-
目前,全球正面临能源危机和环境污染的双重挑战。光解水制氢将太阳能转化成化学能,既能提供清洁能源又可避免传统能源的环境污染。因此,光解水制氢引起了人们的广泛关注。由于可见光占太阳光的绝大部分,拓宽可见光的利用是提高太阳光利用率的有效手段。基于此,开发可见光驱动的光催化剂对于光解水制氢具有十分重要的意义。
近年来石墨相氮化碳(g-C3N4)在可见光催化领域受到人们的青睐[1-3]。一方面是因石墨相氮化碳的中等宽度带隙(2.7 eV)的能带结构具有与石墨相似的二维结构和优异的光催化性能;另一方面是因为其合成原料易得、制备条件简便,具有推广应用的潜力。然而,单纯的g-C3N4还存在一些不足,如比表面积低、光生载流子复合快、导电性较差等限制了它的推广应用。因此,人们采取多种手段对其进行改性以提升g-C3N4的光催化性能。为了增大其表面积,由块体结构转向超薄片层结构。苏跃涵等[4]将g-C3N4制备成超薄的片层材料,可提升其比表面积,同时提升其光降解抗生素的催化性能。Cao等[5]在超薄片层的g-C3N4表面引入了-NH3官能团,其光催化固氮的反应活性得到增强。为了提高g-C3N4电荷空穴分离效率,采用金属离子或非金属离子改性[6-7]。Liu等[7]发现g-C3N4中引入氯,氯原子以插入层间的方式存在,可有效提高电荷空穴分离能力。
贵金属改性不仅可以提升材料的光催化性能,还可以省略氯铂酸等助催化剂的添加[8]。Huang等[9]发现,在g-C3N4表面沉积Pd,其光解水产氢的性能提升了数百倍。Liu等[10]在超薄TiO2纳米片上负载高度分散Pt纳米颗粒,其光催化还原CO2的性能也显著增强。由于贵金属价格昂贵,在贵金属纳米粒子中引入二元金属,既可减少贵金属的用量降低成本,还可以通过合成方法、改变比例等手段来调控二元金属粒子的形貌及界面作用,从而优化其催化性能。Naulani-Garcia等[11]发现,PdCo/g-C3N4相较于Pd/g-C3N4对甲酸催化降解的活性得到提升;Ye等[12]合成了PdCu/g-C3N4并将其用于硝酸根离子的催化还原反应发现,Cu的引入使催化剂的活性和选择性均有显著提升。本课题组前期的研究发现PdAg粒子改性的g-C3N4比单独Pd粒子改性g-C3N4具有更高的光解水产氢性能,主要是由于PdAg间的界面效应有利于电子的富集,促进光生电荷空穴的分离[13]。在此基础上,进一步合成了PdCu、PdCo、PdIr的3种双金属粒子,考察了引入元素离子半径和电负性变化对二元金属性质及光催化性能的影响规律。
本文通过乙二醇还原法合成了PdM(M=Cu、Co、Ir)纳米粒子,将其负载到g-C3N4表面,评价了PdM/g-C3N4催化剂可见光驱动下光解水产氢的性能,并结合XRD、TEM、XPS及光电化学参数等表征手段对样品性质进行表征,进而讨论其中的作用机理。
-
氯钯酸钠(Na2PdCl4,99.95%,Alfa Aesar),硝酸铜(Cu(NO3)2,99.5%,上海振欣试剂公司),硝酸钴(Co(NO3)2,99%,aladdin),三氯化铱(IrCl3,99.9%,aladdin),聚乙烯吡咯烷酮(Poly vinylpyrrolidone,PVP, MW=58000,Fluka),尿素,抗坏血酸,丙酮,无水乙醇均购自国药集团化学试剂有限公司,溴化钾(KBr)和三乙醇胺购自上海凌峰化学试剂有限公司,乙二醇购自南京化学试剂有限公司。所有试剂都是分析纯,直接使用。
-
金属纳米粒子合成 采用乙二醇还原法制备PdM(PdCo、PdCu、PdIr)二元和单组份Pd金属纳米粒子。样品合成所用试剂的量是按理论产量10 mg,Pd和M的原子比1:1进行投加。以PdCu为例,首先称取Na2PdCl4 17.3 mg和Cu(NO3)2 14.2 mg分别溶解于4 mL乙二醇样品管,超声1 min促进溶解。然后称取50 mg PVP置于100 mL圆底烧瓶中,加入7 mL乙二醇(单组份Pd粒子则加入11 mL,保证每次反应乙二醇总量为15 mL),搅拌、冷凝回流条件下,油浴加热至150 ℃。缓慢同时加入两种金属前体物溶液,反应30 min。反应结束后,冰水浴骤冷。将产物溶液转移至50 mL塑料离心管中并以7倍体积加入丙酮,振荡洗涤,6000 r·min−1转速下离心30 min分离出纳米金属粒子。分离产物在60 ℃烘干72 h,再研磨得到粉末。样品标记 PdCu、PdCo、PdIr和Pd。
g-C3N4制备 高温灼烧法制备g-C3N4。在100 mL瓷坩埚中加入一半体积的尿素,放入马弗炉中,在空气氛中以5 ℃·min−1的速度升温至550 ℃,并在550 ℃下保持4 h。
PdM/g-C3N4催化剂制备 称取前述制备得到的金属纳米粒子60% wt(相当于6 mg PdM)溶解7.5 mL水和无水乙醇(体积比1∶1)的溶剂,记为溶液1;称取600 mg·g−1-C3N4并加入12.5 mL水和无水乙醇(体积比1∶1)的溶剂,记为溶液2。将两个溶液超声10 min。在搅拌状态下,用胶头滴管逐滴将溶液1加入到溶液2。将混合后的溶液再超声10 min。搅拌1 h,60 ℃烘干过夜。烘干后,研磨,称量。PdM的理论负载量1 %wt。样品标记为PdM(M=Cu、Co、Ir)/g-C3N4。
-
用X射线衍射(XRD)的方法测定PdCu、PdCo、PdIr和Pd及负载到g-C3N4表面后样品的晶体结构,测试是在瑞士ARL公司的XRD-6000型仪器上进行,2θ扫描范围是15°—75°,扫描速度是3°·min−1,Cu Kα辐射λ=0.15418 nm。金属粒子的形貌是在日本JEOL公司的JEM-200cx透射电子显微镜上测试,加速电压200 kV。样品中元素结合能在日本UIVAC-PHI公司的PHI 5000 VersaProbe光电子能谱仪上测得,Al Kα光源(1486.6 eV),结合能以C1s = 284.6 eV作为标准进行校正。岛津UV-2401分光光度计(以BaSO4为参比)在200—800 nm范围内记录了UV-漫反射光谱(UV-DRS)。在Fluoromax-4荧光分光光度计上测定光致发光(PL)光谱,实验以固态进行,激发光波长为320 nm,所有测量中的缝隙为1.5 nm,在360 nm至800 nm范围内测量PL光谱。光电流测量是使用标准三电极电池在CHI660E电化学工作站上进行,其中沉积光催化剂的电极用作工作电极,参比电极和对电极分别为Hg/Hg2Cl2和铂丝(平时保存于饱和KCl中)。电解质为0.2 mol·L−1 Na2SO4溶液,并使用Xe灯照射。光照强度为467 mW,光谱范围320—2500 nm。水接触角的测定是利用Kruss公司的DSA-30S液滴形状分析仪进行测量,使用方法为座滴法,角度取液滴完全浸没入样品的前一帧进行计算机测量。
-
光催化水分解实验是在密闭玻璃系统(CEL-SPH2N-D,中国北京中教金源)中进行的。用300 W Xe灯作为光源(420 nm滤光片),光照强度为467 mW。将50 mg催化剂分散在100 mL含三乙醇胺(10% vol)作为牺牲电子给体的水溶液中,水溶液的温度通过循环泵水浴保持在6 ℃,将反应系统密封并抽空30 min后开启光源。氢气的产生量通过配备有热导检测器(TCD)、氩气作为载气的气相色谱仪在线测定。为了确定催化剂的重复利用性能,对催化剂进行重复试验,步骤同上,并且每次重复都补充牺牲剂。其中,0.05 g 催化剂4 h Pd 原子平均产氢量计算方式如下:
-
文中所有的DFT计算都是用VASP软件包完成的,计算中使用PAW平面波的方法来处理核-电相互作用,平面波截断能为520 eV。使用GGA-PBE交换关联泛函描述该体系,使用M-P方法展开电子波函数,展宽为0.2 eV,布里渊区撒点密度为5×5×1,结构优化的力收敛标准为小于0.2 eV·nm−1。
