-
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是挥发性或半挥发性碳氢化合物,由生物质、石化燃料等有机物不完全燃烧产生[1],是一类广泛存在于大气降尘中的持久性有机污染物[2],其易在含有脂肪的组织和器官中生物蓄积,且具有持久性、致畸致癌性,是一类高毒性环境污染物[3−4]。PAHs可随呼吸吸入进入人体、到达人体深肺区,由呼吸暴露导致的终生致癌风险(incremental lifetime cancer risk,ILCR),全球平均值为3.1×10−5[5−6]。参照国际癌症研究署给出的污染物致癌毒性判定,苯并[a]蒽是一种具有致癌效应[7]的典型PAHs。
外源污染物进入肺泡首先与覆盖于肺泡内衬层的肺表面活性物质(pulmonary surfactant, PS)接触,PS是抵御污染物进入血液循环系统的最后一道屏障[8]。PS主要由肺泡II型上皮细胞合成和分泌,是一种具有特殊生物活性的复合物,能有效降低肺泡表面张力,防止肺泡在呼气的最后阶段发生塌陷[9−10]。1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(1,2-dipalmitoyl-sn-glycero-3- phosphocholine,DPPC)是PS发挥生物活性最重要的物质基础,通常作为体外研究PS的模拟物和替代物[11−13]。
PAHs经呼吸到达肺部,可与PS发生作用[14]。Sosnowski等[15]通过分子动力学模拟研究发现苯并[a]芘会诱导磷脂膜表面活性的异常并降低其流动性。Liland等[16]研究了菲、萘、苯并[a]芘3种PAHs对磷脂膜相行为的影响,结果表明苯并[a]芘对磷脂膜的液相有序相具有亲和力,能降低DPPC囊泡从固体到液晶相转变时的转变温度和焓值。Zhao等[17]发现Curosurf(肺表面活性物质制剂)与菲在纳米管上的吸附存在相互竞争作用,彼此起到一定的抑制作用。Beata等[18]借助分子动力学模拟研究了苯并[a]芘对肺表面活性物质单分子膜性质的影响,结果表明苯并[a]芘会对磷脂单层造成破坏,降低磷脂亲水区的水化作用。关于PAHs对肺表面活性剂的毒性行为,目前主要集中在分子动力学模拟,虽然可以证实PAHs能导致各种负面的呼吸系统效应,但PAHs暴露与肺功能下降之间的关系证据仍不充分,二者间的界面化学作用有待进一步确立和完善。
鉴于此,本文选取DPPC及PAHs中具有代表性的苯并[a]蒽[7,19−20]作为研究对象,进一步探究PAHs与PS相互作用的界面化学特征。通过表面张力仪,分析苯并[a]蒽对DPPC降低气-液界面张力性能的影响。借助Langmuir-Wilhelmy膜天平对肺呼吸循环进行体外模拟,获取DPPC的压缩-扩张循环曲线,结合弹性模量观测苯并[a]蒽存在/不存在情况下DPPC压缩及扩张性能。通过布儒斯特角显微镜(brewster angle microscopy,BAM),对DPPC单分子膜的微观形貌进行原位观察,借助激光共聚焦显微拉曼光谱分析苯并[a]蒽对DPPC分子内部结构构象的影响, 进一步揭示苯并[a]蒽对DPPC单分子膜的影响机制。这项研究旨在从微观角度分析PAHs对肺表面活性物质的负面效应,以期对后续学者研究PAHs的肺部毒理行为给予一定的参考及启示。
典型多环芳烃对肺表面活性组分界面化学性质的影响
Effects of typical polycyclic aromatic hydrocarbons on the interface chemical properties of pulmonary surfactant
-
摘要: 多环芳烃由于其高亲脂性,随呼吸到达肺部可在深肺区沉积,并与覆盖于肺泡内衬层的肺表面活性物质接触并反应,进而影响肺表面活性物质的界面活性。选取典型多环芳烃苯并[a]蒽为研究对象,研究其对气-液界面处DPPC单分子膜界面化学性质的影响,以此来探究多环芳烃对肺功能的毒性行为。采用Langmuir膜天平获得DPPC单分子膜的压缩-扩张循环曲线;通过弹性模量分析苯并[a]蒽对单分子膜弹性性能的影响;借助布儒斯特角显微镜,对DPPC单分子膜的微观形貌进行原位观测;通过激光共聚焦显微拉曼光谱分析苯并[a]蒽对DPPC分子内部结构的影响。结果表明,苯并[a]蒽可显著影响磷脂单层的相行为,表面压-面积等温线向高的分子面积区域移动,在压缩阶段,膜的刚性及稳定性减弱。布儒斯特角原位实验表明,苯并[a]蒽以嵌入的形式存在于DPPC单层之间,DPPC单分子膜分布不均,靠近苯并[a]蒽区域较密集,远离区域排列疏松、出现相的分离。拉曼光谱进一步说明,苯并[a]蒽影响DPPC分子疏水烷基链C—C及C—H的伸缩振动,造成脂链有序构象增多、膜的流动性减弱,进而影响呼吸相关功能的发挥。
-
关键词:
- 多环芳烃 /
- 1, 2-二棕榈酰-sn-甘油-3-磷酸胆碱 /
- 肺表面活性剂 /
- 界面化学性质 /
- 微观形貌
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are highly hydrophobic, thus on first contacting with pulmonary surfactant, they will accumulate in the monolayer, leading to pulmonary surfactant malfunctioning and respiratory disorders. 