[1] |
郭瑾, 葛蔚, 柴超, 等. 化学工业区周边土壤中多环芳烃含量、来源及健康风险评估 [J]. 环境化学, 2018, 37(2): 296-309.
GUO J, GE W, CHAI C, et al. Concentrations, sources, and health risk of polycyclic aromatic hydrocarbons in soils around chemical plants [J]. Environmental Chemistry, 2018, 37(2): 296-309(in Chinese).
|
[2] |
麦麦提·斯马义, 帕丽达·牙合甫, 韩梦鑫, 等. 2017年春节前后乌鲁木齐市大气颗粒物中多环芳烃的污染特征、来源分析及健康风险评价 [J]. 环境化学, 2018, 37(11): 2433-2442. doi: 10.7524/j.issn.0254-6108.2018031301
MAI MAI TI·S M Y, PA LI DA·Y H F, HAN M X, et al. Characteristics, sources apportionment and toxicity assessment of polycyclic aromatic hydrocarbons in atmospheric particulate matters 2017 Chinese New Year in Urumqi [J]. Environmental Chemistry, 2018, 37(11): 2433-2442(in Chinese). doi: 10.7524/j.issn.0254-6108.2018031301
|
[3] |
LI W, WANG C, WANG H Q, et al. Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of Northern China [J]. Environmental Pollution, 2014, 192: 83-90. doi: 10.1016/j.envpol.2014.04.039
|
[4] |
KI-HYUN K, SHAMIN A J, EHSANUL K, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects [J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019
|
[5] |
彭彬, 苏玉红, 杜伟, 等. 湖北农村燃柴和燃煤家庭大气多环芳烃污染特征和呼吸暴露风险 [J]. 生态毒理学报, 2018, l3(5): 171-181. doi: 10.7524/AJE.1673-5897.20180306002
PENG B, SU Y H, DU W, et a1. Household air pollution by polycyclic aromatic hydrocarbons in homes burning wood and coals and inhalation exposure risks in rural Hubei [J]. Asian Journal of Ecotoxicology, 2018, l3(5): 171-181(in Chinese). doi: 10.7524/AJE.1673-5897.20180306002
|
[6] |
SHEN H Z, TAO S, LIU J F, et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility [J]. Scientific Reports, 2014, 10: 1-8.
|
[7] |
刘丹青, 朱梦杰, 汤琳. 多环芳烃的健康风险评价以及暴露参数的敏感性分析 [J]. 中国环境监测, 2019, 35(1): 75-82.
LIU D Q, ZHU M J, TANG L. Health risk assessment and sensitivity analysis of exposure parameters for polycyclic aromatic hydrocarbons [J]. Environmental Monitoring of China, 2019, 35(1): 75-82(in Chinese).
|
[8] |
ZHAO Q, LI Y J, CHAI X L, et al. Interaction of inhalable volatile organic compounds and pulmonary surfactant: Potential hazards of VOCs exposure to lung [J]. Journal of Hazardous Materials, 2019, 369: 512-520. doi: 10.1016/j.jhazmat.2019.01.104
|
[9] |
KADOYA C, LEE B W, OGAMI A, et al. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes [J]. Nanotoxicology, 2016, 10(2): 194-203.