吸附能的定义为:
其中,E (吸附物 + 底物)是吸附物与底物相互作用体系的总能,E (吸附物)是孤立吸附物在气相中的能量,E (底物)是未吸附之前的表面的能量(Pd(111))。吸附能为负值代表吸附过程中体系放热,吸附能为正值代表吸附过程中体系吸热。
-
首先对合成的PdM金属粒子进行了晶体结构和形貌表征,结果如图1所示。从图1a可见,PdM和Pd金属粒子均出现3个衍射峰分别位于2θ = 40°、46°、68°处,对应于面心立方相的金属Pd的(111)、(200)和(220)晶面衍射[14]。此外,每个样品在22°处还有个宽峰,是样品底座玻璃的信号。相对于单组份Pd,PdM样品的(111)晶面的衍射峰均发生了一定程度位移,见表1。再依据布拉格方程,计算出PdM和Pd样品的(111)晶面间距,Pd、PdCu、PdCo和PdIr的d(111)分别为0.225、0.224、0.225、0.229 nm,即Cu和Co的引入对其晶面间距影响不大,而Ir的引入d(111)略有增加。这主要是由于引入元素M和Pd的原子半径不同所致。Cu和Co的原子半径小于Pd,Ir的原子半径大于Pd,导致其晶格分别发生一定程度的收缩和膨胀。晶格收缩和膨胀也说明PdM可能形成了合金[14]。图1b是金属粒子的TEM图。从图1b可见,所合成的金属粒子都是高度分散,尺寸均匀的纳米颗粒。经过对样品进行粒径统计,PdCu、PdCo、PdIr和Pd的平均粒径分别为7.0、6.0、8.6、4.7 nm。
将上述金属粒子负载到g-C3N4表面制得PdM/g-C3N4催化剂,并进行了XRD和TEM表征如图2。从图2a可见,样品和载体g-C3N4均在2θ=13.1°和27.7°处出现特征衍射峰,对应于g-C3N4的构成平面的3-s-三嗪单元结构(100)晶面和π共轭的石墨层状结构(002)晶面衍射[3-4, 15]。未检测到对应于Pd或者PdM的晶相衍射峰,说明PdM金属粒子高度分散在g-C3N4表面。从图2b也可以看出g-C3N4呈薄膜结构,PdCo金属粒子高度分散在其表面。
-
在可将光照射下评价了催化剂光解水产氢的性能,结果如图3所示。经过4 h光催化产氢反应,每个催化剂的产氢量随时间线性增加,载金属粒子的样品PdM/g-C3N4相对于单纯g-C3N4,均大幅度提升。至4 h反应结束,g-C3N4、PdCu/g-C3N4、Pd/g-C3N4、PdCo/g-C3N4和PdIr/g-C3N4的产氢量分别为3.3、117.19、135.6、184.6、214.7 μmol,除了PdCu/g-C3N4外,双金属催化剂产氢活性均较纯Pd单金属催化剂有明显提升。可见,贵金属粒子负载可显著提升催化剂的光解水产氢性能。对于4种金属粒子,其产氢性能顺序:PdCu/g-C3N4 < Pd/g-C3N4 < PdCo/g-C3N4 < PdIr/g-C3N4。即Cu的引入使Pd的催化性能略有降低,Co和Ir的引入则有所提升。由于二元金属引入Pd的用量减少,提升了催化剂的经济性。此外,Co和Cu的引入Pd原子的4 h平均产氢量也提升至原来的2.1倍和1.4倍。这也说明,二元金属的引入,可提升贵金属的利用率,减少贵金属用量。最后,测试了PdIr/g-C3N4催化剂的重复利用性,结果如图3c。第2次和第3次的产氢能力较前一次均略有下降,而第4次与第3次几乎不变,说明稳定性较好。
-
为了分析各样品催化性能产生差异的原因,对催化剂进行了光谱和电化学性质表征。图4a是样品的固体紫外可见吸收光谱,从图上可以看出,所有样品在250—400 nm间均产生了强的光吸收,对应于半导体g-C3N4光生电子由价带向导带的跃迁[7, 9]。相较于单纯的g-C3N4,负载金属粒子后的样品其吸收峰的强度除了紫外光区间外,在450—800 nm可见光区间的吸收也显著增强。Chen等[16]在Pd/TiO2体系中也观察到类似结果,这主要是由于光生电子在Pd金属的d-d轨道间跃迁增强了样品对光的吸收。因此,紫外可见吸收谱图说明金属粒子负载后,催化剂对光的吸收能力显著增强。图4b是样品的光电流结果。所有样品在可见光激发下均产生了不同强度的光电流,主要是由于半导体材料的光电效应所致。从光电流强度来看,金属粒子负载其强度均较单纯的g-C3N4有所增加。尤其是PdCo粒子负载后,显示了最强的光电流。Chen[16]和Chava[17]分别在Pt/TiO2和Au/g-C3N4体系中报道了相同的结果。金属粒子负载后,样品的光电流增强主要是有两个原因,第一是样品对光的吸收能力增强;第二是由于金属粒子在半导体表面沉积后形成了肖特基势垒,增强了光生电荷迁移能力,促进了光生电荷-空穴的分离,前人研究说明双金属对比单金属具有更低的费米能级,从而使得光激发电子能够更容易地从g-C3N4导带转移到合金上,也就是更容易翻越肖特基势垒,从而提升分离效率[18]。而更高的电荷空穴分离能力,意味着更多的光生电子可用于H+还原,以产生更多的氢气。另外从光致发光光谱(PL)可以看出负载金属的催化剂比纯g-C3N4信号弱,说明金属的引入降低了电子-空穴复合效率。其中双金属催化剂活性顺序与PL光谱相对应,而单金属催化剂则有所不同,但文献中有表明,第二金属的引入会改变单金属的结构、电子密度、表面缺陷等性质[18],而颗粒的尺寸、样品表面粗糙度、发光体的浓度、杂志缺陷等性质均会影响PL的强度[19-20]。
-
电子传递是光解水产氢中的关键步骤。为了明确光生电子在催化剂表面的迁移路径,对样品进行了X射线光电子能谱表征,结果如图5所示。首先来看PdM金属粒子中Pd 3d的结合能。从图5可见,4个样品均出现了4组峰,分别位于334.7、337.6、339.9、343.0 eV附近。其中334.7 eV和339.9 eV处的峰归属为Pd0的Pd3d5/2和Pd3d3/2分裂,337.6 eV和343.3 eV则归属为Pd2+的Pd 3d5/2和Pd3d3/2分裂[9, 21-24]。说明4组样品中的Pd均以Pd0和Pd2+的混合形态存在。本研究中,金属粒子采用的是乙二醇还原法,应该主要获得金属态粒子。XPS结果显示样品中有部分氧化态钯,可能是金属粒子表面部分被氧化所致。二元金属的引入,对Pd的结合能和峰面积比例都产生了一些影响。从结合能来看,Cu、Co和Ir的引入,Pd0和Pd2+的结合能都有向低结合能偏移的趋势。结合元素电负性分析,Pd、Cu、Co、Ir的电负性分别为2.2、1.88、1.7和2.2,当合成二元金属粒子时,电负性大的元素有更强的得电子能力,在XPS谱图上就显示结合能向低结合能方向偏移。从文献报道的结果也可以看到,二元金属粒子中由于两种金属相互作用发生了电子转移使其结合能发生了一定的位移[21-23]。这也印证了XRD的结果,PdM形成了合金。此时Pd形成了Pdδ−,而电负性较小的M则形成了Mδ+,Pdδ−···Mδ+的金属界面更有利于电荷传递,当g-C3N4被光激发形成光生电子,光生电子则迁移至费米能级较低的PdM表面,形成捕获光电子的肖特基势垒,从而抑制了电子-空穴对复合[13]。
另外,单组份Pd/g-C3N4样品中Pd0和Pd2+的峰面积较接近说明两种物种比例相近,各占一半。而M的引入,两个峰的面积比例发生了变化。大体上是Pd2+物种的面积减少,说明M的引入稳定了金属态的Pd,这也是跟前述的M元素的电负性相关,M和Pd的电负性差异使得Pd有得电子趋势,从而形成了更多Pd0物种。而Ir的电负性和Pd相同,所以Ir的引入对Pd2+物种的量影响不大。接下来对样品中的氧元素进行分析如图5b。可以看出4个样品都在531.4 eV处出现一个主峰,在532.9 eV处出现一个肩峰。531.4 eV处的峰对应于PdM表面吸附氧物种,532.9 eV的峰对应于吸附的水分子中羟基氧物种[25]。相较于单组份样品,PdM/g-C3N4中吸附氧的峰位置均有向高结合能方向偏移的趋势。这也可能是PdM间的相互作用使表面吸附氧物种的化学环境发生了变化。