1,2-dipalmitoyl-sn-glycero -3-phospho-choline (DPPC) is the main active component of pulmonary surfactant, and it is usually used as the mimic and substitute of pulmonary surfactant. The effect of benz[a]anthracene on the interface chemical properties of DPPC monolayers at the gas-liquid interface was investigated. The compression expansion cycle curves of DPPC monolayers were obtained by Langmuir membrane balance; the effect of benz[a]anthracene on the elastic properties of DPPC monolayers was analyzed by elastic modulus; the micro morphology of DPPC monolayers was observed by Brewster angle microscope; the internal structure of DPPC was analyzed by laser confocal micro Raman spectroscopy. The results show that the presence of benz[a]anthracene can cause the surface pressure area isotherm to move to the region with high molecular area, reduce the aggregation degree of DPPC monolayers, and loose arrangement of individual regions, resulting in phase separation. Raman spectra further showed that benz[a]anthracene affected the stretching vibration of hydrophobic alkyl chain C—C and C—H of DPPC molecule, resulting in the increase of ordered conformation of lipid chain and the decrease of membrane fluidity, which further affected the respiratory related function. -
表 1 DPPC单分子膜滞回曲线的定量分析
Table 1. Comparison of quantitative criteria ( HAn, SI ) used for evaluation of the DPPC monolayers
πmax/(mN·m−1) πmin/(mN·m−1) Amax/nm2 Amin/nm2 HAn/(mN·m−1) SI 1,2-二棕榈酰-sn-甘油-3-磷
酸胆碱 (DPPC)58.17 1.33 1.16 0.18 22.87 1.91 1,2-二棕榈酰-sn-甘油-3-磷
酸胆碱+苯并[a]蒽
(DPPC+Benz(a)anthracene)57.52 1.44 1.29 0.19 22.48 1.90 表 2 DPPC拉曼光谱特征峰指认
Table 2. Raman spectral assignments of DPPC molecule
峰位/cm−1
Raman shift峰位指认
Raman spectral assignments718 C—N伸缩振动,O—C—C—N+旁式构象
Headgroup CN-Stretch770 C—N伸缩振动,O—C—C—N+反式构象
Trans CN-Stretch1062 C—C伸缩振动,全反式脂链片段振动的B1g模式
Trans Sym. C-C Stretch1096 C—C反对称伸缩振动,旁式构象
Gauche CC-Stretch1126 C—C伸缩振动,全反式脂链片段振动的Ag模式
Trans Asym.CC Stretch2849 C—H 对称伸缩振动
Sym.CH-Stretch2882 C—H 反对称伸缩振动
Asym.CH-Stretch表 3 苯并[a]蒽对DPPC拉曼光谱特征峰及峰高比的影响
Table 3. Peak intensity ratios (Ia/Ib) corresponding to the DPPC/Benz (a) anthracene monolayers
718 cm−1 770 cm−1 I1096/1126 I1096/1062 I2849/2882 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱
(DPPC)7.59 2.24 1.00 0.96 0.88 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱+苯并[a]蒽
(DPPC+Benz(a)anthracene)4.48 1.79 0.80 1.11 0.83 -
[1] 郭瑾, 葛蔚, 柴超, 等. 化学工业区周边土壤中多环芳烃含量、来源及健康风险评估 [J]. 环境化学, 2018, 37(2): 296-309. GUO J, GE W, CHAI C, et al. Concentrations, sources, and health risk of polycyclic aromatic hydrocarbons in soils around chemical plants [J]. Environmental Chemistry, 2018, 37(2): 296-309(in Chinese).
