[1] |
邓细宇, 邝鑫雅, 字包叶, 等. 石墨相氮化碳(g-C3N4)用于光催化产氢的研究进展 [J]. 功能材料与器件学报, 2020, 26(1): 7-15.
DENG X Y, KAUNG X Y, ZI B Y, et al. Research progress of graphite phase carbon nitride (g-C3N4) for photocatalytic hydrogen production [J]. Journal of Functional Materials and Devices, 2020, 26(1): 7-15(in Chinese).
|
[2] |
柳璐, 张文, 王宇新, 等. 石墨相氮化碳的可控制备及其在能源催化中的应用 [J]. 化工学报, 2018, 69(11): 4577-4591.
LIU L, ZHANG W, WANG X Y, et al. Graphitic carbon nitride materials: Controllable preparations and applications in energy catalysis [J]. CIESC Journal, 2018, 69(11): 4577-4591(in Chinese).
|
[3] |
陈克龙, 黄建花, 等. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢 [J]. 化工学报, 2020, 71(1): 397-408.
CHEN K L, HUANG J H, et al. g-C3N4-CdS-NiS2 composite nanotube: Synthesis and its photocatalytic activity for H2 generation under visible light [J]. CIESC Journal, 2020, 71(1): 397-408(in Chinese).
|
[4] |
苏跃涵, 王盈霏, 张钱新, 等. 二维超薄g-C3N4的制备及其光催化性能研究 [J]. 中国环境科学, 2017, 37(10): 3748-3757. doi: 10.3969/j.issn.1000-6923.2017.10.017
SU Y H, WANG Y F, ZHANG Q X, et al. The preparation of two-dimensional ultrathin g-C3N4 and the research of the photo-catalysis properties [J]. China Environment Science, 2017, 37(10): 3748-3757(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.10.017
|
[5] |
CAO S, CHEN H, JIANG F, et al. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea [J]. Applied Catalysis B-Environmental, 2018, 224: 222-229. doi: 10.1016/j.apcatb.2017.10.028
|
[6] |
李文博, 郭桂全, 马龙, 等. 金属掺杂改性g-C3N4材料可见光催化性能研究进展 [J]. 冶金管理, 2020(1): 23, 187.
LI W B, GUO G Q, MA L, et al. Research progress on visible light catalytic performance of metal-doped modified g-C3N4 materials [J]. China Steel Focus, 2020(1): 23, 187(in Chinese).
|
[7] |
LIU C, ZHANG Y, DONG F, et al. Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis [J]. Applied Catalysis B-Environmental, 2017, 203: 465-474. doi: 10.1016/j.apcatb.2016.10.002
|
[8] |
KURNARAVEL V, MATHEW S, BARTLETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances [J]. Applied Catalysis B-Environmental, 2019, 244: 1021-1064.
|
[9] |
HUANG Z, ZHANG Y, DAI H, et al. Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution [J]. Journal of Catalysis, 2019, 378: 331-340. doi: 10.1016/j.jcat.2019.09.007
|
[10] |
LIU Y, MIAO C, YANG P, et al. Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O [J]. Applied Catalysis B-Environmental, 2019, 244: 919-930. doi: 10.1016/j.apcatb.2018.12.028
|
[11] |
NAULANI-GARCIA M, SALINAS-TORRES D, MORI K, et al. Enhanced formic acid dehydrogenation by the synergistic alloying effect of PdCo catalysts supported on graphitic carbon nitride [J]. International Journal of Hydrogen Energy, 2019, 44(53): 28483-28493. doi: 10.1016/j.ijhydene.2018.11.057
|
[12] |
YE T, DURKIN D P, BANEK N A, et al. Graphitic carbon nitride supported ultrafine Pd and Pd-Cu catalysts: Enhanced reactivity, selectivity, and longevity for nitrite and nitrate hydrogenation [J]. Acs Applied Materials & Interfaces, 2017, 9(33): 27421-27426.