图5c、d分别对样品中C、N元素进行了XPS分析。C元素都在287.8 eV和284.6 eV处出现了特征峰,对应于g-C3N4中N—C=N的碳和石墨结构的C—C物种[9, 13, 15, 17]。金属粒子负载后N—C=N峰的位置略向低结合能方向偏移约0.2 eV。N1s谱图在398.4 eV出现主峰,在400.0 eV出现肩峰,分别对应C—N=C中的氮和N-(C)3中的氮[9, 13, 15, 17]。金属粒子负载后主峰也略向低结合能方向偏移约0.2 eV。C1s和N1s的结合能偏移,说明金属粒子和载体间具有一定的相互作用,形成了电子传递作用。
-
光解水产氢反应中,水是非常重要的反应物分子。水分子与催化剂间的接触能力将直接影响其催化性能。因此,本文测定了样品的水接触角判断其亲疏水性强弱。结果如图6所示。从图上可以看出,单纯g-C3N4的水接触角是57.7°,而金属粒子负载后其水接触角均有不同程度减小。一般来说,水接触角越小其亲水性越好[15]。所以,金属粒子负载后样品的亲水性都有所增加,也说明反应物水分子和样品间的接触机会增加。PdM粒子负载后其亲水性增加,也说明合成的PdM粒子具有良好的亲水性,可与反应物水分子进行充分接触。其中PdCo/g-C3N4的接触角最小,这可能与其具有较高催化活性相关[26-29]。另外,PdIr/g-C3N4的水接触角相对较大,但是活性却是最好的一个,说明亲疏水性并不是影响催化剂产氢活性的关键因素。Pd和Ir同属Pt族元素,均为贵金属,因此PdIr显示优于PdCo和PdCu的催化活性是由Ir的贵金属特性决定的。
此外,对PdCo、PdCu、PdIr表面吸附水分子的吸附能进行了DFT计算,结果如图7所示。水分子在PdCu、PdIr和PdCo粒子表面的吸附能分别是−5.53、−8.99、−10.15 kcal·mol−1。吸附能越负表明水分子在金属粒子表面吸附越稳定。可见,3种双金属粒子对水分子的吸附顺序是PdCo > PdIr >PdCu。在3种双金属粒子中,PdIr活性最高,是由于Pd和Ir均是贵金属。此外,值得一提的是PdCo的性能与PdIr接近,远高于PdCu。由水分子在PdCu和PdCo表面的吸附能及亲水性可推测,PdCo的活性较高与其更易吸附反应物水分子相关。
-
本文采用乙二醇还原法合成了PdCu、PdCo、PdIr和Pd金属粒子,并将其负载于g-C3N4表面制备出光催化剂用于可见光驱动光解水产氢反应。结果发现,二元金属Co, Ir的引入相较于单金属负载的催化剂0.05 g 4 h产氢量都明显提升,而Cu则稍微有所降低,并且使得Pd原子的平均产氢量增加了1.4—4.4倍。并且,PdIr/g-C3N4经过4次循环测试显示了较高的稳定性。催化性能提升主要是由于:(1) 贵金属负载后对光的吸收能力增加,同时由于金属粒子对光生电子具有强的捕获能力,形成更强的光电流;(2) M原子进入Pd晶格形成了纳米合金,降低了费米能级,使g-C3N4的光生电子在PdM合金粒子上更易传输,更利于电子捕获促进光生电子-空穴的分离;(3) 贵金属粒子负载到g-C3N4表面后,增强了样品的亲水性,降低了水分子吸附能,提升了反应速率。
PdM/g-C3N4 (M=Cu、Co、Ir) 催化剂制备及其可见光驱动光解水制氢反应性能
Study of the visible-light photocatalytic water splitting for hydrogen evolution on PdM/g-C3N4(M=Cu,Co,Ir)
-
摘要: 贵金属基光催化剂在可见光驱动分解水产氢反应中具有十分优异的性能,却面临价格贵、利用率较低的问题。本文采用乙二醇还原法,将金属Cu、Co、Ir分别引入到贵金属Pd粒子中形成二元PdM金属粒子,负载到g-C3N4表面制得催化剂。在可见光驱动下分解水产氢性能测试结果表明,二元金属Co、Ir的引入相较于0.05 g单金属负载催化剂的4 h产氢量都有明显提升,而Cu则稍微有所降低,最高产氢量是215 μmol。并且使得Pd原子的平均产氢量增至1.4—4.4倍。光催化性能提升的主要原因是由于PdM粒子负载增强了样品对光的吸收,促进了光生电子与空穴的分离,增加了样品的亲水性降低了水分子吸附能。另外,二元金属的引入可显著提升Pd原子的平均产氢量。尤其是与过渡金属Co形成PdCo粒子,其4 h产氢性能与PdIr接近,但其价格远低于Ir。因而PdCo/g-C3N4催化剂具有很好的经济性。Abstract: Noble metal based photocatalysts have excellent performance toward the hydrogen evolution by water splitting under visible light irradiation, but some disadvantages are present, such as expensive, low utilization, etc. In this study, by the polyol reduction method, the elements of copper (Cu), cobalt (Co) and iridium (Ir) were introduced into Pd nanoparticles to prepare PdM bimetallic nanoparticles, which were loaded on the surface of g-C3N4. The results of hydrogen evolution indicated that compared to pristine Pd/g-C3N4, the hydrogen amounts of 0.05 g Pd(Co, Ir)/g-C3N4 catalysts have significant hydrogen evolution increase in 4 h, while Cu has a slight decrease, the highest one achieved 215 μmol. And the introduction of Cu, Co, Ir increases the hydrogen evolution of average Pd atoms by 1.4—4.4 times. The improvement of catalytic performance is attributed to the increased light absorption, the separation of electron and hole, the hydrophilic property, and the decreased adsorption energy with water reactant of the PdM/g-C3N4 catalysts. Furthermore, the average produced hydrogen amount of Pd atom was increased by introducing of M, PdCo/g-C3N4 displayed a similar catalytic performance with PdIr/g-C3N4. On the basis of that cobalt is cheaper than iridium, PdCo/g-C3N4 is very economical.