[2] 麦麦提·斯马义, 帕丽达·牙合甫, 韩梦鑫, 等. 2017年春节前后乌鲁木齐市大气颗粒物中多环芳烃的污染特征、来源分析及健康风险评价 [J]. 环境化学, 2018, 37(11): 2433-2442. doi: 10.7524/j.issn.0254-6108.2018031301 MAI MAI TI·S M Y, PA LI DA·Y H F, HAN M X, et al. Characteristics, sources apportionment and toxicity assessment of polycyclic aromatic hydrocarbons in atmospheric particulate matters 2017 Chinese New Year in Urumqi [J]. Environmental Chemistry, 2018, 37(11): 2433-2442(in Chinese). doi: 10.7524/j.issn.0254-6108.2018031301
[3] LI W, WANG C, WANG H Q, et al. Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of Northern China [J]. Environmental Pollution, 2014, 192: 83-90. doi: 10.1016/j.envpol.2014.04.039 [4] KI-HYUN K, SHAMIN A J, EHSANUL K, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects [J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019 [5] 彭彬, 苏玉红, 杜伟, 等. 湖北农村燃柴和燃煤家庭大气多环芳烃污染特征和呼吸暴露风险 [J]. 生态毒理学报, 2018, l3(5): 171-181. doi: 10.7524/AJE.1673-5897.20180306002 PENG B, SU Y H, DU W, et a1. Household air pollution by polycyclic aromatic hydrocarbons in homes burning wood and coals and inhalation exposure risks in rural Hubei [J]. Asian Journal of Ecotoxicology, 2018, l3(5): 171-181(in Chinese). doi: 10.7524/AJE.1673-5897.20180306002
[6] SHEN H Z, TAO S, LIU J F, et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility [J]. Scientific Reports, 2014, 10: 1-8. [7] 刘丹青, 朱梦杰, 汤琳. 多环芳烃的健康风险评价以及暴露参数的敏感性分析 [J]. 中国环境监测, 2019, 35(1): 75-82. LIU D Q, ZHU M J, TANG L. Health risk assessment and sensitivity analysis of exposure parameters for polycyclic aromatic hydrocarbons [J]. Environmental Monitoring of China, 2019, 35(1): 75-82(in Chinese).