|
[10] |
YUE T, WANG X, ZHANG X, et al. Molecular modeling of interaction between lipid monolayer and graphene nanosheets: Implications for pulmonary nanotoxicity and pulmonary drug delivery [J]. RSC Advances, 2015, 5(38): 30092-30106. doi: 10.1039/C5RA04922A
|
[11] |
AGNIESZKA O, PAULINE D, TEREZA D, et al. Properties of lipid models of lung surfactant containing cholesterol and oxidized lipids: A mixed experimental and computational study [J]. Langmuir, 2020, 36: 1023-1033. doi: 10.1021/acs.langmuir.9b02469
|
[12] |
WANG F F, LIU J F, ZENG H B. Interactions of particulate matter and pulmonary surfactant: Implications for human health [J]. Advances in Colloid and Interface Science, 2020, 284: 102244. doi: 10.1016/j.cis.2020.102244
|
[13] |
EDUARDO G, LIBERO L, EVA S, et al. Effect of hydrophilic and hydrophobic nanoparticles on the surface pressure response of DPPC monolayers [J]. The Journal of Physical Chemistry C, 2011, 115: 21715-21722. doi: 10.1021/jp207713x
|
[14] |
ZHAO Q, LI Y J, CHAI X L, et al. Interaction of pulmonary surfactant with silica and polycyclic aromatic hydrocarbons: Implications for respiratory health [J]. Chemosphere, 2019, 222: 603-610. doi: 10.1016/j.chemosphere.2019.02.002
|
[15] |
SOSNOWSKI T R, KOLINSKI M, GRADON L. Interactions of Benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system [J]. Annals of Occupational Hygiene, 2011, 55(3): 329-338.
|
[16] |
LILAND N S, SIMONSEN A C, DUELUND L, et al. Polyaromatic hydrocarbons do not disturb liquid-liquid phase coexistence, but increase the fluidity of model membranes [J]. Chemistry and Physics of Lipids, 2014, 184: 18-24. doi: 10.1016/j.chemphyslip.2014.08.004
|
[17] |
ZHAO J, WANGZ, MASHAYEKHI H, et al. Pulmonary surfactant suppressed phenanthrene adsorption on carbon nanotubes through solubilization and competition as examined by passive dosing technique [J]. Environment Science & Technology, 2012, 46: 5369-5377.
|
[18] |
BEATA K, ANNA S K, JACEK K. The role of DPPG in lung surfactant exposed to benzo[a]pyrene [J]. Environmental Science:Processes & Impacts, 2019, 21(3): 438-445.
|
[19] |
杜士林, 丁婷婷, 董淮晋, 等. 沙颍河流域水环境中多环芳烃污染及风险评价 [J]. 农业环境科学学报, 2020, 39(3): 601-611. doi: 10.11654/jaes.2019-1211
DU S L, DING T T, DONG H J, et al. Pollution and ecological risk assessment of polycyclic aromatic hydrocarbons in the water environment of Shaying River Basin, China [J]. Journal of Agro-Environment Science, 2020, 39(3): 601-611(in Chinese). doi: 10.11654/jaes.2019-1211
|
[20] |
周海军, 杜远江, 都达古拉, 等. 呼和浩特市冬季PMl0中多环芳烃的污染特征及来源解析 [J]. 环境化学, 2016, 35(8): 1707-1714. doi: 10.7524/j.issn.0254-6108.2016.08.2016010802
ZHOU H J, DU Y J, DUDA G L, et al. Characterization and surcer apportionment of polycyclic aromatic hydrocarbons bound to PM10 during winter in Hohhot [J]. Environmental Chemistry, 2016, 35(8): 1707-1714(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2016010802
|
[21] |
TOMASZ R S, MICHAL K, LEON G. Alteration of surface properties of dipalmitoyl phosphatidylcholine by Benzo[a]pyrene: A model of pulmonary effects of diesel exhaust inhalation [J]. Journal of Biomedical Nanotechnology, 2012, 8: 818-825. doi: 10.1166/jbn.2012.1436
|
[22] |
EDUARDO G, LIGGIERI L, SANTNI E, et al. Effect of hydrophilic and hydrophobic nanoparticles on the surface pressure response of DPPC monolayers [J]. Journal of Physical Chemistry C, 2017, 115(44): 21715-21722.
|
[23] |
赵群. 大气细颗粒物与肺表面活性物质间的界面化学作用研究[D]. 昆明: 昆明理工大学, 2019: 21-22.