-
世界卫生组织(world health organization, WHO)称,癌症是全球第二大死亡原因。2020年全球有1 930×104新癌症病例、1 000×104癌症死亡,预计到2032年,每年新增癌症病例将上升到2 200×104,这意味着抗癌类抗生素的消费量将急剧增加[1]。但抗生素使用后不会被生物体完全吸收,其以原药或代谢物的形式通过粪便或者尿液排出体外[2],导致环境中存在大量残留抗生素及其衍生物,并迁移至地表水、地下水并进入饮用水处理及输送系统中[3-4]。在市政污水、污水处理厂、地表水和地下水中,经常可以检测到μg·L−1级的环丙沙星、磺胺类药物、罗红霉素、脱水红霉素等药物[5-7]。抗生素类药物一般都是非特异性的、缺乏选择性,一方面在任何真核生物体中都会引起细胞毒性、基因毒性、诱变、致畸和内分泌干扰作[8-13],改变水环境中的微生物群落,并且导致耐药基因的产生[14-16];另一方面抗生素通过食物链在人体内富集,对人体的肠道疾病产生过敏影响,甚至有些还会产生“三致效应”[17],长期富集抗生素会损害人体的免疫系统,甚至严重的影响各项生理功能[18]。
蒽环类抗生素是一种新型污染物,其代表物柔红霉素、多柔比星、表柔比星等在水环境中的半衰期时间较长,属于难以降解的有机物。目前利用生物降解[19]、吸附[20-21]、光催化氧化[22]、电化学氧化[23-24]等高级氧化技术对该类抗生素进行氧化降解的相关研究较多。FRANQUET等[19]利用序批式反应器(sequencing batch reactor, SBR)对废水中的柔红霉素、多柔比星进行降解实验发现,柔红霉素的降解速率要比多柔比星快很多,反应15 min内,柔红霉素被降解致检测下限,多柔比星仅降解了60%。但生物降解技术在利用微生物处理高浓度抗生素废水的过程时,会对微生物产生毒性作用并且诱导一些致病菌产生耐药性的风险。GHODRATI等[20]使用氧化石墨烯、活性炭和多壁碳纳米管作为吸附材料对柔红霉素进行吸附动力学的比较研究,发现石墨烯具有较短的吸附平衡时间及较高的吸附率,其吸附平衡时间为30 min,能够吸附88%的柔红霉素,而活性炭和多壁碳纳米管材料的吸附平衡时间长达300 min和1 400 min,吸附率仅达到51%和68%。但吸附过程只是将污染物富集,并没有实质性的将污染物进行降解矿化,因此,会存在二次污染的风险。DUMITRU等[22]通过热解草酸铋铁配合物制得BiFeO3,探究其在光催化与单纯的紫外照射对多柔比星的降解差异。结果表明,BiFeO3的光催化在150 min后可去除79%的多柔比星,而单纯紫外照射仅可去除33%。但由于光催化技术对于透光度要求较高,如果水体中的悬浮物较多、色度较高就会影响光催化效果,进而会影响处理效果。
二氧化氯(ClO2)是一种环境友好型的强氧化剂和消毒剂,在水处理工艺中作为氯消毒的替代产品可以有效降解水中有机污染物,去除还原态铁、锰及硫化物等无机污染物,同时不会产生具有三致作用的有机卤代物[25];也可在防疫灭疫、水产畜牧养殖和造纸制浆漂泊等领域中广泛应用。ClO2通过单电子转移的形式与有机物发生氧化还原反应,能够有效降解吡唑酮[26]、氟喹诺酮[27]、磺胺类[28]等药物,因此具有降解抗生素的潜在能力。侯智昊等[29]利用ClO2降解磺胺甲基噁唑和磺胺脒,初始浓度为0.5~2.5 μmol·L−1的磺胺甲基噁唑与初始浓度大于20 μmol·L−1的ClO2反应30 s后,去除率可达到83%以上;而磺胺脒在ClO2初始浓度大于50 μmol·L−1时,反应120 s去除率达到95%;并且酸性条件下会抑制ClO2对磺胺类抗生素的降解,而在碱性条件下反应120 s后几乎都能够完全被降解。
为了充分利用优良消毒剂ClO2的氧化效果,减轻抗生素对环境污染,本研究通过考察ClO2对盐酸多柔比星(DOX)的去除效果、影响因素、反应动力学以及降解机理,可供同类有机污染物的反应参考,也可为进一步确定工程应用参数提供科学依据。对控制环境中的新型抗生素的污染、生物毒性等潜在的环境威胁具有重要的理论意义和应用价值。
1. 材料和方法
1.1 ClO2的制备和DOX来源
采用GB26366-2021《二氧化氯消毒剂卫生要求》A1.4.2的方法制备高纯二氧化氯。二氧化氯母液质量浓度为500 mg·L−1,使用前进行标定。DOX购买于上海阿拉丁生化科技有限公司,色谱纯,纯度为98%。制备DOX标准溶液时,称取0.05 g DOX,用少量超纯水溶解后转至50 mL的容量瓶中,将制得质量浓度为1.0 g·L−1的标准溶液放在4 ℃的冰箱中避光存储。
1.2 ClO2对DOX降解效果及影响因素实验
1) ClO2初始浓度对降解效果的影响实验。反应容器采用体积为100 mL的聚四氟乙烯玻璃瓶,用锡纸包裹住避光。量取60 mL质量浓度5 mg·L−1的DOX于聚四氟乙烯玻璃瓶中,调节pH为7.5±0.1,放在恒温水浴磁力搅拌器中,设定温度为(25±1) ℃。加入质量浓度为0.2、0.4、0.6、0.8、1.0 mg·L−1的ClO2对DOX进行降解。开启磁力搅拌器,控制转速为200 r·min−1,用移液枪分别在0、5、10、20、30 min吸取5 mL的反应溶液于已经盛有20 μL的0.05 mol·L−1的硫代硫酸钠溶液的棕色小瓶中终止反应。
2)温度对降解效果的影响实验。ClO2质量浓度为0.6 mg·L−1,溶液pH控制在7.5±0.1。对于实验过程中低温条件,利用恒温磁力搅拌器进行加热控制;对于高温条件,利用冰块水浴降温。
3) pH对降解效果的影响实验。实验过程基本与上述方法基本相同,ClO2质量浓度为0.6 mg·L−1,用HCl和NaOH对DOX溶液进行调节所需pH条件,同时控制溶液温度为(25±1) ℃。
4)抗生素浓度对降解效果的影响实验。ClO2质量浓度为0.6 mg·L−1,量取60 mL质量浓度为2、5、10、15、20 mg·L−1的DOX于聚四氟乙烯玻璃瓶中,控制pH为7.5±0.1、温度为(25±1) ℃,放在恒温水浴磁力搅拌器中,使用移液枪分别在0、5、10、20、30 min吸取5 mL的反应溶液,用硫代硫酸钠进行淬灭。
1.3 ClO2降解DOX反应动力学实验
1) ClO2降解DOX反应速率常数及反应级数实验。取60 mL质量浓度为5 mg·L−1的DOX浓度于100 mL聚四氟乙烯玻璃瓶中,再加入高浓度的ClO2溶液,使其混合后溶液中ClO2质量浓度大于50 mg·L−1,即超过DOX初始浓度的10倍以上,在水浴中保持反应温度为(25±1) ℃,开启磁力搅拌器,控制转速为200 r·min−1。使用移液枪分别在0、20、40、60、120 s时吸取5 mL反应DOX后的溶液,用硫代硫酸钠进行淬灭。
2) pH对DOX的反应速率常数影响实验。DOX质量浓度为5 mg·L−1,ClO2质量浓度为6.5 mg·L−1,控制反应温度为(25±1) ℃,溶液pH分别为5.2、7.5、8.2、9.0。
3)温度对DOX的反应速率常数影响实验。DOX初始质量浓度为5 mg·L−1,ClO2质量浓度为6.5 mg·L−1条件下,溶液pH为7.5±0.1,控制反应温度为7、14、20、30 ℃。
本文中各参数采用孤立变量法确定,使ClO2浓度大于DOX的10倍以上,可视为ClO2在反应的整个过程中浓度几乎不变,因此ClO2降解DOX的反应动力学方程根据式(1)和式(2)计算。
ν=dcDOXdt=−kobs[DOX]n2 (1) kobs=kapp[ClO2] (2) 式中:
为DOX浓度随时间的变化速率;dcDOXdt 为准一级反应速率常数;kobs 为表观二级反应速率常数;[ClO2]和[DOX]分别为ClO2和DOX的浓度。kapp 1.4 DOX分析方法
本研究利用高效液相色谱(HPLC,LC-10AT)对DOX的标准样品和降解后样品的残留含量进行检测,根据峰面积的进行定量分析,所用色谱柱型号为ZORBAX SB-C18。每次做3组平行实验,取平均值。
检测DOX的色谱条件如下。流动相为甲醇∶ 0.01 mol·L−1磷酸二氢铵(NH4H2PO3)∶乙酸=30∶20∶0.1。色谱条件:检测波长为254 nm,进样量为20 μL,柱温为25 ℃,流速为1.0 mL·min−1,DOX的保留时间为4.5 min。
1.5 降解产物的分析方法
DOX降解产物采用高效液相色谱-质谱联用仪,仪器型号为赛默飞世尔公司静电场轨道阱质谱联用仪(HPLC—MS),色谱柱为Themo Scientific TM Hypersil GOLD C18 Column(50×2.1 mm,1.9 μm)。DOX采用梯度洗脱,流动相A为水,B为乙腈,0~1 min 5% B,1~8 min 5%~70% B,8~9 min 70%~100% B,9~14 min 100% B,14~14.1 min 100%~50% B,14.1~17 min 5% B,流速为0.3 mL·min−1,进样量10 μL,柱温为30 ℃。质谱方法为ESI+正离子模式;气帘气,35 Pa;Gas 1,45 psi;Gas 2,45 psi;温度为500 ℃;离子化压力为5 000 V,去簇电压为70 V;全扫描范围,m/z 150~