[8] ZHAO Q, LI Y J, CHAI X L, et al. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung [J]. Journal of Hazardous Materials, 2019, 369: 512-520. doi: 10.1016/j.jhazmat.2019.01.104 [9] KADOYA C, LEE B W, OGAMI A, et al. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes [J]. Nanotoxicology, 2016, 10(2): 194-203. [10] YUE T, WANG X, ZHANG X, et al. Molecular modeling of interaction between lipid monolayer and graphene nanosheets: Implications for pulmonary nanotoxicity and pulmonary drug delivery [J]. RSC Advances, 2015, 5(38): 30092-30106. doi: 10.1039/C5RA04922A [11] AGNIESZKA O, PAULINE D, TEREZA D, et al. Properties of lipid models of lung surfactant containing cholesterol and oxidized lipids: A mixed experimental and computational study [J]. Langmuir, 2020, 36: 1023-1033. doi: 10.1021/acs.langmuir.9b02469 [12] WANG F F, LIU J F, ZENG H B. Interactions of particulate matter and pulmonary surfactant: Implications for human health [J]. Advances in Colloid and Interface Science, 2020, 284: 102244. doi: 10.1016/j.cis.2020.102244 [13] EDUARDO G, LIBERO L, EVA S, et al. Effect of hydrophilic and hydrophobic nanoparticles on the surface pressure response of DPPC monolayers [J]. The Journal of Physical Chemistry C, 2011, 115: 21715-21722. doi: 10.1021/jp207713x [14] ZHAO Q, LI Y J, CHAI X L, et al. Interaction of pulmonary surfactant with silica and polycyclic aromatic hydrocarbons: Implications for respiratory health [J]. Chemosphere, 2019, 222: 603-610. doi: 10.1016/j.chemosphere.2019.02.002 [15] SOSNOWSKI T R, KOLINSKI M, GRADON L. Interactions of Benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system [J]. Annals of Occupational Hygiene, 2011, 55(3): 329-338. [16] LILAND N S, SIMONSEN A C, DUELUND L, et al. Polyaromatic hydrocarbons do not disturb liquid-liquid phase coexistence, but increase the fluidity of model membranes [J]. Chemistry and Physics of Lipids, 2014, 184: 18-24. doi: 10.1016/j.chemphyslip.2014.08.004 [17] ZHAO J, WANGZ, MASHAYEKHI H, et al. Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique [J]. Environment Science & Technology, 2012, 46: 5369-5377. [18] BEATA K, ANNA S K, JACEK K. The role of DPPG in lung surfactant exposed to benzo[a]pyrene [J]. Environmental Science:Processes & Impacts, 2019, 21(3): 438-445. [19] 杜士林, 丁婷婷, 董淮晋, 等. 沙颍河流域水环境中多环芳烃污染及风险评价 [J]. 农业环境科学学报, 2020, 39(3): 601-611. doi: 10.11654/jaes.2019-1211 DU S L, DING T T, DONG H J, et al. Pollution and ecological risk assessment of polycyclic aromatic hydrocarbons in the water environment of Shaying River Basin, China [J]. Journal of Agro-Environment Science, 2020, 39(3): 601-611(in Chinese). doi: 10.11654/jaes.2019-1211
[20] 周海军, 杜远江, 都达古拉, 等. 呼和浩特市冬季PMl0中多环芳烃的污染特征及来源解析 [J]. 环境化学, 2016, 35(8): 1707-1714. doi: 10.7524/j.issn.0254-6108.2016.08.2016010802 ZHOU H J, DU Y J, DUDA G L, et al. Characterization and surcer apportionment of polycyclic aromatic hydrocarbons bound to PM10 during winter in Hohhot [J]. Environmental Chemistry, 2016, 35(8): 1707-1714(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010802
[21] TOMASZ R S, MICHAL K, LEON G. Alteration of surface properties of dipalmitoyl phosphatidylcholine by Benzo[a]pyrene: A model of pulmonary effects of diesel exhaust inhalation [J]. Journal of Biomedical Nanotechnology, 2012, 8: 818-825. doi: 10.1166/jbn.2012.1436 [22] EDUARDO G, LIGGIERI L, SANTNI E, et al. Effect of hydrophilic and hydrophobic nanoparticles on the surface pressure response of DPPC monolayers [J]. Journal of Physical Chemistry C, 2017, 115(44): 21715-21722. [23] 赵群. 大气细颗粒物与肺表面活性物质间的界面化学作用研究[D]. 昆明: 昆明理工大学, 2019: 21-22. ZHAO Q. Interfacial chemical interactions between fine particulate matter and pulmonary surfactant[D]. Kunming: Kunming University of Science and Technology, 2019: 21-22 (in Chinese).
