-
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是一类由两个或两个以上苯环稠合在一起的有机化合物[1], 由于其具有高沸点、疏水性、亲脂性和持久性等特点, PAHs进入环境后极易吸附在颗粒物上, 并长期存在于环境介质中. 有研究表明,由于其亲脂疏水性, 导致PAHs容易在不同的环境介质中积累, 还可随大气沉降进行远距离的迁移. PAHs对人类和其他生物体具有毒性和免疫抑制作用, 由于其“三致”效应(致畸、致癌、致突变)的危害[2], PAHs污染引起了人类社会的极大关注, 而且美国环境保护署在1979年把16种PAHs列入优先控制名单, 我国也将7种PAHs列入优先控制污染物名单[3]. PAHs的来源可以分为自然源和人为源. 森林火灾和火山喷发等过程中的排放被认为是自然源, 人类社会活动过程中的排放被认为是人为源 (如化石燃料燃烧、石油开采及其副产品的泄漏、污水排放和机动车尾气排放等). 其中, 人为源被认为是PAHs的主要来源[4]. 由于PAHs特点, 一旦进入海水环境中, 容易被海水中的颗粒物吸附, 进而积累到沉积物中[5], 对海洋底栖生物产生毒害作用. 此外, 沉积物中的PAHs还会通过解吸作用再次释放到水体中. 因此, 研究沉积物中的PAHs对保护海洋环境有着重要意义.
环渤海地区是我国重要的海洋经济发展区域, 具有丰富的海洋资源和渔业资源, 也是我国北方经济最活跃的地区. 随着海洋经济发展和人类活动增加, 渤海海域的环境问题日益受到关注, 特别是沿岸渔港的污染问题越来越严重. 渔港是众多渔船的集散地, 大型船只动力燃料主要为柴油, 燃料不完全燃烧和船舶含油污水等释放到海水中, 都极易造成沉积物中PAHs的污染和潜在的生态风险. 目前, 已有研究报道了渤海海域沉积物中的PAHs含量[6-8], 但对渔港沉积物的研究极为有限. 因此, 本文以环渤海渔港表层沉积物为研究对象, 研究PAHs的含量、组成和分布特征, 阐明其可能来源并进行风险评价, 为环渤海生态环境保护和治理提供科学依据.
环渤海渔港沉积物多环芳烃的污染特征和生态风险评价
Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea
-
摘要: 2019年5—6月采集了环渤海20个渔港的沉积物样品, 采用高效液相色谱紫外/荧光检测器串联方法对16种多环芳烃(PAHs)进行检测, 分析了其分布和组成特征, 采用比值法和正定矩阵因子模型法(PMF)对PAHs进行定量源解析, 采用效应区间中低值法和中值商法评估其生态风险. 10种PAHs的检出率达到100%, 表明PAHs在沉积物中广泛存在. 16种PAHs总含量为1092.87—4196.88 μg∙kg−1, 平均值为2642.05 μg∙kg−1. 相比国内外其它海域, 环渤海渔港PAHs含量处于中高水平, 含量由高到低依次为辽东半岛>京津冀地区>山东半岛. 在组成上, 低环PAHs(2—3环)占比大于高环(4—6环) PAHs. 渔港PAHs主要来自石油污染,贡献率为51.6%;石油燃烧和生物质燃烧的贡献率分别为22.1%和17.4%, 煤炭燃烧的贡献率为8.9%. 环渤海渔港PAHs总体呈现中低生态风险, 主要来源于低环PAHs. 研究环渤海渔港表层沉积物中PAHs污染情况,对环渤海生态环境保护和治理具有重要意义.Abstract: Surface sediment samples were collected from 20 fishing ports along the Bohai Sea in May to June 2019, and 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were measured using high performance liquid chromatography with UV and fluorescence detector. The distribution and composition characteristics of PAHs were analyzed and the sources of PAHs were determined with methods of ratio between PAHs and positive matrix factorization (PMF). The ecological risk assessment of PAHs was carried out using effects range low (ERL), effects range median (ERM) and mean effects range median (M−ERM−Q). The percentage of positive results of PAHs was high and 10 PAHs reached up to 100%, indicating that PAHs are widespread pollutants in fishing ports. The total concentrations of 16 PAHs (∑16PAHs) ranged from 1092.87 μg∙kg−1to 4196.88 μg∙kg−1, with the mean of 2642.05 μg∙kg−1. Compared with surface sediments in other coastal areas around the world, the concentrations of PAHs in this study were at a middle−high level. In contrast, the Liaodong Peninsula presented the highest PAHs concentration, followed by the Beijing−Tianjin−Hebei region and the Shandong Peninsula. PAHs with low ring numbers (two and three rings) had a higher contribution than those with high ring numbers (four, five, and six rings). The potential sources of PAHs in surface sediment from fishing ports included the oil emission pollution, oil combustion, oil combustion, biomass combustion and coal combustion, with a contribution rate of 51.6%, 22.1%, 17.4%, and 8.9%, respectively. PAHs in surface sediments presented a medium−low ecological risk which mainly were attributed to PAHs with low ring numbers. It is great significance to study the pollution of PAHs in the surface sediments from fishing ports in the Bohai Sea.