1800 ;裂解电压为5 V;CE Spread, 0 V。1.6 量子化学计算
本研究利用Gaussian 16软件的B3LYP/6-31G(d,p)方法对DOX分子进行结构优化,再利用更精密的基组6-311++G(2d,p)进一步分析,选用高级别基组的目的是在研究化学反应的机理,特别是过渡态和反应路径时,高级别的基组可以提供更可靠的能量梯度和几何结构;使用DFT方法,经B3LYP密度泛函的6-311++G(2d,p)基组进行结构优化;再利用Gaussian View以三维形式查看分子轨道,找到分子中能量最高的占据轨道(HOMO)和能量最低的未占据轨道(LUMO)。选用极化连续介质模型,所选溶剂为水进行相关的化学计算。本文所用到的量子化学计算描述符有最高占据分子轨道(HOMO)、最低未占据分子轨道(LUMO)、前线轨道能隙(ΔE)(式(3))、化学势(μ)(式(4))、硬度(η)(式(5))、亲电指数(ω)(式(6)),利用这些参数分析DOX的相关反应特性。
ΔE=|EHOMO−ELUMO| (3) μ=I+A2 (4) η=I−A2 (5) ω=μ22η (6) 式中:ΔE为前线轨道能隙,eV;EHOMO为最高占据分子轨道的能量,eV;ELUMO为最低未占据分子轨道的能量,eV;μ为化学势,eV;η为硬度,eV;ω为亲电指数,eV;I为电离势,eV;A为电子亲和能,eV。
1.7 福井函数
为了探究不同分子中不同位点的反应活性,FUKUI等 [30]引入了福井函数(Fukui)这一理论。分子中每个原子的亲电攻击、亲核攻击、自由基攻击的Fukui函数分别根据式(7)、式(8)和式(9)计算。
f−(r)=qi(N)−qi(N−1) (7) f+(r)=qi(N+1)−qi(N) (8) f0(r)=f−(r)+f+(r)2 (9) 式中:
表示中性分子、失去1个电子、得到1个电子的带电分布状态;qi(N)、qi(N−1)、qi(N+1) 表示原子的亲核反应活性的大小、f+(r) 表示原子的亲电反应活性的大小、f−(r) 表示自由基攻击的活性大小。f0(r) 1.8 分配系数的计算
本文通过计算每种降解产物的分配系数(logP)来判断产物的脂溶性,进而推断ClO2对DOX降解后的产物潜在的健康风险。logP数值越大,说明该物质具有亲脂性越强,数值越小说明亲水性越强。一般情况下,当logP≤5时,对生物的致死性和慢性毒性随着数值的增大而增大[31]。本文采用中国科学院上海有机化学研究所开发的XLOGP3工具[32],对优化后蒽环类抗生素分子本身、以及被ClO2降解后产物的logP进行计算,通过分析降解前后毒性变化来评估潜在的风险。
2. 结果与讨论
2.1 ClO2对DOX的降解效果及影响因素
1) ClO2初始浓度对降解效果的影响。当温度为(25±1) ℃、pH为7.5±0.1、DOX初始质量浓度为5 mg·L−1时,ClO2初始浓度对降解效果的影响情况如图1(a)所示。由图1(a)可以看出,随着ClO2的浓度增加,DOX的去除率均有上升,当ClO2质量浓度高于0.6 mg·L−1后,DOX去除率上升趋势减缓。这是由于ClO2的氧化能力随其浓度的增加而显著提升,从而有效地攻击和破坏DOX分子中的化学键,但当ClO2质量浓度超过0.6 mg·L−1后,几乎所有的DOX分子均已与ClO2充分反应,导致反应体系趋近于饱和状态,因此,进一步增加ClO2浓度并不会显著提高去除率。此外反应时间在5 min内去除效果显著,5 min后反应几乎达到平衡状态。DOX在接触0.2、0.4、0.6、0.8、1.0 mg·L−1的ClO2 30 min后,降解率分别为35.31%、40.95%、66.97%、93.09%、94.07%,增加ClO2浓度能够有效地去除DOX。
2)温度对降解效果的影响。当pH为7.5±0.1、DOX初始质量浓度为5 mg·L−1、ClO2初始质量浓度为0.6 mg·L−1时,温度对降解效果的影响结果如图1(b)所示。由图1(b)可看出,随着温度的升高,ClO2对DOX的去除率没有显著变化,30 min后去除率分别达到48.32%、50.65%、63.22%、60.45%、60.33%,这表明ClO2去除DOX的能力受温度影响很小。
3) pH对降解效果的影响。当温度为(25±1) ℃,DOX初始质量浓度为5 mg·L−1,ClO2初始质量浓度为0.6 mg·L−1时,pH对降解效果的影响结果如图1(c)所示。由图1(c)可以看出,随着溶液pH的增加ClO2对DOX的降解效果显著增加。DOX溶液在pH为4.8、5.2、7.5、8.5、9.5接触30 min后去除率分别达到54.02%、62.25%、66.18%、64.22%、67.80%。酸性条件下对DOX的降解率要弱于碱性,这是因为ClO2的氧化还原电位与pH呈线性关系,当pH每增加1,其氧化还原电位增加0.062 V[33],因此ClO2氧化能力也随之增加。
4) DOX浓度对降解效果的影响。当温度为(25±1) ℃、pH为7.5±0.1、ClO2初始质量浓度为0.6 mg·L−1时,DOX浓度对降解效果的影响结果如图1(d)所示。由图1(d)可以看出,DOX的去除率随着其初始浓度的增加而明显降低,DOX初始质量浓度为2、5、10、15、20 mg·L−1时,与ClO2反应30 min后去除率分别达到93.41%、78.28%、49.5%、40.16%、28.43%。因为ClO2初始质量浓度较低仅为0.6 mg·L−1,去除率过低有可能是由于ClO2添加量过低,大量DOX未能与ClO2反应而残留导致降解效率低。
2.2 ClO2降解DOX的反应动力学
1) ClO2降解DOX反应速率常数及反应级数。不同ClO2浓度下ln(c0/ct)对反应时间t作图,结果如图2(a)所示。由图2(a)可以看出,ln(c0/ct)与时间呈良好的线性关系(R2>0.98),该反应同样符合拟一级动力学模型,因此DOX的反应级数为1。将图2(a)中的每条拟合直线斜率(即kobs)与ClO2浓度进行拟合得到一条直线,如图2(b)所示。可以看出kobs与ClO2浓度呈良好的线性关系(R2=0.992),反应速率随着ClO2浓度的增加而加快,所以ClO2反应级数为1,因此该回归直线的斜率为反应的二级反应速率常数,kapp=2.41×102 M−1·s−1,因此ClO2降解DOX符合二级反应动力学模型。不同ClO2浓度与DOX反应动力学参数如表1所示。
表 1 不同ClO2浓度下降解DOX动力学参数Table 1. Kinetic parameters of DOX degradation by ClO2 at different concentrations[ClO2]0/(mg·L−1) kobs/s−1 T1/2/s R2 6.5 0.024 98 27.45 0.998 7.0 0.026 22 26.44 0.994 8.0 0.028 34 24.46 0.987 9.0 0.031 59 21.94 0.988 2) pH对DOX的反应速率常数影响。在不同pH下将ln(c0/ct)对反应时间t作图(图3(a));pH与kobs关系如图3(b)所示。由图3(a)和图3(b)可看出,当pH=5.2~9.0时,ClO2对DOX降解速率逐渐升高,反应速率常数由2.00×10−3 s−1上升到4.03×10−2 s−1。表明酸性条件下抑制ClO2对DOX的降解,而碱性条件下能够促进降解。
3)温度对DOX的反应速率常数影响。不同温度下ln(c0/ct)与反应时间t关系如图4(a)所示,Ea可以通过kapp与温度拟合得到,拟合结果见图4(b),不同温度下各反应的动力学参数见表2。由图4(a)~(b)可看出:kapp与温度之间有良好的线性关系(R2=0.995);根据拟合曲线斜率可以计算出ClO2与DOX反应活化能为25.46 kJ·mol−1。由表2可以得到,温度每升高10 ℃,kapp会增加1.41倍。因此,当温度升高,DOX的反应速率上升。这是因为温度升高,反应体系中分子平均动能增大,活化分子增多,反应体系中各分子有效碰撞次数增加,使反应速率加快。
表 2 不同温度下ClO2降解DOX的反应动力学参数Table 2. Kinetic parameters of DOX degradation by ClO2 at different temperatures温度/℃ kobs/s−1 kapp/(mmol·(L·s)−1) R2 7 0.012 82 133.04 0.982 14 0.019 99 207.45 0.989 20 0.030 13 312.68 0.988 30 0.042 53 441.37 0.994 2.3 ClO2降解DOX的机理
