 13(1): 3978. doi: 10.2903/j.efsa.2015.3978 [6] LIU Y, SUN H, ZHOU L, et al. Quantitative determination and contamination pattern of perchlorate in tea by ultra performance liquid chromatography and tandem mass spectrometry [J]. Food Chemistry, 2019, 274: 180-186. doi: 10.1016/j.foodchem.2018.07.113 [7] BACKUS S M, KLAWUUN P, BROWN S, et al. Determination of perchlorate in selected surface waters in the Great Lakes Basin by HPLC/MS/MS [J]. Chemosphere, 2005, 61(6): 834-843. doi: 10.1016/j.chemosphere.2005.04.054 [8] ARIBI H E, BLANC Y J L, ATONSEN S, et al. Analysis of perchlorate in foods and beverages by ion chromatography coupled with tandem mass spectrometry (IC-ESI-MS/MS) [J]. Analytica Chimica Acta, 2006, 567(1): 39-47. doi: 10.1016/j.aca.2006.03.012 [9] 林立, 王海波, 史亚利. 二维离子色谱法同时测定环境水样中的碘离子、硫氰酸根和高氯酸根 [J]. 色谱, 2013, 31(3): 281-285. doi: 10.3724/SP.J.1123.2012.10034 LIN L, WANG H B, SHI Y L. Determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography [J]. Chinese Journal of Chromatography, 2013, 31(3): 281-285(in Chinese). doi: 10.3724/SP.J.1123.2012.10034
[10] 史亚利, 高健民, 李鑫, 等. 浏阳河水、底泥和土壤中高氯酸盐的污染 [J]. 环境化学, 2010, 29(3): 388-391. SHI Y L, GAO J M, LI X, et al. The investigation of perchlorate pollution level in Liu Yang River water, sediment and its nearby soil [J]. Environmental Chemistry, 2010, 29(3): 388-391(in Chinese).
[11] SHI Y L, ZHANG P, WANG Y, et al. Perchlorate in sewage sludge, rice, bottled water and milk collected from different areas in China [J]. Environment International, 2007, 33(7): 955-962. doi: 10.1016/j.envint.2007.05.007 [12] OH S, LEE J, MANDY P, et al. Analysis and exposure assessment of perchlorate in Korean dairy products with LC-MS/MS [J]. Environmental Health and Toxicology, 2011, 26: e2011011. doi: 10.5620/eht.2011.26.e2011011 [13] ZHOU X, LU X, WAN J, et al. Determination of chlorate and perchlorate in milk power by high-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2019, 37(10): 1064-1070. doi: 10.3724/SP.J.1123.2019.04052 [14] 曾艳, 郞红, 邵辉, 等. 茶叶中高氯酸盐检测方法研究进展[J]. 分析测试技术与仪器, 25(3): 175-181. ZENG Y, LANG H, SHAO H, et al. Advance in research of determination methods of perchlorate in tea[J]. Analysis and testing technology and instruments, 25(3): 175-181(in Chinese).
[15] 华永有, 李宇翔, 林宏琳, 等. 茶叶中高氯酸盐检测与污染情况分析 [J]. 海峡预防医学杂志, 2018, 24(01): 4-6. HUA Y Y, LI Y X, LIN H L, et al. Detection and analysis on contamination with perchlorate in tea [J]. Strait Journal of Preventive Medicine, 2018, 24(01): 4-6(in Chinese).
[16] 彭西甜, 夏珍珍, 胡西洲, 等. 分散固相萃取-超高效液相色谱-串联质谱法测定茶叶中的高氯酸盐 [J]. 分析科学学报, 2020, 36(2): 275-279. PENG X T, XIA ZZ, HU X Z, et al. Determination of perchlorate in tea by ultra-high performance liquid chromatography-tandem mass spectrometry coupled with dispersive solid phase extraction [J]. Journal of Analytical Science, 2020, 36(2): 275-279(in Chinese).
[17] 环境保护部. 中国人群暴露参数手册[M]. 北京: 中国环境出版社, 2013: 142-801. Ministry of Environmental Protection. Exposure factors handbooks of Chinese population[M]. Beijing: China Environment Press, 2013: 142-801(in Chinese).
[18] 屠幼英. 茶与健康[M]. 北京: 世界图书出版公司, 2011. TU Y Y, Tea and health[M]. Beijing: World Book Publishing Company, 2011(in Chinese).