ZHAO Q. Interfacial chemical interactions between fine particulate matter and pulmonary surfactant[D]. Kunming: Kunming University of Science and Technology, 2019: 21-22 (in Chinese).
|
[24] |
KATARZYNA H W, MICHAL F, MARCIN B, et al. Properties of b-sitostanol/DPPC monolayers studied with Grazing Incidence X-ray Diffraction (GIXD) and Brewster Angle Microscopy [J]. Journal of Colloid and Interface Science, 2011, 364: 133-139. doi: 10.1016/j.jcis.2011.08.030
|
[25] |
KIRILKA M, SYETLA DP, GEORG A G, et al. DoumanovInteraction of Bestrophin-1 with 1-palmitoyl-2-oleoyl-sn- glycero-3-phosphocholine (POPC) in surface films [J]. Colloids and Surfaces B:Biointerfaces, 2014, 122: 432-438. doi: 10.1016/j.colsurfb.2014.01.045
|
[26] |
YUAN Y, LIU X, LIU T, et al. Molecular dynamics exploring of atmosphere components interacting with lung surfactant phospholipid bilayers [J]. Science of The Total Environment, 2020, 743: 140547. doi: 10.1016/j.scitotenv.2020.140547
|
[27] |
董声焕. 肺表面活性物质基础与临床[M]. 北京: 人民军医出版社, 2012: 57-58.
DONG S H. Pulmonary surfactant basic and clinical studies[M]. Beijing: People’s Military Medical Press, 2012: 57-58 (in Chinese).
|
[28] |
徐琳桢, 赵群, 田森林, 等. 重金属离子对肺表面活性物质单层膜的影响 [J]. 中国环境科学, 2020, 40(2): 857-864. doi: 10.3969/j.issn.1000-6923.2020.02.047
XU L Z, ZHAO Q, TIAN S L, et al. Effect of heavy metal ions on the surface activity of pulmonary surfactant monolayer membrane [J]. China Environmental Science, 2020, 40(2): 857-864(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.02.047
|
[29] |
RAGESH G, IRYNA S, ROBERT L, et al. Phage langmuir monolayers and Langmuir-Blodgett films [J]. Colloids and Surfaces B:Biointerfaces, 2011, 82: 182-189. doi: 10.1016/j.colsurfb.2010.08.032
|
[30] |
JUAN T B. Thermodynamic behaviour of mixed films of an unsaturated and a saturated polar lipid. (Oleic Acid-Stearic Acid and POPC-DPPC) [J]. Colloids Interfaces, 2018, 2: 17. doi: 10.3390/colloids2020017
|
[31] |
CHAKRABORTY, HERTEL, DITMARS, et al. Impact of engineered carbon nanodiamonds on the collapse mechanism of model lung surfactant monolayers at the air-water interface [J]. Molecules, 2020, 25(3): 714. doi: 10.3390/molecules25030714
|
[32] |
WANG R, GUO Y, LIU H, et al. The effect of chitin nanoparticles on surface behavior of DPPC/DPPG langmuir monolayers [J]. Journal of Colloid & Interface Science, 2018, 519: 186-193.
|
[33] |
LI J H, SUN R G, HAO C C, et al. The behavior of the adsorption of cytochrome C on lipid monolayers: A study by the Langmuir-Blodgett technique and theoretical analysis [J]. Biophysical Chemistry, 2015, 205: 33-40. doi: 10.1016/j.bpc.2015.05.008
|
[34] |
ZENG Z X, LI D, XUE W, et al. Structural models and surface equation of state for pulmonary surfactant monolayers [J]. Biophysical Chemistry, 2007, 131: 88-95. doi: 10.1016/j.bpc.2007.09.006
|
[35] |
CARLO D R J, LUCIANO C. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films [J]. Materials Science and Engineering C, 2017, 73: 579-584. doi: 10.1016/j.msec.2016.12.041
|
[36] |
张超. 单分子膜成膜性能及循环曲线研究[D]. 开封: 河南大学, 2004: 47-48.