1) DOX分子结构与反应活性位点分析。分子的结构能够反映出分子的反应活性,对DOX进行结构优化后的图形见图5,分子主要键长的信息见表3。从表3可以看出,从整体上看DOX分子上的C—C、C=C、C—O、C=O、C—H、O—H、C—N、N—H的键长平均值分别为1.516 2、1.401 1、1.408 4、1.226 4、1.089 1、0.975 8、1.464 8、1.017 0 Å。与苯环上的C—C单键的键长相比,支链上的C5—C7单键以及含氧六元环上的C—C单键的键长较大。键长顺序为C—C>C—N>C—O>C=O>C—H>N—H>O—H。从上述结果可以看出,DOX分子中支链上和含氧六元环上的C—C单键在降解过程中很容易受到亲核攻击[34],且O—H键相较于其他类型的化学键的键长均小,说明该化学键容易受到亲电攻击。
表 3 DOX的键长Table 3. Bond length of DOX化学键 键长 /Å 化学键 键长 /Å 化学键 键长 /Å C1—C2 1.384 4 C7—C8 1.530 3 C15—H52 1.093 16 C2—C3 1.513 2 C5—O11 1.427 68 C16—H53 1.092 45 C3—C4 1.526 73 C8—O9 1.438 1 C18—H55 1.093 86 C4—C5 1.541 98 C25—O26 1.357 34 C20—H56 1.090 61 C5—C6 1.551 78 C22—O39 1.342 57 C20—H57 1.090 88 C1—C25 1.406 806 C32—O36 1.344 38 C20—H58 1.091 67 C22—C23 1.410 19 C37—O36 1.431 35 C35—H64 1.080 07 C23—C24 1.417 93 C3—O12 1.441 54 C24—H63 1.082 75 C24—C25 1.402 01 O12—C13 1.412 31 C33—H62 1.078 81 C23—C30 1.471 68 C13—O19 1.420 48 C37—H66 1.091 54 C29—C30 1.469 62 C18—O19 1.444 57 C37—H67 1.091 51 C28—C29 1.408 09 C16—O17 1.432 25 C37—H65 1.086 36 C27—C28 1.493 56 C30—O31 1.245 67 C15—N21 1.464 81 C24—C27 1.475 73 C27—O38 1.223 91 N21—H59 1.016 56 C29—C32 1.421 08 C7—O10 1.209 52 N21—H60 1.017 5 C32—C33 1.399 35 C3—H40 1.088 06 O9—H41 0.966 93 C33—C34 1.385 47 C4—H41 1.089 86 O11—H48 0.966 04 C34—C35 1.386 5 C4—H42 1.089 7 O17—H54 0.966 76 C28—C35 1.388 76 C6—H44 1.091 73 O39—H68 1.000 57 C13—C14 1.521 01 C6—H43 1.085 42 O26—H61 0.978 63 C14—C15 1.529 72 C8—H45 1.084 75 C1—C6 1.503 36 C15—C16 1.540 17 C8—H46 1.091 07 C16—C18 1.528 21 C13—H49 1.092 06 C18—C20 1.514 04 C14—H51 1.093 32 C5—C7 1.535 75 C14—H50 1.090 1 DOX的静电势和前线分子轨道能量等信息预示着其具有不同的反应特性,但具体的反应活性位点仍不明确。而亲电自由基的反应活性对于有机分子反应途径的研究及为重要。利用福井函数对DOX的亲核反应位点、亲电反应位点及自由基反应位点进行分析。表4列出DOX的亲核攻击(f +)和亲电攻击(f −)。一般情况下,福井函数值越大,说明该原子为主要攻击位点。由表4可以看出,DOX的f −最大值在蒽醌环上的O26、O39原子上,说明O26和O39容易受到亲电攻击。
表 4 DOX中每个原子福井函数值Table 4. Fukui function values per atom for DOX原子 f − f + 原子 f − f + 原子 f − f + 1C 0.024 6 0.043 6 24C 0.034 5 0.018 5 47H 0.003 8 0.002 2 2C 0.024 7 0.041 5 25C 0.048 7 0.025 2 48H 0.005 2 0.007 5 3C 0.002 9 0.005 8 26O 0.066 8 0.022 4 49H 0.002 1 0.005 6 4C 0.004 0.004 1 27C 0.008 7 0.052 4 50H 0.004 3 0.001 1 5C 0.002 6 0.003 28C 0.001 3 0.024 9 51H 0.006 9 0.004 5 6C 0.004 5 0.006 8 29C 0.004 7 0.017 2 52H 0.008 1 0 7C 0.000 2 0.000 3 30C 0.008 4 0.063 6 53H 0.011 7 0.006 7 8C 0.005 1 0.004 5 31O 0.023 5 0.079 5 54H 0.005 9 0.000 1 9O 0.001 5 0.000 2 32C 0.018 0.023 2 55H 0.003 4 0.000 3 10O 0.010 6 0.007 4 33C 0.024 3 0.040 6 56H 0.006 0.003 6 11O 0.014 7 0.014 7 34C 0.025 7 0.049 1 57H 0.005 1 0.000 7 12O 0.006 2 0.007 3 35C 0.025 6 0.025 2 58H 0.009 2 0.007 13C 0.000 3 0.000 9 36O 0.019 1 0.010 8 59H 0.022 5 0.006 4 14C 0.003 3 0.000 3 37C 0.008 8 0.011 2 60H 0.019 9 0.003 9 15C 0.009 4 0.000 8 38O 0.033 3 0.083 5 61H 0.017 5 0.011 6 16C 0.010 4 0.001 6 39O 0.072 4 0.035 3 62H 0.014 8 0.023 2 17O 0.019 5 0.006 8 40H 0.005 8 0.007 8 63H 0.017 1 0.028 18C 0.004 6 0.000 8 41H 0.011 6 0.014 4 64H 0.013 1 0.018 3 19O 0.004 1 0.001 5 42H 0.005 4 0.004 2 65H 0.009 7 0.014 20C 0.005 8 0.002 1 43H 0.007 5 0.008 9 66H 0.009 7 0.011 5 21N 0.033 6 0.003 9 44H 0.009 3 0.013 2 67H 0.010 1 0.011 8 22C 0.042 5 0.022 45H 0.011 8 0.011 1 68H 0.015 3 0.012 23C 0.038 2 0.013 46H 0.005 0.005 2 2) NPA(natural population analysis)电荷分布分析。ClO2降解DOX的过程会发生电子的得失,而分子的电荷分布影响其反应特性。DOX分子的静电荷分布,其中C1、C2、C4、C6、C8、C14、C15、C20、C23、C24、C28、C29、C34、C35、C37所带电荷为−0.035、−0.123、−0.404、−0.437、−0.110、−0.426、−0.045、−0.584、−0.213、−0.139、−0.074、−0.172、−0.158、−0.180、−0.199 a.u.,其余的碳原子均带正电,所有的氧原子均带负电,其中O26和O39所带电荷为-0.698和-0.720 a.u.,所有氢原子均带正电,反应过程中C20、O39、O26容易受到亲电攻击。DOX在发生降解的过程中蒽醌环上的羟基取代基中的氧原子以及个别碳原子容易发生亲电攻击。图6为DOX的静电势图,其中蓝色到红色区域表示电子云由稀疏到密集部分。可以看到DOX的电子云密度较大的区域主要集中在氧原子周围,电子云密度较小的区域主要集中在碳原子与氢原子周围。