[24] KATARZYNA H W, MICHAL F, MARCIN B, et al. Properties of b-sitostanol/DPPC monolayers studied with Grazing Incidence X-ray Diffraction (GIXD) and Brewster Angle Microscopy [J]. Journal of Colloid and Interface Science, 2011, 364: 133-139. doi: 10.1016/j.jcis.2011.08.030 [25] KIRILKA M, SYETLA DP, GEORG A G, et al. DoumanovInteraction of Bestrophin-1 with 1-palmitoyl-2-oleoyl-sn- glycero-3-phosphocholine (POPC) in surface films [J]. Colloids and Surfaces B:Biointerfaces, 2014, 122: 432-438. doi: 10.1016/j.colsurfb.2014.01.045 [26] YUAN Y, LIU X, LIU T, et al. Molecular dynamics exploring of atmosphere components interacting with lung surfactant phospholipid bilayers [J]. Science of The Total Environment, 2020, 743: 140547. doi: 10.1016/j.scitotenv.2020.140547 [27] 董声焕. 肺表面活性物质基础与临床[M]. 北京: 人民军医出版社, 2012: 57-58. DONG S H. Pulmonary surfactant basic and clinical studies[M]. Beijing: People’s Military Medical Press, 2012: 57-58 (in Chinese).
[28] 徐琳桢, 赵群, 田森林, 等. 重金属离子对肺表面活性物质单层膜的影响 [J]. 中国环境科学, 2020, 40(2): 857-864. doi: 10.3969/j.issn.1000-6923.2020.02.047 XU L Z, ZHAO Q, TIAN S L, et al. Effect of heavy metal ions on the surface activity of pulmonary surfactant monolayer membrane [J]. China Environmental Science, 2020, 40(2): 857-864(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.02.047
[29] RAGESH G, IRYNA S, ROBERT L, et al. Phage langmuir monolayers and Langmuir-Blodgett films [J]. Colloids and Surfaces B:Biointerfaces, 2011, 82: 182-189. doi: 10.1016/j.colsurfb.2010.08.032 [30] JUAN T B. Thermodynamic behaviour of mixed films of an unsaturated and a saturated polar lipid. (Oleic Acid-Stearic Acid and POPC-DPPC) [J]. Colloids Interfaces, 2018, 2: 17. doi: 10.3390/colloids2020017 [31] CHAKRABORTY, HERTEL, DITMARS, et al. Impact of engineered carbon nanodiamonds on the collapse mechanism of model lung surfactant monolayers at the air-water interface [J]. Molecules, 2020, 25(3): 714. doi: 10.3390/molecules25030714 [32] WANG R, GUO Y, LIU H, et al. The effect of chitin nanoparticles on surface behavior of DPPC/DPPG langmuir monolayers [J]. Journal of Colloid & Interface Science, 2018, 519: 186-193. [33] LI J H, SUN R G, HAO C C, et al. The behavior of the adsorption of cytochrome C on lipid monolayers: A study by the Langmuir-Blodgett technique and theoretical analysis [J]. Biophysical Chemistry, 2015, 205: 33-40. doi: 10.1016/j.bpc.2015.05.008 [34] ZENG Z X, LI D, XUE W, et al. Structural models and surface equation of state for pulmonary surfactant monolayers [J]. Biophysical Chemistry, 2007, 131: 88-95. doi: 10.1016/j.bpc.2007.09.006 [35] CARLO D R J, LUCIANO C. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films [J]. Materials Science and Engineering C, 2017, 73: 579-584. doi: 10.1016/j.msec.2016.12.041 [36] 张超. 单分子膜成膜性能及循环曲线研究[D]. 开封: 河南大学, 2004: 47-48. ZHANG C. Study of monoayer properties and the cyclic isotherms of Langmuir monolayers[D]. Kaifeng: Hannan University, 2004: 47-48 (in Chinese).