|
[13] |
ZOU W, XU L, PU Y, CAI H, et al. Advantageous interfacial effects of AgPd/g-C3N4 for photocatalytic hydrogen evolution: Electronic structure and H2O dissociation [J]. Chemistry-a European Journal, 2019, 25(19): 5058-5064. doi: 10.1002/chem.201806074
|
[14] |
SERAJ S, KUNAL P, LI H, et al. PdAu alloy nanoparticle catalysts: Effective candidates for nitrite reduction in water [J]. Acs Catalysis, 2017, 7(5): 3268-3276.
|
[15] |
ZHU C, WANG Y, JIANG Z, et al. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption [J]. Applied Catalysis B-Environmental, 2019, 259: 118072. doi: 10.1016/j.apcatb.2019.118072
|
[16] |
CHEN Y, WANG Y, LI W, et al. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation [J]. Applied Catalysis B-Environmental, 2017, 210: 352-367. doi: 10.1016/j.apcatb.2017.03.077
|
[17] |
CHAVE R K, DO J, KANG M, et al. Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents [J]. Applied Catalysis B-Environmental, 2019, 248: 538-551. doi: 10.1016/j.apcatb.2019.01.075
|
[18] |
HAN C, LU Y, ZHANG J, et al. Novel PtCo alloy nanoparticle decorated 2D g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation [J]. Journal of Materials Chemistry A, 2015, 3(46): 23274-23282.
|
[19] |
ZHONG X H, HAN M Y, DONG Z L, et al. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability [J]. Journal of the American Chemical Society, 2003, 125(28): 8589-8594. doi: 10.1021/ja035096m
|
[20] |
ZHONG X H, FENG Y Y, KNOLL W, et al. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width [J]. Journal of the American Chemical Society, 2003, 125(44): 13559-13563. doi: 10.1021/ja036683a
|
[21] |
LIU H, WANG M, ZHANG X, et al. High efficient photocatalytic hydrogen evolution from formaldehyde over sensitized Ag@Ag-Pd alloy catalyst under visible light irradiation [J]. Applied Catalysis B-Environmental, 2018, 237: 563-573.
|
[22] |
VERMA P, KUWAHARA Y, MORI K, et al. Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation [J]. Journal of Materials Chemistry A, 2016, 4(26): 10142-10150. doi: 10.1039/C6TA01664B
|
[23] |
CAUDILLO-FLORES U, MUNOZ-BATISTA M J, FERNANDEZ-GARCIA M, et al. Bimetallic Pt-Pd co-catalyst Nb-doped TiO2 materials for H2 photo-production under UV and Visible light illumination [J]. Applied Catalysis B-Environmental, 2018, 238: 533-545. doi: 10.1016/j.apcatb.2018.07.047
|
[24] |
LIU X, SU P, CHEN, Y, et al. g-C3N4 supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid [J]. New Journal of Chemistry, 2018, 42(12): 9449-9454.
|
[25] |
DIAK M, KLEIN M, KLIMCZUK T, et al. Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: Degradation pathway of phenol-1-C-13 and hydroxyl radical formation [J]. Applied Catalysis B-Environmental, 2017, 200: 56-71. doi: 10.1016/j.apcatb.2016.06.067
|
[26] |
LIN B, YANG G, WANG L, et al. Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution [J]. Angewandte Chemie-International Edition, 2019, 58(14): 4587-4591.
|
[27] |
RAN J, GAO G, LI F.-T, et al Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production [J]. Nature Communications, 2017, 8: 13907.
|
[28] |
TIAN D, CHEN Q, NIE F Q, et al. Patterned wettability transition by photoelectric cooperative and anisotropic wetting for liquid reprography [J]. Advanced Materials, 2009, 21(37): 3744-3749. doi: 10.1002/adma.200900022
|
[29] |
WANG L, GAO Z, LI Y, et al. Photosensitization of CdS by acid red-94 modified alginate: Dual ameliorative effect upon photocatalytic hydrogen evolution [J]. Applied Surface Science, 2019, 492: 598-606. doi: 10.1016/j.apsusc.2019.06.222
|