-
Key words:
- PAHs /
- source analysis /
- ecological risk /
- fishing ports /
- Bohai Sea /
- sediment
-
表 1 PAHs来源判定标准
Table 1. Source identification criteria of PAHs
PAHs 石油燃烧
Petroleum combustion煤炭燃烧
Coal combustion草、木材燃烧
Grass, wood combustion石油源
Petroleum sourceAnt/(Ant+Phe) >0.1 >0.1 >0.1 <0.1 Flu/(Flu+Pyr) 0.4—0.5 >0.5 >0.5 <0.4 BaA/(BaA+Chr) 0.2—0.35 >0.35 >0.35 <0.2 InPy/(InPy+BghiP) 0.2—0.5 >0.5 >0.5 <0.2 表 2 环渤海渔港沉积物中PAHs含量和检出率
Table 2. Concentrations and percentages of positive results of PAHs in sediments from fishing ports in Bohai Sea
PAHs 环数
Numbers of rings检出率/%
Detection rate含量/(μg∙kg−1)
Concentrations最小值
Min最大值
Max平均值
Average中值
MedianNap 2 100 82.20 453.23 285.21 305.78 Any 3 89.78 ND 175.77 68.94 63.11 Ace 3 100 66.35 1300.27 524.39 477.17 Flu 3 100 75.32 855.25 407.72 438.98 Phe 3 100 104.93 706.88 333.53 302.43 Ant 3 87.74 ND 512.55 87.99 61.63 Fla 4 100 38.19 560.40 211.89 211.92 Pyr 4 100 11.13 178.06 67.06 82.98 BaA 4 84.23 ND 265.52 96.59 63.50 Chr 4 81.51 ND 354.53 92.96 41.98 BbF 5 100 14.15 259.54 136.60 140.33 BkF 5 100 6.60 530.65 110.99 58.30 BaP 5 100 5.08 405.28 73.51 52.75 InPy 5 74.32 ND 149.62 43.15 19.64 DiahA 6 100 0.08 58.53 14.52 12.24 BghiP 6 90.52 7.80 299.42 87.00 68.63 2环PAHs 82.20 453.23 285.21 305.78 3环PAHs 538.93 2301.34 1422.58 1555.49 4环PAHs 67.28 1132.72 468.50 409.58 5环PAHs 33.31 864.69 321.10 275.76 6环PAHs 10.67 450.49 144.67 101.96 ∑16PAHs 1092.87 4196.88 2642.05 2709.35 注:ND为未检出
Note: ND, not detected表 3 国内外近岸海域表层沉积物中PAHs含量
Table 3. PAHs concentrations in surface sediments from coastal areas in the world
地区
Location采样 时间
Sampling timePAHs种类数
Numbers of PAHs含量范围/(μg∙kg−1)
Concentration range平均值/(μg∙kg−1)
Average参考文献
Reference中国日照岚山海域 2007年 16 76.38—27512.02 2622.58 [31] 中国舟山近海海域 2012年 16 1017.9—3047.1 2022.4 [32] 中国厦门湾 2017年 16 203.98—1590.47 670 [20] 中国东海海域 2018年 16 8.2—180.2 90.1 [21] 中国南海北部 2015年 15 10.69—66.45 44.98 [22] 中国辽东湾海域 2014年 16 138.9—288.5 197.1 [23] 中国渤海海域 2012年 16 21.9—586.4 175.1 [6] 巴西亚马逊河河口 2017年 16 22.2—158.9 49.4 [24] 美国Boston港 1999年 16 7300—358000 — [25] 南非Algoa湾 2016年 16 1168—10469 4343 [26] 挪威Norwegian港 2005年 16 2000—76000 — [27] 土耳其Gemlik湾 2005年 14 50.8—13482 — [28] 西班牙商业港口 2006年 12 260—66710 4234 [29] 中国台湾高雄港 2006年 17 472—16201 5764 [30] 中国台湾Hsin-ta港 2001年 30 1156—3382 — [33] 中国环渤海渔港 2019年 16 1092.87—4196.88 2642.05 本研究 表 4 环渤海渔港表层沉积物16 种 PAHs 潜在生态风险评价结果