[37] SOSNOWSKI TR, GRADON L, PDGORSKI A. Influence of insoluble aerosol deposits on the surface activity of the pulmonary surfactant: A possible mechanism of alveolar clearance retardation? [J]. Aerosol Sci Technol, 2010, 32(1): 52-60. [38] THAPA A, VERNON BC, PENA KDL, et al. Membrane-mediated neuroprotection by curcumin from amyloid-β-peptideinduced toxicity [J]. Langmuir, 2013, 29: 11713-11723. doi: 10.1021/la4020459 [39] WYDRO P. The interactions between cholesterol and phospholipids located in the inner leaflet of human erythrocytes membrane (DPPE and DPPC) in binary and ternary films-the effect of sodium and calcium ions [J]. Colloids and Surfaces B:Biointerfaces, 2011, 82: 209-216. doi: 10.1016/j.colsurfb.2010.08.041 [40] ANNA STACHOWICZ-KUNIERZ, TROJAN S, CWIKLIK L, et al. Modeling lung surfactant interactions with Benzo[a]pyrene [J]. Chemistry-A European Journal, 2017, 23(22): 5307-5316. doi: 10.1002/chem.201605945 [41] SUROVTSEV N V, ADICHTCHEV S V. Low-wavenumber raman scattering of phospholipid bilayers in fluid, ripple, and gel phases [J]. Journal of Raman Spectroscopy, 2020, 51: 952-958. doi: 10.1002/jrs.5861 [42] GHARIB R, FOURMENTIN S, CHARCOSSET C, et al. Effect of hydroxypropyl-β-cyclodextrin on lipid membrane fluidity, stability and freeze-drying of liposomes [J]. Journal of Drug Delivery ence & Technology, 2018, 44: 101-107. [43] 惠歌, 赵雨, 张巍, 等. 拉曼光谱研究人参皂苷Rbl与DPPC双层膜的作用 [J]. 光谱学与光谱分析, 2010, 30(9): 2393-2396. doi: 10.3964/j.issn.1000-0593(2010)09-2393-04 HUI G, ZHAO Y, ZHANG W, et al. Raman spectroscopy study on the interaction of ginsenoside Rbl with DPPC bilayers [J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2393-2396(in Chinese). doi: 10.3964/j.issn.1000-0593(2010)09-2393-04
[44] GARDIKIS K, HATZIANTONIOU S, VIRAS K, et al. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes [J]. International Journal of Pharmaceutics, 2006, 318: 118-123. doi: 10.1016/j.ijpharm.2006.03.023 [45] 惠歌, 刘威, 张景洲, 等. 变温拉曼光谱和DSC探讨人参皂苷Rb1分子与DPPC双层膜的作用 [J]. 光谱学与光谱分析, 2015, 35(8): 2176-2179. doi: 10.3964/j.issn.1000-0593(2015)08-2176-04 HUI G, LIU W, ZHANG J Z, et al. Study on the effects of ginsenoside Rbl on DPPC bilayers by using thermo-Raman spectrum and DSC [J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2176-2179(in Chinese). doi: 10.3964/j.issn.1000-0593(2015)08-2176-04
[46] JAY P. KITT, DAVID A. BRYCE, SHELLEY D. MINTEER, et al. Raman spectroscopy reveals selective interactions of cytochromec with cardiolipin that correlate with membrane permeability [J]. Journal of the American Chemical Society, 2017, 139(10): 3851-3860. doi: 10.1021/jacs.7b00238 [47] GARDIKIS K, HATZIANTONIOU S, KYRIAKOS V, et al. Effect of a bioactive curcumin derivative on DPPC membrane: A DSC and Raman spectroscopy study [J]. Thermochimica Acta, 2006, 447: 1-4. doi: 10.1016/j.tca.2006.03.007 [48] HELMUT I PC, TEOBALDO RC G, ANDRE S P. Molecular dynamics of dibenz[a, h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers [J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20912-20922. doi: 10.1039/C5CP01443C