ZHANG C. Study of monoayer properties and the cyclic isotherms of Langmuir monolayers[D]. Kaifeng: Hannan University, 2004: 47-48 (in Chinese).
|
[37] |
SOSNOWSKI TR, GRADON L, PDGORSKI A. Influence of insoluble aerosol deposits on the surface activity of the pulmonary surfactant: A possible mechanism of alveolar clearance retardation? [J]. Aerosol Sci Technol, 2010, 32(1): 52-60.
|
[38] |
THAPA A, VERNON BC, PENA KDL, et al. Membrane-mediated neuroprotection by curcumin from amyloid-β-peptideinduced toxicity [J]. Langmuir, 2013, 29: 11713-11723. doi: 10.1021/la4020459
|
[39] |
WYDRO P. The interactions between cholesterol and phospholipids located in the inner leaflet of human erythrocytes membrane (DPPE and DPPC) in binary and ternary films-the effect of sodium and calcium ions [J]. Colloids and Surfaces B:Biointerfaces, 2011, 82: 209-216. doi: 10.1016/j.colsurfb.2010.08.041
|
[40] |
ANNA STACHOWICZ-KUNIERZ, TROJAN S, CWIKLIK L, et al. Modeling lung surfactant interactions with Benzo[a]pyrene [J]. Chemistry-A European Journal, 2017, 23(22): 5307-5316. doi: 10.1002/chem.201605945
|
[41] |
SUROVTSEV N V, ADICHTCHEV S V. Low-wavenumber raman scattering of phospholipid bilayers in fluid, ripple, and gel phases [J]. Journal of Raman Spectroscopy, 2020, 51: 952-958. doi: 10.1002/jrs.5861
|
[42] |
GHARIB R, FOURMENTIN S, CHARCOSSET C, et al. Effect of hydroxypropyl-β-cyclodextrin on lipid membrane fluidity, stability and freeze-drying of liposomes [J]. Journal of Drug Delivery ence & Technology, 2018, 44: 101-107.
|
[43] |
惠歌, 赵雨, 张巍, 等. 拉曼光谱研究人参皂苷Rbl与DPPC双层膜的作用 [J]. 光谱学与光谱分析, 2010, 30(9): 2393-2396. doi: 10.3964/j.issn.1000-0593(2010)09-2393-04
HUI G, ZHAO Y, ZHANG W, et al. Raman spectroscopy study on the interaction of ginsenoside Rbl with DPPC bilayers [J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2393-2396(in Chinese). doi: 10.3964/j.issn.1000-0593(2010)09-2393-04
|
[44] |
GARDIKIS K, HATZIANTONIOU S, VIRAS K, et al. A DSC and Raman spectroscopy study on the effect of PAMAM dendrimer on DPPC model lipid membranes [J]. International Journal of Pharmaceutics, 2006, 318: 118-123. doi: 10.1016/j.ijpharm.2006.03.023
|
[45] |
惠歌, 刘威, 张景洲, 等. 变温拉曼光谱和DSC探讨人参皂苷Rb1分子与DPPC双层膜的作用 [J]. 光谱学与光谱分析, 2015, 35(8): 2176-2179. doi: 10.3964/j.issn.1000-0593(2015)08-2176-04
HUI G, LIU W, ZHANG J Z, et al. Study on the effects of ginsenoside Rbl on DPPC bilayers by using thermo-Raman spectrum and DSC [J]. Spectroscopy and Spectral Analysis, 2015, 35(8): 2176-2179(in Chinese). doi: 10.3964/j.issn.1000-0593(2015)08-2176-04
|
[46] |
JAY P. KITT, DAVID A. BRYCE, SHELLEY D. MINTEER, et al. Raman spectroscopy reveals selective interactions of cytochromec with cardiolipin that correlate with membrane permeability [J]. Journal of the American Chemical Society, 2017, 139(10): 3851-3860. doi: 10.1021/jacs.7b00238
|
[47] |
GARDIKIS K, HATZIANTONIOU S, KYRIAKOS V, et al. Effect of a bioactive curcumin derivative on DPPC membrane: A DSC and Raman spectroscopy study [J]. Thermochimica Acta, 2006, 447: 1-4. doi: 10.1016/j.tca.2006.03.007
|
[48] |
HELMUT I PC, TEOBALDO RC G, ANDRE S P. Molecular dynamics of dibenz[a, h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers [J]. Physical Chemistry Chemical Physics, 2015, 17(32): 20912-20922. doi: 10.1039/C5CP01443C
|