Table 4. The result of 16 PAHs ecological risk assessment in sediments from fishing ports in Bohai Sea
PAHs ERL ERM 含量范围/(μg∙kg−1)
Concentration range渔港数
Number of fishing ports<ERL ERL-ERM >ERM Nap 160 2100 82.20—821.16 4 16 — Any 44 640 ND—175.77 5 15 — Ace 16 500 66.35—1300.27 — 10 10 Flu 19 540 77.17—855.25 — 12 8 Phe 240 1500 111.14—706.88 8 12 — Ant 85.3 1100 ND—512.55 14 6 — Fla 600 5100 38.19—560.40 20 — — Pyr 665 2600 11.13—178.06 20 — — BaA 261 1600 ND—265.52 19 1 — Chr 384 2800 ND—354.53 20 — — BbF 320 1880 32.42—259.54 20 — — BkF 280 1620 13.20—530.65 19 1 — BaP 430 1600 5.08—405.28 20 — — InPy NA NA ND—149.62 — — — DiahA 63.4 260 ND—58.53 20 — — BghiP 430 1600 7.80—299.42 20 — — ∑16PAHs 4022 40792 1201.13—4196.88 19 1 — -
[1] CHAI C, CHENG Q Q, WU J, et al. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China [J]. Ecotoxicology and Environmental Safety, 2017, 142: 181-188. doi: 10.1016/j.ecoenv.2017.04.014 [2] 葛蔚, 程琪琪, 柴超, 等. 山东省农田土壤多环芳烃的污染特征及源解析 [J]. 环境科学, 2017, 38(4): 1587-1596. GE W, CHENG Q Q, CHAI C, et al. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons in agricultural soils from Shandong [J]. Environmental Science, 2017, 38(4): 1587-1596(in Chinese).
[3] 胡明友, 王芳, 姚建花, 等. 湖州市饮用源水多环芳烃监测结果 [J]. 预防医学, 2020, 32(9): 947-949. HU M Y, WANG F, YAO J H, et al. Monitoring results of polycyclic aromatic hydrocarbons in drinking water of Huzhou [J]. Preventive Medicine, 2020, 32(9): 947-949(in Chinese).
[4] 吴萌, 段永红, 何佳璘, 等. 北方地区表层土壤中PAHs的含量及来源分析 [J]. 山西农业科学, 2021, 49(3): 311-317. doi: 10.3969/j.issn.1002-2481.2021.03.11 WU M, DUAN Y H, HE J L, et al. Content and source analysis of PAHs in surface soil of Northern China [J]. Journal of Shanxi Agricultural Sciences, 2021, 49(3): 311-317(in Chinese). doi: 10.3969/j.issn.1002-2481.2021.03.11
[5] NIU L, LUO X, CAI H, et al. Seasonal dynamics of polycyclic aromatic hydrocarbons between water and sediment in a tide-dominated estuary and ecological risks for estuary management [J]. Marine Pollution Bulletin, 2021, 162: 1-12. [6] 国文, 薛文平, 姚文君, 等. 渤海表层沉积物中多环芳烃赋存特征及来源分析 [J]. 海洋环境科学, 2015, 34(3): 330-336. GUO W, XUE W P, YAO W J, et al. Occurrence and source of polycyclic aromatic hydrocarbon (PAHs) in the surficial sediment of the Bohai Sea [J]. Marine Environmental Science, 2015, 34(3): 330-336(in Chinese).