3)前线分子轨道分析。HOMO和LUMO轨道图形能够直观地看到分子容易得失电子的区域。若分子中的某部分被HOMO轨道所覆盖区域较大,说明该区域容易发生失去电子的情况;若分子中的某部分被LUMO轨道所覆盖区域大,说明该区域容易发生得电子的情况。图7显示了DOX前线分子轨道图,其中绿色区域代表正相位、红色区域代表负相位。从图7中可以看到,对于DOX的HOMO轨道主要聚集在二羟基取代苯环上的氧原子与碳原子周围,说明该区域容易受到亲电试剂攻击,其LUMO轨道分布主要集中在蒽醌环上的碳原子周围和苯环上的含氧双键周围,则该区域容易发生亲核试剂攻击。DOX的最高占据分子轨道能量为−5.95 eV,最低未占据分子轨道能量为−2.88 eV,前线轨道能隙为3.069 eV,化学势为4.42 eV,硬度为1.54 eV,亲电指数为6.34 eV,电离势为5.95 eV,电子亲合能为2.88 eV。
综上所述,通过分子结构与反应活性位点分析可知DOX分子中支链上和含氧六元环上的C-C单键相对较长,这使它们在降解过程中更容易受到亲核攻击。O—H键的键长数值较小,表明这个化学键容易受到亲电攻击。福井函数的f +和f −指数表明,DOX的f −最大值在蒽醌环上的O26、O39原子上,这表明这些原子容易受到亲电攻击。在ClO2降解DOX的过程中,分子中电子密度较高的区域,特别是蒽醌环上的羟基和个别碳原子,更容易受到亲电攻击。静电势图进一步确认了氧原子周围的电子云密度较大,表明这些区域在化学反应中可能更活跃。在DOX分子中,HOMO轨道的高电子密度区域,特别是二羟基取代苯环上的氧原子和碳原子,倾向于吸引亲电试剂的攻击。相反,LUMO轨道覆盖的区域,即蒽醌环上的碳原子和苯环上的含氧双键附近,更可能遭遇亲核试剂的攻击。
2.4 ClO2降解DOX的降解产物分析及降解途径
1) ClO2降解DOX的产物分析。不同pH下降解前后的6组样品所含主要物质的质核比列于表5。根据目标化合物的结构和反应原理,共推测出5种降解产物,HPLC-MS扫描后的质荷比分别为:560、576、387、303、148,所对应氧化产物表示为M+16、M+32、M-157、M-241、M-396(M表示DOX母体质荷比,+或-分别表示产物相较于DOX相对分子质量的损失或者增加,数字表示损失或增加的量)。从表5可以看出,ClO2不能将DOX完全矿化,并且该化合物被ClO2完全降解后中间产物仍然存在,需要对降解的中间产物进一步进行分析。此外,各pH范围下的空白和降解后的样品同样都检测到了m/z=158.15的物质,这是由于在降解后加入硫代硫酸钠进行了猝灭,确定该物质是硫代硫酸钠。m/z 544.17在3组不同pH的降解实验中均被检测到,因此推测可能是该反应物自身。ClO2在降解酸性、碱性、中性条件的DOX下,其产物中都出现了M+16、M+32、M-157、M-241四种产物,产物M-396的质谱峰虽然存在,但非常小,该产物可能立刻被矿化成其他小分子产物。且该产物在ZHAO等[35]研究中也同样出现,因此将该种产物考虑进产物分析中。
表 5 ClO2降解DOX前后m/z的质谱扫描结果Table 5. The mass spectrometry scan results of m/z before and after DOX degradation by ClO2反应条件 降解前 降解后 未调节pH 544.17、149.02、344.22、470.36、388.25、475.32、518.88、158.15、158.15 474.78、406.79、544.17、303.12、576.16、459.27、503.31、576.17、387.18、158.15、149.02 酸性条件 544.17、425.21、453.34、396.80、405.81、149.02、154.99、149.02、432.28、388.25、432.28、476.31、566.43、588.41、158.15 562.66、412.77、544.17、149.02、388.25、520.33、503.31、547.33、407.79、303.12、509.88、560.17、158.15、576.17、387.18、158.15 碱性条件 544.17、344.23、415.25、476.31、453.34、520.33、564.35、340.25、158.15 560.17、149.02、544.17、303.12、458.80、562.66、548.70、592.15、594.16、476.30、158.15、576.17、560.18、387.18、158.15 2) ClO2降解DOX的反应途径。HPLC-MS扫描出可能产物结果如图8所示。共推测出8种结构式不同的降解产物,其对应的质荷比分别为560(a)、560(b)、560(c)、576(a)、576(b)、387、303、148,所对应的氧化产物表示为M+16(a)、M+16(b)、M+16(b)、M+32(a)、M+32(b)、M-157、M-241、M-396,其中a、b表示相同的m/z下结构不同的产物。
根据福井函数以及电荷分布计算结果可知DOX分子上的C20、O26、O29容易受到亲电反应攻击。推测的反应路径如图8所示。
反应路径包括以下3个方面:1)反应路径1,含羟基的39号氧原子被ClO2氧化过程产生的自由基攻击后,首先发生自由基的抽氢反应,使氧原子和碳原子处于缺电子状态,氧原子处进一步发生加成反应,得到中间产物Ⅱ;2)反应路径2,含羟基的26号氧原子在ClO2氧化过程产生的自由基攻击后,发生一系列的抽氢和·OH加成反应,得到中间产物Ⅲ,反应中间产物Ⅱ和Ⅲ进一步在ClO2的氧化下生成中间产物Ⅴ,随后12号氧原子与支链上的含氧六元环的13号碳原子发生断裂,与此同时5号碳原子与7号碳原子相连处发生断裂,最终生成产物Ⅵ和Ⅶ;3)反应路径3,C20被ClO2氧化过程产生的自由基攻击后,同样发生自由基的抽氢反应和加成反应得到产物Ⅰ,进一步含羟基的26或39号氧原子与·OH自由基发生反应最终生成产物Ⅳ。产物Ⅶ和Ⅳ通过发生一系列的开环反应生成最终产物Ⅷ。
2.5 产物的分配系数
DOX中间产物Ⅰ的logP值为0.77,产物Ⅱ的logP值为0.8,产物Ⅲ的logP值为0.8,产物Ⅳ的logP值为0.3,产物Ⅴ的logP值为−0.16,产物Ⅵ的logP值为−1.37,产物Ⅶ的logP值为0.85,产物Ⅷ的logP值为2.28,DOX的产物的名称与产物分析结果保持一致。从上文可以看出,DOX的logP值均小于5。对于DOX而言,其本身分配系数为1.27,而中间产物Ⅷ的分配系数为2.28,该产物比DOX本身的毒性要大。表明ClO2在DOX的过程中,有毒性更强的产物出现,但部分的中间产物可以继续被降解成毒性较弱的终产物。
3. 结论
1) ClO2浓度、DOX的浓度、溶液的pH对去除DOX效果有很大的影响,低浓度ClO2对于在不同温度下DOX降解效果的差异不显著;碱性条件下DOX相较于酸性条件下的去除率及反应速率都快,说明碱性条件下能够加速反应的进行。
2) ClO2对于DOX的降解符合二级反应,反应速率常数为 2.41×10−2 mmol·L−1·s−1;温度越高,DOX的反应速率常数也随之增加。DOX的反应活化能为25.46 kJ·mol−1。
3)根据NPA电荷分布及福井函数综合分析,DOX的主要亲电反应位点分别为O26、O39、C20;通过HPLC-MS检测出的产物结果与量子化学计算所确定的反应位点,推测DOX在被降解过程中经历了抽氢反应、自由基的加成反应。
4)通过计算DOX降解前后的logP值,发现DOX降解过程中产物Ⅷ的logP值大于DOX说明中间产物毒性较强,但部分中间产物可以进一步被ClO2降解为毒性更小的产物。
-
表 1 PdM粒子物理参数
Table 1. Physical parameter of PdM particles
样品Samples (111)衍射峰位置 2θ/(°)(111)Difraction peak 2θ (111) 晶面间距d/nm(111)Interplanar spacing d M原子半径/nmMetal atomic radius Pd 40 0.225 0.169 PdCu 40.28 0.224 0.145 PdCo 40.08 0.225 0.152 PdIr 39.32 0.229 0.180 -
[1] 邓细宇, 邝鑫雅, 字包叶, 等. 石墨相氮化碳(g-C3N4)用于光催化产氢的研究进展 [J]. 功能材料与器件学报, 2020, 26(1): 7-15. DENG X Y, KAUNG X Y, ZI B Y, et al. Research progress of graphite phase carbon nitride (g-C3N4) for photocatalytic hydrogen production [J]. Journal of Functional Materials and Devices, 2020, 26(1): 7-15(in Chinese).