[7] 南炳旭, 王丽平, 刘录三, 等. 天津近岸海域表层沉积物中PAHs污染特征及风险 [J]. 环境科学研究, 2014, 27(11): 1323-1330. NAN B X, WANG L P, LIU L S, et al. Pollution characteristics and risk assessment of polycyclic aromatic hydrocarbons in the surface sediments of Tianjin coastal area, China [J]. Research of Environmental Sciences, 2014, 27(11): 1323-1330(in Chinese).
[8] 黄国培, 陈颖军, 林田, 等. 渤海湾潮间带表层沉积物中多环芳烃的含量分布和生态风险 [J]. 中国环境科学, 2011, 31(11): 1856-1863. HUANG G P, CHEN Y J, LIN T, et al. The distribution and ecological risk of polycyclic aromatic hydrocarbons of surface sediments in the intertidal zone of Bohai Bay, China [J]. China Environmental Science, 2011, 31(11): 1856-1863(in Chinese).
[9] 魏青, 金麟先, 陈文怡, 等. 蟠龙河沉积物重金属污染特征及来源解析 [J]. 山东农业科学, 2020, 52(7): 75-82. WEI Q, JIN L X, CHEN W Y, et al. Pollution characteristics and source analysis of heavy metals in sediment of panlong river [J]. Shandong Agricultural Sciences, 2020, 52(7): 75-82(in Chinese).
[10] WANG X T, CHEN L, WANG X K, et al. Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China [J]. Chemosphere, 2015, 119: 1224-1232. doi: 10.1016/j.chemosphere.2014.10.019 [11] 边璐, 李田, 侯娟. PMF和PCA/MLR法解析上海市高架道路地表径流中多环芳烃的来源 [J]. 环境科学, 2013, 34(10): 3840-3846. BIAN L, LI T, HOU J. Source apportionment of polycyclic aromatic hydrocarbons using two mathematical models for runoff of the Shanghai elevated inner highway, China [J]. Environmental Science, 2013, 34(10): 3840-3846(in Chinese).
[12] 程晨, 陈振楼, 毕春娟, 等. 基于PMF模型的上海市降水中PAHs来源辨析 [J]. 城市环境与城市生态, 2015, 28(2): 11-16. CHENG C, CHEN Z L, BI C J, et al. Identification of potential sources of PAHs from wet precipitation in Shanghai [J]. Urban Environment & Urban Ecology, 2015, 28(2): 11-16(in Chinese).
[13] 王成龙, 邹欣庆, 赵一飞, 等. 基于PMF模型的长江流域水体中多环芳烃来源解析及生态风险评价 [J]. 环境科学, 2016, 37(10): 3789-3797. WANG C L, ZOU X Q, ZHAO Y F, et al. Source apportionment and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water from Yangtze River, China: Based on PMF model [J]. Environmental Science, 2016, 37(10): 3789-3797(in Chinese).
[14] 孙海峰, 张勇, 解静芳. 正定矩阵因子分解模型在环境中多环芳烃源解析方面的应用 [J]. 生态毒理学报, 2015, 10(4): 25-33. SUN H F, ZHANG Y, XIE J F. Applications of positive matrix factorization (PMF) for source apportionment of PAHs in the environment [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 25-33(in Chinese).
[15] SOUZA M R R, SANTOS E, SUZARTE J S, et al. Concentration, distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Poxim River sediments, Brazil [J]. Marine Pollution Bulletin, 2018, 127: 478-483. doi: 10.1016/j.marpolbul.2017.12.045 [16] ABDOLLAHI S, RAOUFI Z, FAGHIRI I, et al. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran [J]. Marine Pollution Bulletin, 2013, 71: 336-345. doi: 10.1016/j.marpolbul.2013.01.025 [17] ARISEKAR U, SHAKILA R, SHALINI R, et al. Heavy metal concentration in reef-associated surface sediments, Hare Island, Gulf of Mannar Marine Biosphere Reserve (southeast coast of India): The first report on pollution load and biological hazard assessment using geochemical normalization factors and hazard indices [J]. Marine Pollution Bulletin, 2021, 162: 111838. doi: 10.1016/j.marpolbul.2020.111838 [18] HAN B, Li Q, LIU A, et al. Polycyclic aromatic hydrocarbon (PAH) distribution in surface sediments from Yazhou Bay of Sanya, South China, and their source and risk assessment [J]. Marine Pollution Bulletin, 2021, 162: 111800. doi: 10.1016/j.marpolbul.2020.111800 [19] HAN B, ZHENG L, LIN F X. Risk assessment and source apportionment of PAHs in surface sediments from Caofeidian Long Island, China [J]. Marine Pollution Bulletin, 2019, 145: 42-46. doi: 10.1016/j.marpolbul.2019.05.007 [20] 李庆召, 李国新, 罗专溪, 等. 厦门湾海域表层沉积物重金属和多环芳烃污染特征及生态风险评价 [J]. 环境化学, 2009, 28(6): 869-875. doi: 10.3321/j.issn:0254-6108.2009.06.019 LI Q Z, LI G X, LUO Z X, et al. Pollution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in sediment from Xiamen bay [J]. Environmental Chemistry, 2009, 28(6): 869-875(in Chinese). doi: 10.3321/j.issn:0254-6108.2009.06.019
[21] 黄芳, 黄亮, 张国森. 东海表层沉积物中多环芳烃的分布特征及来源解析 [J]. 地球与环境, 2018, 46(1): 50-58. HUANG F, HUANG L, ZHANG G S. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the East China sea [J]. Earth and Environment, 2018, 46(1): 50-58(in Chinese).
[22] KAISER D, SCHULZ-BULL D E, WANIEK J J. Polycyclic and organochlorine hydrocarbons in sediments of the northern South China Sea [J]. Marine Pollution Bulletin, 2018, 137: 668-676. doi: 10.1016/j.marpolbul.2018.10.039 [23] 张玉凤, 吴金浩, 于帅, 等. 辽东湾表层海水中多环芳烃时空分布与源分析 [J]. 水产科学, 2016, 35(4): 420-425. ZHANG Y F, WU J H, YU S, et al. Distribution and source identification of polycyclic aromatic hydrocarbon in surface seawater from Liaodong bay [J]. Fisheries Science, 2016, 35(4): 420-425(in Chinese).
[24] dos SANTOS RODRIGUES C C, SANTOS L G G V, SANTOS E, et al. Polycyclic aromatic hydrocarbons in sediments of the Amazon River Estuary (Amapá, Northern Brazil): Distribution, sources and potential ecological risk [J]. Marine Pollution Bulletin, 2018, 135: 769-775. doi: 10.1016/j.marpolbul.2018.07.053 [25] WANG X C, ZHANG Y X, CHEN R F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States [J]. Marine Pollution Bulletin, 2001, 42(11): 1139-1149. doi: 10.1016/S0025-326X(01)00129-1 [26] ADENIJI A O, OKOH O O, OKOH A I. Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa [J]. Environmental Geochemistry and Health, 2019, 41(3): 1303-1320. doi: 10.1007/s10653-018-0213-x [27] OEN A M P, CORNELISSEN G, BREEDVELD G D. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments [J]. Environmental Pollution, 2006, 141(2): 370-380. doi: 10.1016/j.envpol.2005.08.033 [28] UNLÜ S, ALPAR B. Distribution and sources of hydrocarbons in surface sediments of Gemlik Bay (Marmara Sea, Turkey) [J]. Chemosphere, 2006, 64(5): 764-777. doi: 10.1016/j.chemosphere.2005.10.064 [29] CASADO-MARTINEZ M C, BECETA J L, BELZUNCE M J, et al. Using sediment quality guidelines for dredged material management in commercial ports from Spain [J]. Environmental International, 2006, 32: 388-396. doi: 10.1016/j.envint.2005.09.003 [30] CHEN C W, CHEN C F. Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan[J]. Marine Pollution Bulletin, 2011, 63(5/6/7/8/9/10/11/12): 417-423. [31] 薛荔栋, 郎印海, 刘爱霞, 等. 黄海近岸表层沉积物中多环芳烃来源解析 [J]. 生态环境, 2008, 17(4): 1369-1375. XUE L D, LANG Y H, LIU A X, et al. Source apportionment of polycyclic aromatic hydrocarbons in coastal surface sediments from the Yellow Sea [J]. Ecology and Environment, 2008, 17(4): 1369-1375(in Chinese).