[2] 柳璐, 张文, 王宇新, 等. 石墨相氮化碳的可控制备及其在能源催化中的应用 [J]. 化工学报, 2018, 69(11): 4577-4591. LIU L, ZHANG W, WANG X Y, et al. Graphitic carbon nitride materials: Controllable preparations and applications in energy catalysis [J]. CIESC Journal, 2018, 69(11): 4577-4591(in Chinese).
[3] 陈克龙, 黄建花, 等. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢 [J]. 化工学报, 2020, 71(1): 397-408. CHEN K L, HUANG J H, et al. g-C3N4-CdS-NiS2 composite nanotube: Synthesis and its photocatalytic activity for H2 generation under visible light [J]. CIESC Journal, 2020, 71(1): 397-408(in Chinese).
[4] 苏跃涵, 王盈霏, 张钱新, 等. 二维超薄g-C3N4的制备及其光催化性能研究 [J]. 中国环境科学, 2017, 37(10): 3748-3757. doi: 10.3969/j.issn.1000-6923.2017.10.017 SU Y H, WANG Y F, ZHANG Q X, et al. The preparation of two-dimensional ultrathin g-C3N4 and the research of the photo-catalysis properties [J]. China Environment Science, 2017, 37(10): 3748-3757(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.10.017
[5] CAO S, CHEN H, JIANG F, et al. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea [J]. Applied Catalysis B-Environmental, 2018, 224: 222-229. doi: 10.1016/j.apcatb.2017.10.028 [6] 李文博, 郭桂全, 马龙, 等. 金属掺杂改性g-C3N4材料可见光催化性能研究进展 [J]. 冶金管理, 2020(1): 23, 187. LI W B, GUO G Q, MA L, et al. Research progress on visible light catalytic performance of metal-doped modified g-C3N4 materials [J]. China Steel Focus, 2020(1): 23, 187(in Chinese).
[7] LIU C, ZHANG Y, DONG F, et al. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis [J]. Applied Catalysis B-Environmental, 2017, 203: 465-474. doi: 10.1016/j.apcatb.2016.10.002 [8] KURNARAVEL V, MATHEW S, BARTLETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances [J]. Applied Catalysis B-Environmental, 2019, 244: 1021-1064. [9] HUANG Z, ZHANG Y, DAI H, et al. Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution [J]. Journal of Catalysis, 2019, 378: 331-340. doi: 10.1016/j.jcat.2019.09.007 [10] LIU Y, MIAO C, YANG P, et al. Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O [J]. Applied Catalysis B-Environmental, 2019, 244: 919-930. doi: 10.1016/j.apcatb.2018.12.028 [11] NAULANI-GARCIA M, SALINAS-TORRES D, MORI K, et al. Enhanced formic acid dehydrogenation by the synergistic alloying effect of PdCo catalysts supported on graphitic carbon nitride [J]. International Journal of Hydrogen Energy, 2019, 44(53): 28483-28493. doi: 10.1016/j.ijhydene.2018.11.057 [12] YE T, DURKIN D P, BANEK N A, et al. Graphitic carbon nitride supported ultrafine Pd and Pd-Cu catalysts: Enhanced reactivity, selectivity, and longevity for nitrite and nitrate hydrogenation [J]. Acs Applied Materials & Interfaces, 2017, 9(33): 27421-27426. [13] ZOU W, XU L, PU Y, CAI H, et al. Advantageous interfacial effects of AgPd/g-C3N4 for photocatalytic hydrogen evolution: Electronic structure and H2O dissociation [J]. Chemistry-a European Journal, 2019, 25(19): 5058-5064. doi: 10.1002/chem.201806074 [14] SERAJ S, KUNAL P, LI H, et al. PdAu alloy nanoparticle catalysts: Effective candidates for nitrite reduction in water [J]. Acs Catalysis, 2017, 7(5): 3268-3276. [15] ZHU C, WANG Y, JIANG Z, et al. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption [J]. Applied Catalysis B-Environmental, 2019, 259: 118072. doi: 10.1016/j.apcatb.2019.118072 [16] CHEN Y, WANG Y, LI W, et al. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation [J]. Applied Catalysis B-Environmental, 2017, 210: 352-367. doi: 10.1016/j.apcatb.2017.03.077 [17] CHAVE R K, DO J, KANG M, et al. Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents [J]. Applied Catalysis B-Environmental, 2019, 248: 538-551. doi: 10.1016/j.apcatb.2019.01.075 [18] HAN C, LU Y, ZHANG J, et al. Novel PtCo alloy nanoparticle decorated 2D g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation [J]. Journal of Materials Chemistry A, 2015, 3(46): 23274-23282. [19] ZHONG X H, HAN M Y, DONG Z L, et al. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability [J]. Journal of the American Chemical Society, 2003, 125(28): 8589-8594. doi: 10.1021/ja035096m [20] ZHONG X H, FENG Y Y, KNOLL W, et al. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width [J]. Journal of the American Chemical Society, 2003, 125(44): 13559-13563. doi: 10.1021/ja036683a [21] LIU H, WANG M, ZHANG X, et al. High efficient photocatalytic hydrogen evolution from formaldehyde over sensitized Ag@Ag-Pd alloy catalyst under visible light irradiation [J]. Applied Catalysis B-Environmental, 2018, 237: 563-573. [22] VERMA P, KUWAHARA Y, MORI K, et al. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation [J]. Journal of Materials Chemistry A, 2016, 4(26): 10142-10150. doi: 10.1039/C6TA01664B [23] CAUDILLO-FLORES U, MUNOZ-BATISTA M J, FERNANDEZ-GARCIA M, et al. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination [J]. Applied Catalysis B-Environmental, 2018, 238: 533-545. doi: 10.1016/j.apcatb.2018.07.047 [24] LIU X, SU P, CHEN, Y, et al. g-C3N4 supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid [J]. New Journal of Chemistry, 2018, 42(12): 9449-9454. [25] DIAK M, KLEIN M, KLIMCZUK T, et al. Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: Degradation pathway of phenol-1-C-13 and hydroxyl radical formation [J]. Applied Catalysis B-Environmental, 2017, 200: 56-71. doi: 10.1016/j.apcatb.2016.06.067 [26] LIN B, YANG G, WANG L, et al. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution [J]. Angewandte Chemie-International Edition, 2019, 58(14): 4587-4591. [27] RAN J, GAO G, LI F.-T, et al Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production [J]. Nature Communications, 2017, 8: 13907. [28] TIAN D, CHEN Q, NIE F Q, et al. Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography [J]. Advanced Materials, 2009, 21(37): 3744-3749. doi: 10.1002/adma.200900022 [29] WANG L, GAO Z, LI Y, et al. Photosensitization of CdS by acid red-94 modified alginate: Dual ameliorative effect upon photocatalytic hydrogen evolution [J]. Applied Surface Science, 2019, 492: 598-606. doi: 10.1016/j.apsusc.2019.06.222 -