[32] 江敏, LE Huy Tuan, 梅卫平, 等. 舟山近海水体和沉积物中多环芳烃分布特征 [J]. 环境科学, 2014, 35(7): 2672-2679. JIANG M, LE H T, MEI W P, et al. Distribution of polycyclic aromatic hydrocarbons in water and sediment from Zhoushan coastal area, China [J]. Environmental Science, 2014, 35(7): 2672-2679(in Chinese).
[33] FANG M D, LEE C L, YU C S. Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin−ta Harbour and adjacent coastal areas, Taiwan [J]. Marine Pollution Bulletin, 2003, 46(8): 941-953. doi: 10.1016/S0025-326X(03)00099-7 [34] 刘强, 高建华, 石勇, 等. 北黄海北部表层沉积物中多环芳烃的分布特征及控制因素分析 [J]. 海洋环境科学, 2020, 39(1): 53-58. doi: 10.12111/j.mes20200108 LIU Q, GAO J H, SHI Y, et al. Distribution characteristics and controlling factors of PAHs in surface sediments in north of North Yellow sea [J]. Marine Environmental Science, 2020, 39(1): 53-58(in Chinese). doi: 10.12111/j.mes20200108
[35] 刘宪杰, 洪文俊, 王荦, 等. 大连近海沉积物多环芳烃污染特征及源解析 [J]. 海洋环境科学, 2016, 35(2): 252-255. LIU X J, HONG W J, WANG L, et al. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons (PAHs) in surface sediment of Dalian [J]. Marine Environmental Science, 2016, 35(2): 252-255(in Chinese).
[36] WANG L L, YANG Z F, NIU J F, et al. Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River Delta, one of the most plenty biodiversity zones in the world [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 460-465. [37] WANG C H, WU S H, ZHOU S L, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk [J]. The Science of the Total Environment, 2015, 527/528: 375-383. doi: 10.1016/j.scitotenv.2015.05.025 [38] WANG H L, ZHUANG Y H, HAO Z P, et al. Polycyclic aromatic hydrocarbons from rural household biomass burning in a typical Chinese village [J]. Science in China Series D:Earth Sciences, 2008, 51(7): 1013-1020. doi: 10.1007/s11430-008-0064-x [39] 齐晓宝, 黄沈发, 沙晨燕, 等. 钢铁工业区下风向土壤中多环芳烃污染特征及源解析 [J]. 环境科学研究, 2018, 31(5): 927-934. QI X B, HUANG S F, SHA C Y, et al. Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in surface soil of the steel industrial downwind area [J]. Research of Environmental Sciences, 2018, 31(5): 927-934(in Chinese).
[40] 王超, 张霖琳, 刀谞, 等. 京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源 [J]. 中国环境科学, 2015, 35(1): 1-6. WANG C, ZHANG L L, DAO X, et al. Pollution characteristics and source identification of polycyclic aromatic hydrocarbons in airborne particulates of Beijing-Tianjin-Hebei Region, China [J]. China Environmental Science, 2015, 35(1): 1-6(in Chinese).
[41] 段二红, 张微微, 李璇, 等. 石家庄市采暖期大气细颗粒物中PAHs污染特征 [J]. 环境科学研究, 2017, 30(2): 193-201. DUAN E H, ZHANG W W, LI X, et al. Characteristics of PAHs in fine atmospheric particulate matter in Shijiazhuang City in heating season [J]. Research of Environmental Sciences, 2017, 30(2): 193-201(in Chinese).
[42] 车凯, 郁金星, 刘松涛, 等. 河北南部变电站场地土壤中PAHs含量、来源及健康风险 [J]. 中国环境科学, 2020, 40(11): 4865-4874. doi: 10.3969/j.issn.1000-6923.2020.11.027 CHE K, YU J X, LIU S T, et al. Distribution, source and risk assessment of PAHs in soil of typical substation sites in south Hebei [J]. China Environmental Science, 2020, 40(11): 4865-4874(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.027